首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Amnesiac mutant flies have an olfactory memory defect. The amn gene encodes a homolog of vertebrate pituitary adenylate cyclase-activating peptide (PACAP), and it is strongly expressed in dorsal paired medial (DPM) neurons. DPM neurons ramify throughout the mushroom bodies in the adult fly brain, and they are required for stable memory. Here, we show that DPM neuron output is only required during the consolidation phase for middle-term odor memory and is dispensable during acquisition and recall. However, we found that DPM neuron output is required during acquisition of a benzaldehyde odor memory. We show that flies sense benzaldehyde by the classical olfactory and a noncanonical route. These results suggest that DPM neurons are required to consolidate memory and are differently involved in memory of a volatile that requires multisensory integration.  相似文献   

2.
3.
《Autophagy》2013,9(1):178-179
The aging process drives the progressive deterioration of an organism and is thus subject to a complex interplay of regulatory and executing mechanisms. Our understanding of this process eventually aims at the delay and/or prevention of age-related pathologies, among them the age-dependent decrease in cognitive performance (e.g., learning and memory). Using the fruit fly Drosophila melanogaster, which combines a generally high mechanistic conservation with an efficient experimental access regarding aging and memory studies, we have recently unveiled a protective function of polyamines (including spermidine) against age-induced memory impairment (AMI). The flies’ age-dependent decline of aversive olfactory memory, an established model for AMI, can be rescued by both pharmacological treatment with spermidine and genetic modulation that increases endogenous polyamine levels. Notably, we find that this effect strictly depends on autophagy, which is remarkable in light of the fact that autophagy is considered a key regulator of aging in other contexts. Given that polyamines in general and spermidine in particular are endogenous metabolites, our findings place them as candidate target substances for AMI treatment.  相似文献   

4.
Waddell S  Armstrong JD  Kitamoto T  Kaiser K  Quinn WG 《Cell》2000,103(5):805-813
Mutations in the amnesiac gene in Drosophila affect both memory retention and ethanol sensitivity. The predicted amnesiac gene product, AMN, is an apparent preproneuropeptide, and previous studies suggest that it stimulates cAMP synthesis. Here we show that, unlike other learning-related Drosophila proteins, AMN is not preferentially expressed in mushroom bodies. Instead, it is strongly expressed in two large neurons that project over all the lobes of the mushroom bodies, a finding that suggests a modulatory role for AMN in memory formation. Genetically engineered blockade of vesicle recycling in these cells abbreviates memory as in the amnesiac mutant. Moreover, restoration of amn gene expression to these cells reestablishes normal olfactory memory in an amn deletion background. These results indicate that AMN neuropeptide release onto the mushroom bodies is critical for normal olfactory memory.  相似文献   

5.
Dopamine is necessary for the aversive olfactory associative memory formation in Drosophila, but its effect on other stages of memory is not known. Herein, we studied the effect of enhanced dopaminergic signaling on aversive olfactory memory retention in flies. We used l-3,4-dihydroxyphenylalanine (l-DOPA) to elevate dopamine levels: l-DOPA-treated flies exhibited a normal learning performance, but a decrease in 1-h memory. Dopamine transporter (DAT) mutant flies or flies treated with the DAT inhibitor desipramine exhibited poor memory retention. Flies subjected to heat stress after training exhibited a decrease in memory. Memory was restored by blocking dopaminergic neuronal output during heat stress, suggesting that dopamine is involved in heat stress-induced memory impairment in flies. Taken together, our findings suggest that increased dopaminergic signaling impairs aversive olfactory memory retention in flies.  相似文献   

6.
Memories are formed, stabilized in a time-dependent manner, and stored in neural networks. In Drosophila, retrieval of punitive and rewarded odor memories depends on output from mushroom body (MB) neurons, consistent with the idea that both types of memory are represented there. Dorsal Paired Medial (DPM) neurons innervate the mushroom bodies, and DPM neuron output is required for the stability of punished odor memory. Here we show that stable reward-odor memory is also DPM neuron dependent. DPM neuron expression of amnesiac (amn) in amn mutant flies restores wild-type memory. In addition, disrupting DPM neurotransmission between training and testing abolishes reward-odor memory, just as it does with punished memory. We further examined DPM-MB connectivity by overexpressing a DScam variant that reduces DPM neuron projections to the MB alpha, beta, and gamma lobes. DPM neurons that primarily project to MB alpha' and beta' lobes are capable of stabilizing punitive- and reward-odor memory, implying that both forms of memory have similar circuit requirements. Therefore, our results suggest that the fly employs the local DPM-MB circuit to stabilize punitive- and reward-odor memories and that stable aspects of both forms of memory may reside in mushroom body alpha' and beta' lobe neurons.  相似文献   

7.
The aging process drives the progressive deterioration of an organism and is thus subject to a complex interplay of regulatory and executing mechanisms. Our understanding of this process eventually aims at the delay and/or prevention of age-related pathologies, among them the age-dependent decrease in cognitive performance (e.g., learning and memory). Using the fruit fly Drosophila melanogaster, which combines a generally high mechanistic conservation with an efficient experimental access regarding aging and memory studies, we have recently unveiled a protective function of polyamines (including spermidine) against age-induced memory impairment (AMI). The flies’ age-dependent decline of aversive olfactory memory, an established model for AMI, can be rescued by both pharmacological treatment with spermidine and genetic modulation that increases endogenous polyamine levels. Notably, we find that this effect strictly depends on autophagy, which is remarkable in light of the fact that autophagy is considered a key regulator of aging in other contexts. Given that polyamines in general and spermidine in particular are endogenous metabolites, our findings place them as candidate target substances for AMI treatment.  相似文献   

8.
Learning and memory of Drosophila mutants dunce, amnesiac and radish which were isolated originally from the classical olfactory learning paradigm are analyzed in an operant visual learning paradigm. Dunce appears to show normal ability to learn during training, but its memory is significantly affected. Though the learning index during the first minute after training is normal, its short-term memory (STM), anesthesia-resistant memory (ARM) and long-term memory (LTM) are all significantly damaged. Amnesiac displays disrupted middle-term memory (MTM), while its STM and LTM remain unchanged. Learning and memory in radish mutants seem to be unaffected. These results lend support to the argument that there are certain common molecular mechanisms underlying learning and memory through different tasks and the previous multi-phase model of visual memory is modified in a genetic way.  相似文献   

9.
Age‐related memory impairment (AMI) is a common phenomenon across species. Vulnerability to interfering stimuli has been proposed to be an important cause of AMI. However, the molecular mechanisms underlying this vulnerability‐related AMI remain unknown. Here we show that learning‐activated MAPK signals are gradually lost with age, leading to vulnerability‐related AMI in Drosophila. Young flies (2‐ or 3‐day‐old) exhibited a significant increase in phosphorylated MAPK levels within 15 min after learning, whereas aged flies (25‐day‐old) did not. Compared to 3‐day‐old flies, significant 1 h memory impairments were observed in 15‐, 20‐, and 30‐day‐old flies, but not in 10‐day‐old flies. However, with post‐learning interfering stimuli such as cooling or electric stimuli, 10‐day‐old flies had worse memory performance at 1 h than 3‐day‐old flies, showing a premature AMI phenomenon. Increasing learning‐activated MAPK signals through acute transgene expression in mushroom body (MB) neurons restored physiological trace of 1 h memory in a pair of MB output neurons in aged flies. Decreasing such signals in young flies mimicked the impairment of 1 h memory trace in aged flies. Restoring learning‐activated MAPK signals in MB neurons in aged flies significantly suppressed AMI even with interfering stimuli. Thus, our data suggest that age‐related loss of learning‐activated neuronal MAPK signals causes memory vulnerability to interfering stimuli, thereby leading to AMI.  相似文献   

10.
视觉和嗅觉信号对果蝇食物搜寻行为的协同作用   总被引:1,自引:0,他引:1  
冯波  王霞  李岩  杜永均 《昆虫学报》2013,56(7):792-798
为了探索视觉和嗅觉信号在昆虫食物搜寻过程中的作用, 本研究利用杨梅和橘子为引诱物, 在实验室条件下测定了嗅觉和视觉信号诱集到的黑腹果蝇Drosophila melanogaster数量, 分析了嗅觉经历对果蝇嗅觉和视觉食物搜寻的影响。发现同源性嗅觉和视觉信号存在的杨梅诱集到的果蝇数量显著大于单一的视觉信号和嗅觉信号, 但异源性嗅觉和视觉信号组合诱集到的果蝇数量和单独的嗅觉信号相似。嗅觉信号预处理不仅能够显著增加嗅觉信号诱集到的果蝇数量, 其中杨梅嗅觉信号对杨梅预处理果蝇的吸引能力与视觉和嗅觉信号存在的杨梅相似, 而且异源性嗅觉和视觉信号组合诱集到的预处理果蝇数量也不低于视觉和嗅觉信号存在的杨梅。另外杨梅嗅觉信号预处理也能够显著增强杨梅视觉信号诱集到的果蝇数量。但嗅觉预处理并不会改变同源性视觉和嗅觉信号组合诱集到的果蝇数量。本研究表明, 果蝇同时利用视觉和嗅觉信号进行食物搜寻, 因此同源性视觉和嗅觉信号在果蝇诱集过程中具有协同作用。另外果蝇具有较强的记忆和学习能力, 能够将记忆中的嗅觉信号应用于食物搜寻。本研究结果不仅有利于我们了解果蝇在自然状态下的食物搜寻机制, 而且有利于开发更有效的果蝇新型诱捕器。  相似文献   

11.
Adenylyl cyclase plays an important role in olfactory signaltransduction. Recently, a novel type III adenylyl cyclase hasbeen localized in olfactory neurons (Pfeuffer et al., 1989;Bakalyar and Reed, 1990). Because amitriptyline (AMI), a tricyclicantidepressant, appears to have an inhibitory effect on adenylylcyclase activity in other in other neuronal tissue (Yamaokaet al., 1988; Wong et al., 1991), we measured the effect ofAMI on forskolin-stimulated adenylyl cyclase activity in membranepreparations of olfactory mucosa from adult rats. In the presenceof 5'-guanylyl-imidodiphosphate, AMI (0.5–8.0 µM)inhibited forskolin-stimulated adenylyl cyclase activity ina dose-dependent manner. To determine whether this effect wasspecific for olfactory neurons, as opposed to other cells inthe olfactory epithelium, rats were unilaterally bulbectomizedin order to reduce selectively the number of olfactory neuronson the side ipsilateral to the bulbectomy. In membrane preparationsfrom unilaterally bulbectomized animals we saw significantlylower adenylyl cyclase activity in ipsilateral olfactory mucosa,compared with adenylyl cyclase activity from non-bulbectomizedmucosa. These results indicate that AMI inhibition of adenylylcyclase activity is primariy localized in olfactory neurons.  相似文献   

12.
It is broadly accepted that long-term memory (LTM) is formed sequentially after learning and short-term memory (STM) formation, but the nature of the relationship between early and late memory traces remains heavily debated [1-5]. To shed light on this issue, we used an olfactory appetitive conditioning in Drosophila, wherein starved flies learned to associate an odor with the presence of sugar [6]. We took advantage of the fact that both STM and LTM are generated after a unique conditioning cycle [7, 8] to demonstrate that appetitive LTM is able to form independently of STM. More specifically, we show that (1) STM retrieval involves output from γ neurons of the mushroom body (MB), i.e., the olfactory memory center [9, 10], whereas LTM retrieval involves output from αβ MB neurons; (2) STM information is not transferred from γ neurons to αβ neurons for LTM formation; and (3) the adenylyl cyclase RUT, which is thought to operate as a coincidence detector between the olfactory stimulus and the sugar stimulus [11-14], is required independently in γ neurons to form appetitive STM and in αβ neurons to form LTM. Taken together, these results demonstrate that appetitive short- and long-term memories are formed and processed in parallel.  相似文献   

13.
Animals need to associate different environmental stimuli with each other regardless of whether they temporally overlap or not. Drosophila melanogaster displays olfactory trace conditioning, where an odor is followed by electric shock reinforcement after a temporal gap, leading to conditioned odor avoidance. Reversing the stimulus timing in olfactory conditioning results in the reversal of memory valence such that an odor that follows shock is later on approached (i.e. relief conditioning). Here, we explored the effects of stimulus timing on memory in another sensory modality, using a visual conditioning paradigm. We found that flies form visual memories of opposite valence depending on stimulus timing and can associate a visual stimulus with reinforcement despite being presented with a temporal gap. These results suggest that associative memories with non-overlapping stimuli and the effect of stimulus timing on memory valence are shared across sensory modalities.  相似文献   

14.
The oriental fruit fly, Bactrocera dorsalis, is a serious pest of fruits and vegetables. Methyl eugenol (ME), a male attractant, is used to against this fly by mass trapping. Control effect may be influenced by learning, which could modify the olfactory response of the fly to this attractant. To collect the behavioral evidence, studies on the capability of this fly for olfactory learning are necessary. We investigated olfactory learning in male flies with a classical olfactory conditioning procedure using restrained individuals under laboratory conditions. The acquisition of the proboscis extension reflex was used as the criterion for conditioning. A high conditioned response level was found in oriental fruit flies when an odor was presented in paired association with a sucrose reward but not when the odor and sucrose were presented unpaired. We also found that the conditioning performance was influenced by the odor concentration, intertrial interval, and starvation time. A slight sensitization elicited by imbibing sucrose was observed. These results indicate that oriental fruit flies have a high capacity to form an olfactory memory as a result of classical conditioning.  相似文献   

15.
Negatively reinforced olfactory conditioning has been widely employed to identify learning and memory genes, signal transduction pathways and neural circuitry in Drosophila. To delineate the molecular and cellular processes underlying reward-mediated learning and memory, we developed a novel assay system for positively reinforced olfactory conditioning. In this assay, flies were involuntarily exposed to the appetitive unconditioned stimulus sucrose along with a conditioned stimulus odour during training and their preference for the odour previously associated with sucrose was measured to assess learning and memory capacities. After one training session, wild-type Canton S flies displayed reliable performance, which was enhanced after two training cycles with 1-min or 15-min inter-training intervals. Higher performance scores were also obtained with increasing sucrose concentration. Memory in Canton S flies decayed slowly when measured at 30 min, 1 h and 3 h after training; whereas, it had declined significantly at 6 h and 12 h post-training. When learning mutant t beta h flies, which are deficient in octopamine, were challenged, they exhibited poor performance, validating the utility of this assay. As the Drosophila model offers vast genetic and transgenic resources, the new appetitive conditioning described here provides a useful tool with which to elucidate the molecular and cellular underpinnings of reward learning and memory. Similar to negatively reinforced conditioning, this reward conditioning represents classical olfactory conditioning. Thus, comparative analyses of learning and memory mutants in two assays may help identify the molecular and cellular components that are specific to the unconditioned stimulus information used in conditioning.  相似文献   

16.
Gap junctions play an important role in the regulation of neuronal metabolism and homeostasis by serving as connections that enable small molecules to pass between cells and synchronize activity between cells. Although recent studies have linked gap junctions to memory formation, it remains unclear how they contribute to this process. Gap junctions are hexameric hemichannels formed from the connexin and pannexin gene families in chordates and the innexin (inx) gene family in invertebrates. Here we show that two modulatory neurons, the anterior paired lateral (APL) neuron and the dorsal paired medial (DPM) neuron, form heterotypic gap junctions within the mushroom body (MB), a learning and memory center in the Drosophila brain. Using RNA interference-mediated knockdowns of inx7 and inx6 in the APL and DPM neurons, respectively, we found that flies showed normal olfactory associative learning and intact anesthesia-resistant memory (ARM) but failed to form anesthesia-sensitive memory (ASM). Our results reveal that the heterotypic gap junctions between the APL and DPM neurons are an essential part of the MB circuitry for memory formation, potentially constituting a recurrent neural network to stabilize ASM.  相似文献   

17.
Most animals orient themselves in their environment through the perception of olfactory cues. In order to gain insight into the principles of olfactory processing in Drosophila, we misexpressed olfactory receptor Or43a in additional olfactory receptor neurons of the third antennal segment using enhancer trap line GH320. The behavioral response of GH320/UAS-or43a flies was changed upon benzaldehyde application. Using the T-maze assay, misexpressing flies performed a reduced avoidance reaction to benzaldehyde as compared with wild type. This reduction of avoidance could be mimicked in wild type flies by exposing them to a mixture of benzaldehyde and ethyl acetate. We therefore conclude that the application of benzaldehyde, an identified ligand of Or43a, resulted in activation of a number of glomeruli in transformed flies in addition to glomerulus DA4, which is the regular target of Or43a expressing neurons. Our results demonstrate the relevance of specific olfactory sensory input and subsequent processing in the antennal lobe for Drosophila behavior.  相似文献   

18.
The genetic mechanisms that influence memory formation and sensitivity to the effects of ethanol on behavior in Drosophila have some common elements. So far, these have centered on the cAMP/PKA signaling pathway, synapsin and fas2-dependent processes, pumilio-dependent regulators of translation, and a few other genes. However, there are several genes that are important for one or the other behaviors, suggesting that there is an incomplete overlap in the mechanisms that support memory and ethanol sensitive behaviors. The basis for this overlap is far from understood. We therefore examined memory in arouser (aru) mutant flies, which have recently been identified as having ethanol sensitivity deficits. The aru mutant flies showed memory deficits in both short-term place memory and olfactory memory tests. Flies with a revertant aru allele had wild-type levels of memory performance, arguing that the aru gene, encoding an EPS8L3 product, has a role in Drosophila memory formation. Furthermore, and interestingly, flies with the aru(8-128) insertion allele had deficits in only one of two genetic backgrounds in place and olfactory memory tests. Flies with an aru imprecise excision allele had deficits in tests of olfactory memory. Quantitative measurements of aru EPS8L3 mRNA expression levels correlate decreased expression with deficits in olfactory memory while over expression is correlated with place memory deficits. Thus, mutations of the aru EPS8L3 gene interact with the alleles of a particular genetic background to regulate arouser expression and reveals a role of this gene in memory.  相似文献   

19.
Parkinson’s disease (PD) is the most common motor neurodegenerative disorder. Olfactory dysfunction is a prevalent feature of PD. It often precedes motor symptoms by several years and is used in assisting PD diagnosis. However, the cellular and molecular bases of olfactory dysfunction in PD are not known. The fruit fly Drosophila melanogaster, expressing human alpha-synuclein protein or its mutant, A30P, captures several hallmarks of PD and has been successfully used to model PD in numerous studies. First, we report olfactory deficits in fly expressing A30P (A30P), showing deficits in two out of three olfactory modalities, tested – olfactory acuity and odor discrimination. The remaining third modality is odor identification/naming. Second, oxidative stress is an important environmental risk factor of PD. We show that oxidative stress exacerbated the two affected olfactory modalities in younger A30P flies. Third, different olfactory receptor neurons are activated differentially by different odors in flies. In a separate experiment, we show that the odor discrimination deficit in A30P flies is general and not restricted to a specific class of chemical structure. Lastly, by restricting A30P expression to dopamine, serotonin or olfactory receptor neurons, we show that A30P expression in dopamine neurons is necessary for development of both acuity and discrimination deficits, while serotonin and olfactory receptor neurons appeared not involved. Our data demonstrate olfactory deficits in a synuclein fly PD model for exploring olfactory pathology and physiology, and for monitoring PD progression and treatment.  相似文献   

20.
The ad hoc genetic correlation between ethanol sensitivity and learning mechanisms in Drosophila could overemphasize a common process supporting both behaviors. To challenge directly the hypothesis that these mechanisms are singular, we examined the learning phenotypes of 10 new strains. Five of these have increased ethanol sensitivity, and the other 5 do not. We tested place and olfactory memory in each of these lines and found two new learning mutations. In one case, altering the tribbles gene, flies have a significantly reduced place memory, elevated olfactory memory, and normal ethanol response. In the second case, mutation of a gene we name ethanol sensitive with low memory (elm), place memory was not altered, olfactory memory was sharply reduced, and sensitivity to ethanol was increased. In sum, however, we found no overall correlation between ethanol sensitivity and place memory in the 10 lines tested. Furthermore, there was a weak but nonsignificant correlation between ethanol sensitivity and olfactory learning. Thus, mutations that alter learning and sensitivity to ethanol can occur independently of each other and this implies that the set of genes important for both ethanol sensitivity and learning is likely a subset of the genes important for either process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号