首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Lanir  S Gradstajn  G Navon 《Biochemistry》1975,14(2):242-248
Longitudinal and transverse proton relaxation rates of water in solutions of manganese(II) bovine carbonic anhydrase have been measured by pulsed nuclear magnetic resonance spectrometry as a function of temperature (2-35 degrees), frequently (5-100 MHz) and pH. The pH dependence of the longitudinal relaxation rate was fitted to a sigmoidal curve with a pK value at 7.8, while the esterase activity of the manganese(II) enzyme in the hydrolysis of p-nitrophenyl acetate revealed an inflection point at pK = 8.2. The hydration number of manganese(II) carbonic anhydrase could be derived using either the frequency dependence of T1p or the T1p/T2p ratio at only one (high) frequency. Both treatments are in agreement with a model in which one water molecule is bound to the metal at high pH. At low pH the relaxation data imply that no-H20 exists in the first coordination sphere of the manganese ion. The various parameters which are responsible for the proton relaxation mechanisms have been evaluated and are compared to other manganese(II) enzyme systems. The pH dependence of the binding constant of manganese to apocarbonic anhydrase is also reported.  相似文献   

2.
P B O'Hara  S H Koenig 《Biochemistry》1986,25(6):1445-1450
A human serum transferrin complex was prepared in which Gd(III) was substituted for Fe(III) at the two metal-binding sites. Characteristic changes upon metal binding in both the UV absorption of ligated tyrosines and the solvent proton longitudinal magnetic relaxation rates demonstrated 2/1 metal stoichiometry and pH-dependent binding constants. Binding studies were complicated both by binding of Gd(III) to nonspecific sites on transferrin at pH less than or equal to 7 and by complexation of the Gd(III) by the requisite bicarbonate anion at pH greater than or equal to 6.0. A unique Gd(III) electron spin resonance spectrum, with a prominent signal at g = 4.96, was observed for the specific Gd(III)-transferrin complex. The major features of this spectrum were fit successfully by a model Hamiltonian which utilized crystal field parameters similar to those determined for Fe(III) in transferrin [Aasa, R. (1970) J. Chem. Phys. 52, 3919-3924]. The magnetic field dependence of the solvent proton relaxation rate was measured as a function of both pH and metal ion concentration. An observed biphasic dependence of the relaxation rate on metal concentration is attributed to either sequential metal binding to the two iron-binding sites with different relaxation properties or random binding to two sites that are similar but show conformationally induced changes in relaxation properties as the second metal is bound. The increase in the solvent proton relaxation rate with pH is consistent with a model in which a proton of a second coordination sphere water molecule is hydrogen bonded to a metal ligand which becomes deprotonated at pH 8.5.  相似文献   

3.
Ion-DNA interactions are discussed and the applied magnetic field strength dependence of water proton spin-lattice relaxation rates is used to study the Mn(II)-DNA interaction both qualitatively and quantitatively. Associations in which the manganese II (Mn(II)) ion is completely immobilized on the DNA are identified as well as a range of associations in which the ion is only partially reorientationally restricted. Quantitative analysis of the strength of the association in which manganese is immobilized is carried out both with and without a counter-ion condensation correction for electrostatic attraction of the mobile ions. From competition experiments with manganese the relative strengths of the interactions of magnesium and calcium with DNA are found to be identical but less than that of manganese with DNA and the affinity of lithium for DNA is found to be slightly higher than that of sodium. The data demonstrate that the reduced mobility of nonsite-bound ions may have a significant effect on DNA-ion binding analyses performed using magnetic resonance and relaxation methods.  相似文献   

4.
The electron spin relaxation time of high spin Fe(III), taus, was determined from the frequency dependence (5-100 MHz) of the longitudinal proton relaxation rates of water in solutions of catalase, metmyoglobin and acid ferricytochrome c. In all three high-spin heme proteins the relaxation rates incrased below 25 MHz, while no frequency dependence was observed above that frequency. The results are interpreted by assuming that taus, which modulates the dipolar interaction between the unpaired electrons of the iron and the water protons, is frequently independent. Its value was determined to be (6 +/- 1) - 10(-11) s.  相似文献   

5.
The nature of binding between manganese ions and morphine was studied using Fourier transform proton nuclear magnetic resonance techniques. Proton relaxation times in the presence of Mn(II) ions were determined together with their temperature dependence. Slow exchange conditions were observed for the NCH3 group, while fast exchange conditions applied for all the other protons. The rotational correlation time of the complex was approximated by that of the free morphine molecule, as measured by selective and nonselective proton relaxation rate measurements. The distances between the metal ion and proton nuclei of morphine were evaluated on the basis of an association constant, measured from water proton spin-lattice relaxation rate binding studies. The results indicate that the metal binds directly to the two oxydryls with Kass = 9.7 × 10?3.The rate constant for the interaction of Mn(II) with the opiate is 2.25 × 104 sec?1 at 27°C, as determined from the temperature dependence of longitudinal relaxation rate of the NCH3 group.  相似文献   

6.
Metal ion and substrate binding to bovine galactosyltransferase   总被引:1,自引:0,他引:1  
Bovine milk galactosyltransferase was examined by ESR and NMR proton relaxation measurements to determine the stoichiometry and nature of manganese and UDP-Gal substrate binding. The ESR and NMR data clearly showed the binding of two (Mn(II) per mol of enzyme in the ternary complex (enzyme-manganese-UDP-Gal). The affinity of the enzyme for manganese is much higher in the presence of UDP-Gal than in its absence. A deenhancement was observed in both water and UDP-Gal proton relaxation rates upon ternary complex formation [enzyme-Mn(II)-UDP-Gal] relative to the metal-substrate [Mn(II)-UDP-Gal] binary complex, yet the temperature dependence of the water proton relaxation rate was consistent with fast exchange. A simple model was proposed which accounted for the pronounced deenhancement, involving a slow conformational interconversion of an initially formed, rapidly exchanging conformer of the enzyme-Mn(II)-UDP-Gal complex to a second form which contributes negligibly to the relaxation.  相似文献   

7.
Dynamic nuclear polarization (DNP) can be used to dramatically increase the NMR signal intensities in solutions and solids. DNP is usually performed using nitroxide radicals as polarizing agents, characterized by sharp EPR lines, fast rotation, fast diffusion, and favorable distribution of the unpaired electron. These features make the nitroxide radicals ideally suited for solution DNP. Here, we report some theoretical considerations on the different behavior of some inorganic compounds with respect to nitroxide radicals. The relaxation profiles of slow relaxing paramagnetic metal aqua ions [copper(II), manganese(II), gadolinium(III) and oxovanadium(IV)] and complexes have been re-analyzed according to the standard theory for dipolar and contact relaxation, in order to estimate the coupling factor responsible for the maximum DNP enhancement that can be achieved in solution and its dependence on field, temperature and relative importance of outer-sphere versus inner-sphere relaxation.  相似文献   

8.
9.
Changes in the intrinsic fluorescence intensity of glutamine synthetase induced by lanthanide(III) ion binding demonstrate the existence of three types of sites for these ions. The sites are populated sequentially during titrations of the enzyme, and the first two have a stoichiometry of 1 per enzyme subunit. The number of water molecules coordinated to Eu(III) bound to the first site was determined by luminescence lifetime techniques to be 4.1 +/- 0.5. The hydration of Gd(III) bound to the same site was studied by magnetic field dependent water proton longitudinal relaxation rate measurements, and by water proton and deuteron relaxation measurements of one sample at single magnetic fields. The magnetic resonance techniques also yield a value of 4 for the hydration number.  相似文献   

10.
Hydration of oxidized rubredoxin (Fe(III)(S-Cys)(4) center) was investigated by (1)H and (17)O relaxation measurements of bulk water as a function of the applied magnetic field (nuclear magnetic relaxation dispersion). Oxidized rubredoxin showed an increased water (1)H relaxation profile with respect to the diamagnetic gallium derivative or reduced species. Analysis of the data shows evidence of exchangeable proton(s) approximately 4.0-4.5 A from the metal ion, the exchange time being longer than 10(-10) s and shorter than 10(-5) s. The correlation time for the proton-electrons interaction is 7 x 10(-11) s and is attributed to the effective electron relaxation time. Its magnitude is consistent with the large signal linewidths of the protein donor nuclei, observed in high resolution NMR spectra. For reduced rubredoxin, such correlation time is proposed to be smaller than 10(-11) s. (17)O relaxation measurements suggest the presence of at least one long-lived protein-bound water molecule. Analogous relaxation measurements were performed on the C6S rubredoxin variant, whose iron(III) center has been previously shown to be coordinated to three cysteine residues and a hydroxide ion above pH 6. (1)H nuclear magnetic relaxation dispersion profiles indicate increased hydration with respect to the wild-type.  相似文献   

11.
The magnetic spin-lattice relaxation rates of solvent water nuclei are known to increase upon addition of diamagnetic solute protein. This enhancement of the relaxation rate is a function of magnetic field, and the orientational relaxation time of the protein molecules can be deduced from analysis of the field-dependent relaxation rates. Although the nature of the interactions that convey information about the dynamics of protein motion to the solvent molecules is not established, it is known that there is a contribution to the relaxation rates of solvent protons that plays no role in the relaxation of solvent deuterons and 17O nuclei. We show here that the additional interaction arises from a cross-relaxation process between solvent and solute protons. We introduce a heuristic three-parameter model in which protein protons and solvent protons are considered as two separate thermodynamic systems that interact across the protein-solvent interface. The three parameters are the intrinsic relaxation rates of each system and a cross-relaxation term. The sign of the latter term must always be positive, for all values of magnetic field, in order for magnetization energy to flow from the hotter to the cooler system. We find that the magnetic field-dependence of the cross-relaxation contribution is much like that of the remaining solvent proton relaxation, i.e., about the same as the deuteron relaxation field dependence. This finding is not compatible with the predictions of expressions for the cross-relaxation that have been used by other authors, but not applied to data over a wide range of magnetic field strength. The model predicts that the relaxation behavior of both the protein protons and the solvent protons is the sum of two exponentials, the relative contributions of which would vary with protein concentration and solvent isotopic composition in a fashion suggestive of the presence of two classes of protein protons, when there is in reality only one. This finding has immediate implications for the interpretation of published proton relaxation rates in complex systems such as tissues; these data should be reexamined with cross-relaxation taken into account.  相似文献   

12.
Nuclear magnetic relaxation rates for water protons in aqueous palmitoyloleoylphosphatidylcholine vesicle suspensions containing different nitroxide free radical spin labels are reported as a function of magnetic field strength corresponding to proton Larmor frequencies from 10 kHz to 30 MHz. Under these conditions the water proton relaxation rate is determined by the magnetic coupling between the water protons and the paramagnetic nitroxide fixed on the phospholipid. This coupling is made time-dependent by the relative translational motion of the water proton spins past the nitroxide radical. Using theories developed by Freed and others, we interpret the NMR relaxation data in terms of localized water translational motion and find that the translational diffusion constant for water within approximately 10 A of the phospholipid surface is 6 x 10(-10) m2 s(-1) at 298 K. Similar results are obtained for three different nitroxide labels positioned at different points on the lipid. The diffusion is a thermally activated process with an activation energy only slightly higher than that for bulk water.  相似文献   

13.
Summary Measurements of the water proton spin-lattice relaxation rate for aqueous solutions of the palindromic dodecamer, d(CGCGAATTCGCG)2, are reported as a function of the magnetic field strength. The magnitude of the relaxation rates at low magnetic field strengths and the shape of the relaxation dispersion curve permit assessment of the number of water molecules which may be considered bound to the DNA for a time equal to or longer than the rotational correlation time of the duplex. The data are examined using limiting models that arbitrarily use the measured rotational correlation time of the polynucleotide complex as a reference point for the water molecule lifetime. If it is assumed that water molecules are bound at DNA sites for times as long as or longer than the rotational correlation time of the duplex, then the magnitude of the relaxation rates at low field require that there may be only two or three such water sites. However, if the lifetime constraints is relaxed, and we assume that the number of water molecules bound to the DNA is more nearly the number identified in the X-ray structures, then the average water molecule lifetime is on the order of 1 ns. Measurements of 1H NOESY spectra demonstrate that some water molecules must have lifetimes sufficiently long that negative Overhauser effects are observed. Taken together, these results suggest a distribution of water molecule lifetimes in which most of the DNA-bound water molecule lifetimes are shorter than the rotational correlation time of the duplex, but where some have lifetimes of at least 1 ns under these concentrated conditions.Abbreviations DNA deoxyribonucleic acid - NOE nuclear Overhauser enhancement - NOESY nuclear Overhauser enhancement spectroscopy  相似文献   

14.
Longitudinal and transverse proton relaxation rates of water in solutions of porcine manganese carboxypeptidase B have been measured in the presence of various competitive inhibitors by pulse nuclear magnetic resonance (NMR) spectrometry. The inhibition constant of Mn-carboxypeptidase activity by L-argininic acid and acetyl-L-arginine was in agreement with the equilibrium constant obtained by the NMR method, indicating similar and specific binding of the inhibitors to the active site of the manganese enzyme. Titration of the water boound to the metal ion revealed the presence of one water molecular which could be displaced from the sphere of the managenese ion by various inhibitors. The structural features of the inhibitors required for this displacement as well as the mode of interaction is described.  相似文献   

15.
S H Koenig  R D Brown  C F Brewer 《Biochemistry》1985,24(19):4980-4984
We have measured the magnetic field dependence of the nuclear magnetic relaxation rates (NMRD profiles) of solvent protons and deuterons in solutions of Ca2+-Mn2+-concanavalin A (Con A) with and without saccharide present. Data were obtained over the range -8 to 35 degrees C; the extension to the lowest temperature was made possible by the presence of 5 M salt. Since previous theoretical analyses, using accepted relaxation theories of 1H NMRD profiles alone, led to unsatisfactory conclusions, we have attempted to take advantage of the fact that the residence lifetime of a water ligand of the metal ions can influence the relaxation behavior of protons and deuterons differently. From a comparison of the present proton and deuteron results, we find that Ca2+-Mn2+-Con A has two classes of binding sites: one, associated with the inner coordiation sphere of the Mn2+ ions, having a resident lifetime for solvent water of approximately 10(-5) s that is reduced by the presence of saccharide and another having a lifetime of approximately 5 X 10(-9) s, located with the protons of the bound waters approximately 4.4 A from the Mn2+ ions (assuming two equivalent water molecules in this class), which is well beyond the coordination environment of the Mn2+ ions. The relaxation contribution of these more distant sites is unaffected by saccharide. The conclusions are corroborated by measurements of the temperature dependences of the proton NMRD profiles, which show quite clearly that the profiles are composite, containing two contributions with opposite dependences on temperature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Water proton spin-lattice relaxation is studied in dilute solutions of bovine serum albumin as a function of magnetic field strength, oxygen concentration, and solvent deuteration. In contrast to previous studies conducted at high protein concentrations, the observed relaxation dispersion is accurately Lorentzian with an effective correlation time of 41 +/- 3 ns when measured at low proton and low protein concentrations to minimize protein aggregation. Elimination of oxygen flattens the relaxation dispersion profile above the rotational inflection frequency, nearly eliminating the high field tail previously attributed to a distribution of exchange times for either whole water molecules or individual protons at the protein-water interface. The small high-field dispersion that remains is attributed to motion of the bound water molecules on the protein or to internal protein motions on a time scale of order one ns. Measurements as a function of isotope composition permit separation of intramolecular and intermolecular relaxation contributions. The magnitude of the intramolecular proton-proton relaxation rate constant is interpreted in terms of 25 +/- 4 water molecules that are bound rigidly to the protein for a time long compared with the rotational correlation time of 42 ns. This number of bound water molecules neglects the possibility of local motions of the water in the binding site; inclusion of these effects may increase the number of bound water molecules by 50%.  相似文献   

17.
The nuclear magnetic resonance manganese doping technique is currently used for the determination of the water diffusional exchange time through human erythrocyte membranes. An apparent thermal transition at 26 degrees C was noticed at 18-30 mM manganese doping in the suspending solution. An analysis in terms of a two-phase nuclear spin exchanging system revealed that apparent thermal transitions are expected to occur in the upper and lower temperature regions. They represent a shift from intermediate exchange rates where water diffusion through the membrane is dominant to either fast or slow exchange rates where proton relaxation is the controlling process. The lower temperature apparent transition may be altered by the intracellular manganese concentration; the lower the Mn2+ concentration the lower the transition. Also according to this interpretation only a fraction of the erythrocytes are significantly permeated by Mn2+. The upper transition depends on the Mn2+ concentration in the extracellular volume; it decreases with decreasing Mn2+ concentration.  相似文献   

18.
The field dependence of the longitudinal and transverse nuclear magnetic relaxation rates of 23Na+ in aqueous crosslinked Na-poly(styrene sulfonate) (PSS) systems (ion exchange resins) has been obtained as a function of the degree of crosslinking. The relaxation is considerably enhanced relative to solutions of non-crosslinked NaPSS at equal ionizable group concentration. This is due to the dynamic constraints of the polymer chains, which render the averaging of the counter-ion chain interaction less efficient. The field dependence of the relaxation rates in the crosslinked NaPSS systems reveals two processes that are out of the extreme narrowing limit. This is in contrast to the relaxation behavior found in non-crosslinked NaPSS systems. To characterize these processes their correlation times were combined with constants of selfdiffusion to estimate the distances diffused by an ion in order to average the electric field gradient at its nucleus. These two distances are interpreted as characteristic length scales in the network. At all degrees of crosslinking it was found that the smallest of these length scales is roughly equal to the distance between two neighbouring crosslinks. The largest characteristic distance extends over several crosslinks and reflects inhomogeneities in the crosslink concentration. These conclusions were also reached from similar experiments on 7Li+ in LiPSS systems.  相似文献   

19.
The nuclear magnetic spin-lattice relaxation rates of water protons are reported for solutions of manganese(II), copper(II), and chromium(III) cage complexes of the sarcophagine type. As simple aqueous solutions, the complexes are only modest magnetic relaxation agents, presumably because they lack protons on atoms in the first-coordination-sphere protons that are sufficiently labile to mix the large relaxation rate at the metal complex with that of the bulk solvent. The relaxation is approximately modeled using spectral density functions derived for translational diffusion of the interacting dipole moments with the modification that the electron spin relaxation rate is directly included as a contribution to the correlation time. In all cases studied, the electron spin relaxation rate is sufficiently large that it contributes directly to the water-proton spin relaxation process. The poor relaxation efficiency of the cage compound may, however, be improved dramatically by binding the complex to a protein. The efficiency is improved even further if the rotational motion of the protein is reduced drastically by an intermolecular cross-linking reaction. The relaxation efficiency of the cross-linked protein-cage complexes rivals that of the best first-coordination-sphere relaxation agents like [Gd(DTPA)(H2O)]2- and [Gd(DOTA)(H2O)]-.  相似文献   

20.
Goddard Y  Korb JP  Bryant RG 《Biopolymers》2007,86(2):148-154
The (1)H nuclear magnetic relaxation dispersion profiles were measured from 10 kHz to 30 MHz as a function of temperature for polyglycine, polyalanine, polyvaline, and polyphenylalanine to examine the contributions of different side chain motions to the polypeptide proton relaxation rate constants. The spin-fracton theory for (1)H relaxation is modified to account for high frequency motions of side chains that are dynamically connected to the linear polymer backbone. The (1)H relaxation is dominated by propagation of rare disturbances along the backbone of the polymer. The side-chain dynamics cause an off-set in the field dependence of the (1)H spin-lattice relaxation rate constants which obey a power law in the Larmor frequency in the limit of low and high magnetic field strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号