首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of vitamin A deficiency onN-linked oligosaccharides of membrane glycoproteins was studied in rat liver in order to evaluate the suggested role of retinol in proteinN-glycosylation. First, oligosaccharides of newly synthesized glycoproteins from rough endoplasmic reticulum of vitamin A deficient liver were compared with that of pair-fed controls. Oligosaccharides were metabolically labelled withd-[2-3H]mannose, released from the glycoproteins with endoglycosidase H, purified by reversed phase HPLC and ion exchange chromatography, and were reduced with sodium borohydride. HPLC fractionation of the oligosaccharide alditols showed that the glycoproteins carried mainly four oligosaccharide species, Glc1Man9GlcNAc2, Man9GlcNAc2, Man8GlcNAc2 and Man7GlcNAc2, in identical relative amounts in the vitamin A deficient and the control tissue. In particular, no increase in the proportion of short chain oligosaccharides was noted in vitamin A deficient liver. Second, the number ofN-linked oligosaccharides was estimated in dipeptidylpeptidase IV (DPP IV), a major glycoprotein constituent of the hepatic plasma membrane, comparing the newly synthesized glycoprotein from rough endoplasmic reticulum and the mature form of DPP IV from the plasma membrane. No evidence was obtained that retinol deficiency caused incomplete glycosylation of this membrane glycoprotein. From these data, the suggested role of retinol as a cofactor involved in the synthesis ofN-linked oligosaccharides of glycoproteins must be questioned.Abbreviations DolP Dolichyl phosphate - DolPP dolichyl pyrophosphoryl - RetPMan retinyl phosphate mannose - DPP IV dipeptidyl peptidase IV (EC 3.4.14.5) - endo H endo--N-acetylglucosaminidase H (EC 3.2.1.96) - endo F endo--N-acetylglucosaminidase F (EC 3.2.1.96) - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   

2.
The progeny of Herpes simplex virus type 1 (HSV-1) grown in ricin-resistant 14 cells (RicR14) lackingN-acetylglucosaminyltransferase I was released in the extracellular medium at a very low rate. By using a monoclonal antibody immobilized on Sepharose we purified from HSV-1-infected RicR14 cells a viral glycoprotein (gC), which carries bothN-andO-linked oligosaccharides. Glycopeptides obtained from [3H]mannoselabeled gC by Pronase digestion were entirely susceptible to endo--N-acetylglucosaminidase H, and the major oligosaccharide released was Man4GlcNAc. The accumulation of this high-mannose species was related to the enzymic defect of the host cells and to the long retention of the viral glycoprotein within the cells. The extent ofO-glycosylation evaluated in [14C]glucosamine-labeled gC from RicR14 cells as compared to that of gC from wild type cells did not appear to be significantly modified.Abbreviations Con A concanavalin A - BHK cells baby hamster kidney cells - HSV Herpes simplex virus  相似文献   

3.
Early region E3 of adenovirus 2 encodes a glycoprotein, E3-gp25K, that is a good model with which to study structure-function relationships in transmembrane glycoproteins. We have determined the structures of the oligosaccharides linked to E3-gp25K. The oligosaccharides were labeled with [2-3H]mannose in adenovirus 2-early infected KB cells for 5.5h (pulse) or for 5.5 h followed by a 3-h chase (pulse-chase). E3-gp25K was extracted and purified by chromatography on DEAE-Sephacel in 7 M urea, followed by gel filtration on a column of Bio-Gel A-1.5m in 6 M guanidine hydrochloride. An analysis of the purified protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that it was >95% pure. The oligosaccharides were isolated by pronase digestion followed by gel filtration on a column of Bio-Gel P-6, then by digestion with endo-β-N-acetylglucosaminidase H, followed by gel filtration on Bio-Gel P-6, and finally by paper chromatography. The pulse sample contained equal amounts of Man9GlcNAc and Man8GlcNAc and small amounts of Man7GlcNAc and Man6GlcNAc. The pulse-chase sample had predominantly Man8GlcNAc and much less Man9GlcNAc, indicating that processing of the Man9GlcNAc to Man8GlcNAc had occurred during the chase period. Thus, Man8GlcNAc is the major oligosaccharide on mature E3-gp25K. The structures of these oligosaccharides were established by digestion with α-mannosidase, methylation analysis, and acetolysis. The oligosaccharides found had typical high-mannose structures that have been observed in other membrane and soluble glycoproteins, and the branching patterns and linkages of the mannose residues of Man9GlcNAc were identical to those of the lipid-linked Glc3Man9GlcNAc2 donor. Thus, adenovirus 2 infection (early stages) apparently does not affect the usual cellular high-mannose glycosylation pathways, and despite being virus coded, E3-gp25K is glycosylated in the same manner as a typical mammalian cell-coded glycoprotein.  相似文献   

4.
Asparagine-linked oligosaccharides present on hen egg-yolk immunoglobulin, termed IgY, were liberated from the protein by hydrazinolysis. AfterN-acetylation, the oligosaccharides were labelled with a UV-absorbing compound,p-aminobenzoic acid ethyl ester (ABEE). The ABEE-derivatized oligosaccharides were fractionated by anion exchange, normal phase and reversed phase HPLC, and their structures were determined by a combination of sugar composition analysis, methylation analysis, negative ion FAB-MS, 500 MHz1H-NMR and sequential exoglycosidase digestions. IgY contained monoglucosylated oligomannose type oligosaccharides with structures of Glc1-3Man7–9-GlcNAc-GlcNAc, oligomannose type oligosaccharides with the size range of Man5–9GlcNAc-GlcNAc, and biantennary complex type oligosaccharides with core region structure of Man1-6(±GlcNAc1-4)(Man1-3)Man1-4GlcNAc1-4(±Fuc1-6)GlcNAc. The glucosylated oligosaccharides, Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2, have not previously been reported in mature glycoproteins from any source.Abbreviations IgG, IgM, IgD, IgE, and IgA immunoglobulin G, M, D, E, and A, respectively - IgY egg-yolk antibody - ABEE p-aminobenzoic acid ethyl ester - HPLC high performance liquid chromatography - FAB-MS fast atom bombardment mass spectrometry - Hex hexose - HexNAc N-acetylhexosamine - hCG human chorionic gonadotropsin  相似文献   

5.
Structures of the Asn linked oligosaccharides of quail egg-yolk immunoglobulin (IgY) were determined in this study. Asn linked oligosaccharides were cleaved from IgY by hydrazinolysis and labelled withp-aminobenzoic acid ethyl ester (ABEE) afterN-acetylation. The ABEE labelled oligosaccharides were then fractionated by a combination of Concanavalin A-agarose column chromatography and anion exchange, normal phase and reversed phase HPLC before their structures were determined by sequential exoglycosidase digestion, methylation analysis, HPLC, and 500 MHz1H-NMR spectroscopy. Quail IgY contained only neutral oligosaccharides of the following categories: the glucosylated oligomannose type (0.6%, Glc1-3Glc1-3Man9GlcNAc2; 35.6%, Glc1-3Man7–9GlcNAc2). oligomannose type (15.0%, with the structure Man5–9GlcNAc2) and biantennary complex type with core structures of-Man1-3(-Man1-6)Man1-4GlcNAc1-4GlcNAc (9.9%),-Man1-3(GlcNAc1-4)(-Man1-6)Man1-4GlcNAc1-4GlcNAc (25.1%) and-Man1-3(GlcNAc1-4)(-Man1-6)Man1-4GlcNAc1-4(Fuc1-6)GlcNAc (11.4%). Although never found in mammalian proteins, glucosylated oligosaccharides (Glc1Man7–9GlcNAc2) have been located previously in hen IgY.Abbreviations IgG, IgM, IgA, IgY immunoglobulin G, M, A and Y, respectively - ABEE p-aminobenzoic acid ethyl ester  相似文献   

6.
We studied mannose-containing glycopeptides and glycoproteins of subconfluent and confluent intestinal epithelial cells in culture. Cells were labelled with d-[2-3H]mannose for 24h and treated with Pronase or trypsin to release cell-surface components. The cell-surface and cell-residue fractions were then exhaustively digested with Pronase and the resulting glycopeptides were fractionated on Bio-Gel P-6, before and after treatment with endo-β-N-acetylglucosaminidase H to distinguish between high-mannose and complex oligosaccharides. The cell-surface glycopeptides were enriched in complex oligosaccharides as compared with residue glycopeptides, which contained predominantly high-mannose oligosaccharides. Cell-surface glycopeptides of confluent cells contained a much higher proportion of complex oligosaccharides than did glycopeptides from subconfluent cells. The ability of the cells to bind [3H]concanavalin A decreased linearly with increasing cell density up to 5 days in culture and then remained constant. When growth of the cells was completely inhibited by either retinoic acid or cortisol, no significant difference was observed in the ratio of complex to high-mannose oligosaccharides in the cell-surface glycopeptides of subconfluent cells. Only minor differences were found in total mannose-labelled glycoproteins between subconfluent and confluent cells by two-dimensional gel analysis. The adhesion of the cells to the substratum was measured at different stages of growth and cell density. Subconfluent cells displayed a relatively weak adhesion, which markedly increased with increased cell density up to 6 days in culture. It is suggested that alterations in the structure of the carbohydrates of the cell-surface glycoproteins are dependent on cell density rather than on cell growth. These changes in the glycopeptides are correlated with the changes in adhesion of the cells to the substratum.  相似文献   

7.
Mature uteroferrin (Uf; M = 35,500) is a progesterone-induced acid phosphatase secreted by the pig uterus. It contains a single, unphosphorylated, high mannose-type oligosaccharide. Endometrial explants cultured in vitro secrete Uf with a M of 37,000 (37k Uf) having phosphorylated high mannose oligosaccharides. In this report we demonstrate that 37k Uf contains two N-linked oligosaccharides which are a mixture of complex and high mannose-type oligosaccharides. The complex-type glycopeptides are biantennary and a portion may be fucosylated on the GlcNac of the chitobiose core proximal to the peptide. Only a portion of the high mannose-type oligosaccharides are phosphorylated. The remainder appear to be typical Man6-4GlcNac2 oligosaccharides found on mature Uf.Abbreviations Uf Uteroferrin - ConA Concanavalin A - WGA Wheat Germ Agglutinin - endoH endo--N-acetylglucosaminidase H - SDS Sodium Dodecyl Sulfate - SDS-PAGE polyacrylamide gel electrophoresis in the presence of SDS  相似文献   

8.
Structures of oligosaccharides fromAspergillus niger -d-galactosidase [EC 3.2.1.22] were studied. Purified -d-galactosidase was treated withN-glycosidase F, and six kinds of oligosaccharides were isolated by gel chromatography and anion-exchange chromatography. The structures of the oligosaccharides were determined by1H-NMR and compositional analysis to be Man5GlcNAc2, Man6GlcNAc2, Man9GlcNAc2, GlcMan9GlcNAc2, GalMan4GlcNAc2 and GalMan5GlcNAc2. From mild acid hydrolysis, methylation analysis and ROESY spectral analysis, it was ascertained that the galactosyl residue in two oligosaccharides was in the furanose form and was bound to mannose at the nonreducing end with an 1–2 linkage (GalfMan4GlcNAc2 and GalfMan5GlcNAc2).  相似文献   

9.
The processing of the high-mannose asparagine-linked oligosaccharides synthesized by first-trimester human placenta has been investigated. Tissue was pulsed for 1 h with [2-3H]mannose and chased for zero, 45, 90, and 180 min in media containing unlabeled mannose. Glycopeptides, prepared by Pronase digestion of the delipidated membrane pellets at each time point, were treated with endo-β-N-acetylglucosaminidase-H to release the high-mannose asparagine-linked oligosaccharides. The largest major processing intermediate isolated was Glc1Man9GlcNAc, which was converted into Man9GlcNAc, and then into Man8GlcNAc, Man7GlcNAc, Man6GlcNAc, and Man5GlcNAc. There was also a minor pathway in which mannosyl residues were removed prior to the glucose. By carrying out the detailed structural characterization of the individual processing intermediates, it was possible to demonstrate that processing of the Man9GlcNAc to Man5GlcNAc proceeded by the nonrandom removal of the α1,2-linked mannosyl residues. Specifically, of 12 possible sequences of removal of the four α1,2-linked mannosyl residues present in Man9GlcNAc, first-trimester human placenta utilized only two of these in the processing of asparagine-linked oligosaccharides. It is suggested that the limited number of processing pathways reflects a high degree of specificity of these reactions in human placenta.  相似文献   

10.
Fowl plague virus, strain Dutch, was metabolically labeled withd-[2-3H]mannose, or withd-[6-3H]glucosamine, and the small subunit (HA2; 0.8 mg in total) of the viral hemagglutinin was isolated by preparative sodium dodecylsulfate-polyacrylamide gel electrophoresis. After proteolytic digestion, the radioactive oligosaccharides were sequentially liberated from the glycopeptides by treatment with different endo--N-acetylglucosaminidases and with peptide:N-glycosidase or, finally, by hydrazinolysis. In this manner, four groups of glycans could be obtained by consecutive gel filtrations and were subfractionated by HPLC. The structures of the individual oligosaccharides were analyzed by micromethylation, by acetolysis or by digestion with exoglycosidases. The major species amongst the high mannose glycans at Ans-406 of the viral glycopolypeptide were found to be Man1-2Man1-3(Man1-2Man1-6)Man1-6(Man1-2Man1-2Man1-3)Man1-4GlcNac1-4GlcNAc and Man1-3(Man1-2Man1-6)Man1-6(Man1-2Man1-2Man1-3)Man1-4GlcNAc1-4GlcNAc, while the complex glycans at Asn-478 are predominantly GlcNAc1-2Man1-3(GlcNAc1-2Man1-6)Man1-4GlcNAc1-4GlcNAc (lacking, in part, one of the outerN-acetylglucosamine residues) and GlcNAc1-2Man1-3(Gal1-4GlcNAc1-2Man1-6)Man1-4GlcNAc1-4GlcNAc.Abbreviation BSA bovine serum albumin - endo D (F,H) endo--N-acetyl-d-glucosaminidase D (F,H) - HA hemagglutinin (HA1, large subunit of HA - HA2 small subunit - FPV fowl plague virus - PNGase F peptide:N-glycosidase F - SDS sodium dodecylsulfate  相似文献   

11.
Attachment of the Glc3Man9GlcNAc2 precursor oligosaccharide to nascent polypeptides in the ER is a common modification for secretory proteins. Although this modification was implicated in several biological processes, additional aspects of its function are emerging, with recent evidence of its role in the production of signals for glycoprotein quality control and trafficking. Thus, phenomena related to N-linked glycans and their processing are being intensively investigated. Methods that have been recently developed for proteomic analysis have greatly improved the characterization of glycoprotein N-linked glycans. Nevertheless, they do not provide insight into the dynamics of the sugar chain processing involved. For this, labeling and pulse-chase analysis protocols are used that are usually complex and give very low yields. We describe here a simple method for the isolation and analysis of metabolically labeled N-linked oligosaccharides. The protocol is based on labeling of cells with [2-3H] mannose, denaturing lysis and enzymatic release of the oligosaccharides from either a specifically immunoprecipitated protein of interest or from the general glycoprotein pool by sequential treatments with endo H and N-glycosidase F, followed by molecular filtration (Amicon). In this method the isolated oligosaccharides serve as an input for HPLC analysis, which allows discrimination between various glycan structures according to the number of monosaccharide units comprising them, with a resolution of a single monosaccharide. Using this method we were able to study high mannose N-linked oligosaccharide profiles of total cell glycoproteins after pulse-chase in normal conditions and under proteasome inhibition. These profiles were compared to those obtained from an immunoprecipitated ER-associated degradation (ERAD) substrate. Our results suggest that most NIH 3T3 cellular glycoproteins are relatively stable and that most of their oligosaccharides are trimmed to Man9-8GlcNAc2. In contrast, unstable ERAD substrates are trimmed to Man6-5GlcNAc2 and glycoproteins bearing these species accumulate upon inhibition of proteasomal degradation.Download video file.(118M, mp4)  相似文献   

12.
Freshly prepared protoplasts of Saccharomyces cerevisiae X 2180 incorporate [3H]mannose and [14C]glucose for about 30 min into glycolipids and mannoproteins. Among the radioactive glycolipids formed dolichyl phosphate mannose, dolichyl phosphate glucose and dolichyl pyrophosphate oligosaccharides have been identified. The oligosaccharides released by weak acid from the dolichyl pyrophosphate were treated with endo-N-acetylglucosaminidase H and separated by gel filtration on Bio-Gel P-4. The largest oligosaccharide obtained corresponded exactly in size to Glc3Man9GlcNAc1 the compound formed also in animal tissues. Other oligosaccharides released from dolichyl pyrophosphate in addition to the glucose containing ones were mainly Man9GlcNAc1 and Man8GlcNAc1. No mannosyl oligosaccharide corresponding in size to the total inner core region found in native mannoproteins could be detected in a lipid-bound form.The radioactive dolichyl pyrophosphate oligosaccharides were formed transiently; after 40 min only about 40% of the maximal radioactivity was observed in this fraction. In the presence of cycloheximide this decrease did not take place.It is concluded that the dolichol pathway of N-glycosylation of glycoproteins in yeast cells is very similar, if not identical, to the reaction sequence worked out for animal cells.Dedicated to Professor Dr. Otto Kandler on his 60th birthday  相似文献   

13.
Structural changes in N-linked oligosaccharides of glycoproteins during seed development of Ginkgo biloba have been explored to discover possible endogenous substrate(s) for the Ginko endo-β-N-acetylglucosaminidase (endo-GB; Kimura, Y., et al. (1998) Biosci. Biotechnol. Biochem., 62, 253-261), which should be involved in the production of high-mannose type free N-glycans.

The structural analysis of the pyridylaminated oligosaccharides with a 2D sugar chain map, by ESI-MS/MS spectroscopy, showed that all N-glycans expressed on glycoproteins through the developmental stage of the Ginkgo seeds have the xylose-containing type (GlcNAc2~0Man3Xyl1Fuc1~0GlcNAc2) but no high-mannose type structure. Man3Xyl1Fuc1GlcNAc2, a typical plant complex type structure especially found in vacuolar glycoproteins, was a dominant structure through the seed development, while the amount of expression of GlcNAc2Man3Xyl1Fuc1GlcNAc2 and GlcNAc1Man3Xyl1Fuc1GlcNAc2 decreased as the seeds developed. The dominantly occurrence of xylose-containing type structures and the absence of the high-mannose type structures on Ginkgo glycoproteins were also shown by lectin-blotting and immunoblotting of SDS-soluble glycoproteins extracted from the developing seeds at various developmental stages.

Concerning the endogenous substrates for plant endo-β-N-acetylglucosaminidase, these results suggested that the endogenous substrates might be the dolicol-oligosaccharide intermediates or some glycopeptides with the high-mannose type N-glycan(s) derived from misfolded glycoproteins in the quality control system for newly synthesized glycoproteins.  相似文献   

14.
S. C. Fry 《Planta》1986,169(3):443-453
The in-vivo formation of a specific nonasaccharide of xyloglucan was investigated. This nonasaccharide has been reported to have biological activity, inhibiting auxin-induced growth in pea stem segments. Cell-suspension cultures of spinach were grown in the presence of [3H]arabinose and [3H]fucose, and the culture-filtrates were examined for oligosaccharides by gelpermeation chromatography and by paper chromatography. Sixteen [3H]pentose-containing oligosaccharides were found, including twelve that contained the sequence [3H]xylosyl-(16)-glucose, which is diagnostic of xyloglucan. In addition, [3H]fucose-containing oligosaccharides of at least three sizes were found. Radiochemical evidence is presented that one of these oligosaccharides was labelled with both [3H]fucose and with [3H]pentose, and was identical with the major xyloglucan-derived nonasaccharide associated with anti-auxin activity. It was largely present in the form of acylated (possibly acetylated) derivatives. It accumulated extracellularly to a steady-state concentration of about 4.3·10-7M. This is the first report of the production of a biologically-active oligosaccharide by living plant cells.Abbreviations BAB butanone/acetic acid/H3BO3-saturated water (9:1:1) - BAW butan-1-ol/acetic acid/water (12:3:5) - BPW butan-1-ol/pyridine/water/(4:3:4) - DP degree of polymerisation - FAW ethyl acetate/acetic acid/water (10:5:6) - EPW ethyl acetate/pyridine/water (8:2:1) - k av elution volume relative to Blue Dextran (k av.=0.0) and glucose (k av.=1.0) - XG7 XG9 minus the fucose and galactose residues - XG9 the particular xyloglucan nonasaccharide illustrated in Fig. 1 - W water-saturated phenol  相似文献   

15.
The alloantigen controlled by the Qa-1 a allele is a glycoprotein that exists in two forms. The first, an intracellular molecule of apparent Mr of 44 000 daltons, appears to be a kinetic precursor of the second, a cell-surface molecule with an apparent size of 47 000 daltons. The intracellular form of Qa-1 is distinct from that of the TL glycoprotein in two ways: (1) its polypeptide backbone is approximately 5000 daltons shorter, and (2) it possesses three sites of high-mannose carbohydrate attachment, while TL has only one. In the cell-surface form of Qa-1, all three carbohydrate chains are processed to structures that resist endoglycosidase H digestion, presumably complex-type oligosaccharides. Concomitant with these late carbohydrate-processing steps is the formation of stable complexes between Qa-1 and 2-microglobulin. The timing of this association provides a further contrast between Qa-1 and TL, which is associated with 2-microglobulin shortly after its synthesis. The Qa-1 glycoproteins have been identified genetically by their synthesis in B6-TL+ (Qa-1 a /Tla a ) splenocytes but not in splenocytes of congenic 136K1 and B6.K2 (Qa-I b /Tla b ) mice, and by their absence from the products of BALB/c (Qa-I vb /Tla c ) splenocytes. The cells synthesizing Qa-1 are at least as prevalent in Ig+ spleen-cell populations as in T-cell-enriched splenic Ig populations. Thus, active Qa-1 synthesis appears to take place at a high rate in normal splenic B cells without mitogenic stimulation.Abbreviations used in this paper EDTA disodium ethylenediaminetetraacetate - Endo H endo--N-acetylglucosaminidase H - FCS heat-inactivated fetal bovine serum - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - Ig immunoglobulin - PBS Dulbecco's phosphate-buffered saline - SDS sodium dodecyl sulfate - TL thymus leukemia antigen  相似文献   

16.
Thioglycollate-stimulated murine peritoneal macrophages were cultured for eight days in the presence of swainsonine, or 1,4-dideoxy-1,4-imino-d-mannitol (DIM), or both of these competitive -mannosidase inhibitors together. Analysis of accumulated high-mannose oligosaccharides by reversed phase HPLC after perbenzoylation revealed that DIM- and DIM-plus swainsonine-treated macrophages contained larger amounts of Man7GlcNAc, Man8GlcNAc and Man9GlcNAc, while swainsonine-treated macrophages contained relatively more Man3GlcNAc and Man5GlcNAc. These results are consistent with the known inhibitory effects of DIM and swainsonine on Golgi mannosidases I and II, respectively, and on lysosomal -mannosidase. Depletion of stored oligosaccharides to control values was complete within seven days of terminating swainsonine treatment.  相似文献   

17.
The urinary glycoprotein uromodulin (Tamm-Horsfall glycoprotein) exhibits a pregnancy-associated ability to inhibit antigen-specific T cell proliferation, and the activity is associated with a carbohydrate moiety [Muchmore and Decker (1985) Science 229:479–81; Hessionet al., (1987) Science 237:1479–84; Muchmore, Shifrin and Decker (1987) J Immunol 138:2547–53]. We report here that the Man6(7)GlcNAc2-R glycopeptides derived from uromodulin inhibit antigen-specific T cell proliferation by 50% at 0.2–2 M, and further studies, reported elsewhere, confirm that oligomannose glycopeptides from other sources are also inhibitory, with Man9GlcNAc2-R the most inhibitory of those tested [Muchmoreet al., J Leukocyte Biol (in press)]. In this work, we have extended the observation of pregnancy-associated inhibitory activity to a second species, and have compared the oligomannose profile of Tamm-Horsfall glycoprotein (nonpregnant) with that of uromodulin (pregnant) derived from both human and bovine sources. Surprisingly, there was a pregnancy-associated decrease in the total content of oligomannose chains due predominantly to a reduction in Man5GlcNAc2-R and Man6GlcNAc2-R. Man7GlcNAc2-R, which did not decrease with pregnancy, comprised a significantly greater proportion of the total oligomannose chains in pregnant vs. nonpregnant samples from both species (human; 34.6% vs. 25.9%: bovine; 14.4% vs. 7.2%).  相似文献   

18.
We have examined the maturation or processing of the oligosaccharides of cellular fibronectin in cultured chick embryo fibroblasts. Fibronectin was pulse-labeled with [2-3H]mannose or [35S]methionine, and the turnover rates of carbohydrate and polypeptide portions of immunoprecipitated fibronectin were compared. The oligosaccharides on fibronectin were analyzed by gel electrophoresis for alterations in sensitivity to the enzyme endo-β-N-acetylglucosaminidase H, which specifically cleaves the ‘high-mannose’ class of asparagine-linked oligosaccharide. Incorporated mannose was removed only at early time points, suggesting that the structure of fibronectin oligosaccharides was altered due to processing.This possibility was confirmed by the analysis of glycopeptides generated by exhaustive pronase digestion. Two major glycopeptide structures were detected; their properties correspond to a ‘high-mannose’ oligosaccharide precursor and a ‘complex’ carbohydrate product. The precursor-product relationship of these two forms of oligosaccharide chains was demonstrated by pulse-chase labeling experiments. The precursor glycopeptide had an apparent size (Mr 2100) comparable to (Man)9GlcNAc (Mr 2080), and was sensitive to endo-β-N-acetylglucosaminidase H; nearly all of the labeled mannose incorporated in a 10 min pulse was released from fibronectin glycopeptides by this enzyme. During a 90 min chase period, the glycopeptides became larger and increasingly resistent to endo-β-N-acetylglucosaminadase H cleavage. The final ‘complex’ or processed oligosaccharide structure contained approximately two-thirds less associated with the mature glycoprotein. They also indicate that the ‘complex’ structure is synthesized as a ‘high-mannose’ intermediate which is processed by the removal of mannose.  相似文献   

19.
TheN-linked oligosaccharides of cell-CAM 105, a glycoprotein involved in the intercellular adhesion between rat hepatocytes, were studied by sequential lectin-agarose affinity chromatography of desialylated, [14C]-labelled glycopeptides. These glycopeptides were obtained by extensive pronase digestion followed byN-[14C]acetylation of the peptide moieties and desialylation by mild acid hydrolysis.Assuming that all glycopeptides were radiolabelled to the same specific radioactivity, Concanavalin A-Sepharose chromatography indicated that the majority of the glycans (84%) were of the complex-type of which approximately half were bi-antennary structures. The remainder of the glycans comprised oligomannose-type structures and/or incomplete bi-antennary structures.Pisum sativum lectin-agarose chromatography revealed that part of the bi-antennary glycans contained a fucose residue (1-6)-linked to theN-acetylglucosamine which is attached to asparagine. Furthermore, the presence of tri-, and tetra- and/or tri'-antennary complex-type glycans was demonstrated by chromatography on immobilizedPhaseolus vulgaris leukoagglutinating phytohemagglutinin andAleuria aurantia lectin (AAL). AAL-agarose chromatography furthermore indicated the presence of (1-3)-linked fucose in part of these glycopeptides, whereas no (1-6)-linked fucose could be detected in these structures.The degree of -galactosylation of the complex-type glycans was investigated by chromatography onRicinus communis agglutinin-agarose. The results indicated that only part of the bi-antennary glycans were completely -galactosylated. Similarly, at least three -galactose residues were present in only a part of the tri-, and tetra- and/or tri'-antennary glycans.Abbreviations CAM cell adhesion molecule - ConA Concanavalin A - WGA wheat germ agglutinin - PEA Pisum sativum lectin - E-PHA Phaseolus vulgaris erythroagglutinating phytochemagglutinin - L-PHA Phaseolus vulgaris leukoagglutinating phytohemagglutinin - RCA Ricinus communis agglutinin 1 - AAL Aleuria aurantia lectin - mGlc methyl--d-glucopyranoside - mMan methyl--d-mannopyranoside - CO, WO, PO, EO, LO, RO, AO, nonretained, and Cn, Wn, Pn, En, Ln, Rn, An (n=1–4) retarded or bound glycopeptide fractions on columns of immobilized ConA, WGA, PEA, E-PHA, L-PHA, RCA, and AAL, respectively The fraction names are also used sequentially, e.g. C1P1, which indicates the fraction of glycopeptides that was eluted from ConA-Sepharose on position C1 and was subsequently eluted from PEA-agarose on position P1.  相似文献   

20.
-Mannosidase activities towards high-mannose oligosaccharides were examined with a detergent-solubilized microsomal preparation from a filamentous fungus, Aspergillus oryzae. In the enzymatic reaction, the pyridylaminated substrate Man9GlcNAc2-PA was trimmed to Man8GlcNAc2-PA which lacked one -1,2-mannose residue at the nonreducing terminus of the middle branch (Man8B isomer), and this mannooligosaccharide remained predominant through the overall reaction. Trimming was optimal at pH 7.0 in PIPES buffer in the presence of calcium ion and kifunensine was inhibitory with IC50 below 0.1[emsp4 ]M. These results suggest that the activity is the same type as was previously observed with human and yeast endoplasmic reticulum (ER) -mannosidases. Considering these results together with previous data on a fungal -1,2-mannosidase that trimmed Man9GlcNAc2 to Man5GlcNAc2 (Ichishima, E., et al. (1999) bit>Biochem J, 339: 589–597), the filamentous fungi appear to have two types of -1,2-mannosidases, each of which acts differently on N-linked mannooligosaccharides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号