首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is now widely accepted that the classic environmental risk factors for atherosclerosis only partly explain the incidence of coronary artery disease and the development of acute coronary syndromes. Therefore, genetic factors that vary among human populations seem to be involved in the clinical manifestations of such patients. Substantial data suggest that a significant proportion of genetic polymorphisms involved in endothelial function, inflammation, lipid metabolism, thrombosis and fibrinolysis are often present in patients with acute coronary syndromes. In particular, a common variant on chromosome 9p21 was recently identified to affect the risk of myocardial infarction. Here, we review the progress of candidate gene studies and genome-wide association studies in identifying the genetic bases of complex cardiovascular diseases such as acute coronary syndromes.  相似文献   

2.
Genetic risk factors of venous thrombosis   总被引:19,自引:0,他引:19  
Venous thrombosis, whose main clinical presentations include deep vein thrombosis and pulmonary embolism, represents a major health problem worldwide. Numerous conditions are known to predispose to venous thrombosis and these conditions are commonly referred to as risk indicators or risk factors. Generally accepted or "classically" acquired risk factors for venous thromboembolism include advanced age, prolonged immobilisation, surgery, fractures, use of oral contraceptives and hormone replacement therapy, pregnancy, puerperium, cancer and antiphospholipid syndrome. In addition to these well-established risk factors for venous thrombosis, several lines of evidence that have emerged over the past few decades indicate a role of novel genetic risk factors, mainly related to the haemostatic system, in influencing thrombotic risk. The most significant breakthrough has been the confirmation of the concept that inherited hypercoagulable conditions are present in a large proportion of patients with venous thromboembolic disease. These include mutations in the genes that encode antithrombin, protein C and protein S, and the factor V Leiden and factor II G20210 A mutations. Moreover, plasmatic risk indicators, such as hyperhomocysteinemia and elevated concentrations of factors II, VIII, IX, XI and fibrinogen, have also been documented. This extensive list of genetic and acquired factors serves to illustrate that a single cause of venous thrombosis does not exist and that this condition should be considered as a complex or multifactorial trait. Complex traits can be understood by assuming an interaction between different mutations in candidate susceptibility genes. The risk that is associated with each genetic defect may be relatively low in isolation but the simultaneous presence of several mutations may dramatically increase disease susceptibility. Moreover, environmental factors may interact with one or more genetic variations to add further to the risk. The analysis of genetic risk factors and plasmatic factors, together with private life style and environmental factors, has contributed significantly to our understanding of the genetic predisposition to venous thrombosis.  相似文献   

3.
Studies have argued that genetic testing will provide limited information for predicting the probability of common diseases, because of the incomplete penetrance of genotypes and the low magnitude of associated risks for the general population. Such studies, however, have usually examined the effect of one gene at time. We argue that disease prediction for common multifactorial diseases is greatly improved by considering multiple predisposing genetic and environmental factors concurrently, provided that the model correctly reflects the underlying disease etiology. We show how likelihood ratios can be used to combine information from several genetic tests to compute the probability of developing a multifactorial disease. To show how concurrent use of multiple genetic tests improves the prediction of a multifactorial disease, we compute likelihood ratios by logistic regression with simulated case-control data for a hypothetical disease influenced by multiple genetic and environmental risk factors. As a practical example, we also apply this approach to venous thrombosis, a multifactorial disease influenced by multiple genetic and nongenetic risk factors. Under reasonable conditions, the concurrent use of multiple genetic tests markedly improves prediction of disease. For example, the concurrent use of a panel of three genetic tests (factor V Leiden, prothrombin variant G20210A, and protein C deficiency) increases the positive predictive value of testing for venous thrombosis at least eightfold. Multiplex genetic testing has the potential to improve the clinical validity of predictive testing for common multifactorial diseases.  相似文献   

4.
Hardy J 《Neuron》2010,68(2):201-206
In this review I outline the arguments as to whether we should consider Parkinson disease one or more than one entity and discuss genetic findings from Mendelian and whole-genome association analysis in that context. I discuss what the demonstration of disease spread implies for our analysis of the genetic and epidemiologic risk factors for disease and outline the surprising fact that we now have genetically identified on the order of half our risk for developing the disease.  相似文献   

5.
Most common diseases are caused by multiple genetic and environmental factors. In the last 2 years, genome-wide association studies (GWAS) have identified polymorphisms that are associated with risk to common disease, but the effect of any one risk allele is typically small. By combining information from many risk variants, will it be possible to predict accurately each individual person's genetic risk for a disease? In this review we consider the lessons from GWAS and the implications for genetic risk prediction to common disease. We conclude that with larger GWAS sample sizes or by combining studies, accurate prediction of genetic risk will be possible, even if the causal mutations or the mechanisms by which they affect susceptibility are unknown.  相似文献   

6.
In recent years inherited variations in platelet proteins have emerged as potential risk factors that could predispose individuals to arterial thrombosis. Although many studies have examined the association of platelet gene polymorphisms with particular disease states, the underlying mechanisms by which most of these polymorphisms contribute to the pathophysiology of thrombosis have remained largely unexplored. This review will focus on the cellular and molecular features by which these genetic changes affect platelet physiology. Although many genes have been investigated in this regard, only the genes encoding integrins beta3 and alpha2, and the platelet Fc receptor, Fc(gamma)RIIA, have been studied in any depth. In some cases (such as integrin alpha2), evidence supports a quantitative trait locus. For other genes, nonsynonymous nucleotide substitutions lead to structural and functional consequences. A large portion of this review will focus on the widely studied Leu33Pro (Pl(A)) polymorphism of integrin beta3, and will consider the potential mechanisms by which the Pro33 polymorphism could induce a prothrombotic risk. A detailed understanding of how polymorphisms modulate platelet physiology will be important for understanding individual differences in response to antiplatelet therapy.  相似文献   

7.
Although there are a number of well-characterized genetic defects that lead to increased risk of thrombosis, little information is available on the relative importance of genetic factors in thrombosis risk in the general population. We performed a family-based study of the genetics of thrombosis in the Spanish population to assess the heritability of thrombosis and to identify the joint actions of genes on thrombosis risk and related quantitative hemostasis phenotypes. We examined 398 individuals in 21 extended pedigrees. Twelve pedigrees were ascertained through a proband with idiopathic thrombosis, and the remaining pedigrees were randomly ascertained. The heritability of thrombosis liability and the genetic correlations between thrombosis and each of the quantitative risk factors were estimated by means of a novel variance component method that used a multivariate threshold model. More than 60% of the variation in susceptibility to common thrombosis is attributable to genetic factors. Several quantitative risk factors exhibited significant genetic correlations with thrombosis, indicating that some of the genes that influence quantitative variation in these physiological correlates also influence the risk of thrombosis. Traits that exhibited significant genetic correlations with thrombosis included levels of several coagulation factors (factors VII, VIII, IX, XI, XII, and von Willebrand), tissue plasminogen activator, homocysteine, and the activated protein C ratio. This is the first study that quantifies the genetic component of susceptibility to common thrombosis. The high heritability of thrombosis risk and the significant genetic correlations between thrombosis and related risk factors suggest that the exploitation of correlated quantitative phenotypes will aid the search for susceptibility genes.  相似文献   

8.
Myocardial infarction (MI) is an important clinical problem because of its large contribution to mortality. The main causal and treatable risk factors for MI include hypertension, hypercholesterolemia or dyslipidemia, diabetes mellitus, and smoking. In addition to these risk factors, recent studies have shown the importance of genetic factors and interactions between multiple genes and environmental factors. Disease prevention is an important strategy for reducing the overall burden of MI, with the identification of markers for disease risk being key both for risk prediction and for potential intervention to lower the chance of future events. Although genetic linkage analyses of families and sib-pairs as well as candidate gene and genome-wide association studies have implicated several loci and candidate genes in predisposition to coronary heart disease (CHD) or MI, the genes that contribute to genetic susceptibility to these conditions remain to be identified definitively. In this review, we summarize both candidate loci for CHD or MI identified by linkage analyses and candidate genes examined by association studies. We also review in more detail studies that have revealed the association with MI or CHD of polymorphisms in MTHFR, LPL, and APOE by the candidate gene approach and those in LTA and at chromosomal region 9p21.3 by genome-wide scans. Such studies may provide insight into the function of implicated genes as well as into the role of genetic factors in the development of CHD and MI.  相似文献   

9.
The high prevalence of Alzheimer's disease, along with the possibility of new approaches in diagnosis through the use of biomarkers of cerebrospinal fluid is shifting the focus to the elderly with dementia or at risk. In this sense it seems important to review the genetic aspects of the elderly with familial Alzheimer's disease as well as those at risk. The wide distribution of genetic studies associated with this condition may also be helpful. To the classical findings of the genes for amyloid, the presenilins and apolipoprotein E, we must add other genes recently implicated in the pathogenesis of the disease, among which are found the clusterin gene, encoding the phosphatidyl-inositol-binding clathrin assembly protein gene, and the receptor for the complement C3b protein.  相似文献   

10.
Antiphospholipid syndrome (APS) is an autoimmune condition characterized by the presence of antiphospholipid antibodies (aPL) in subjects presenting with thrombosis and/or pregnancy loss. The currently used classification criteria were updated in the international consensus held in Sidney in 2005. Vascular events seem to result of local procoagulative alterations upon triggers influence (the so called “second-hit theory”), while placental thrombosis and complement activation seem to lead to pregnancy morbidity. The laboratory tests suggested by the current classification criteria include lupus anticoagulant, a functional coagulation assay, and anticardiolipin and anti-β2-glycoprotein-I antibodies, generally detected by solid phase enzyme-linked immunosorbent assay. The real challenge for treating physicians is understanding what is the actual weight of aPL in provoking clinical manifestations in each case. As thrombosis has a multi-factorial cause, each patient needs a risk-stratified approach. In this review we discuss the role of thrombotic risk assessment in primary and secondary prevention of venous and arterial thromboembolic disease in patients with APS, focusing on new antibody specificities, available risk scoring models and new coagulation assays.  相似文献   

11.
In patients with excessive venous thrombosis, genetic defects predisposing to thrombosis can be found in 60-80%. Increased plasma levels of coagulation proteins such as fibrinogen and plasminogen activator inhibitor-1 (PAI-1) are associated with an increased risk of myocardial infarction. However, despite the presence of polymorphisms that regulate plasma levels of factor VIII, PAI-1, and fibrinogen the association between common polymorphisms of these coagulation protein and ischemic cardiac disease remains ambiguous. Up to 10% of the population have defects that predispose them to excessive venous thrombosis. In spite of the essential role of thrombosis in coronary ischemic syndrome, no convincing evidence has implicated the two most common venous hypercoagulable states in ischemic heart disease. Pathogenic polymorphisms in the platelet fibrinogen and collagen receptors remains an area of intense research interest. Finally, it has been shown that lipoproteins can act as mediators of coagulation processes.  相似文献   

12.
Multiple sclerosis (MS) is a progressive neurological disease caused by an autoimmune attack to the central nervous system (CNS). MS is thought to result from a complex interaction between genetic and environmental factors. In this review we analyze the contribution of genomics, trancriptomics and proteomics in delineating these factors, as well as their utility for the monitoring of disease progression, the identification of new targets for therapeutic intervention and the early detection of individuals at risk.  相似文献   

13.
PURPOSE OF REVIEW: The goal of this review is to present an update on basic and epidemiological findings associating variants in prothrombotic genes with atherogenesis and atherothrombotic disease. RECENT FINDINGS: The relation between atherosclerosis and thrombosis has long been recognized but only recently has it been understood that certain hemostatic factors affect not only thrombus formation, but also have a direct atherogenic role. Atherosclerosis is a complex disorder that results from the interaction of multiple genetic and environmental factors. Numerous polymorphisms and mutations in genes related to the hemostatic system and to vascular redox determinants that modulate nitric oxide bioavailability have been identified in the past decade; their role in atherogenesis and the risk of cardiovascular disease, however, remain uncertain. We will discuss the functional implications and association with disease risk of polymorphisms in coagulation factors (fibrinogen, prothrombin, and factor V); fibrinolytic factors (plasminogen activator inhibitor 1 and lipoprotein(a)); platelet surface receptors; and vascular redox determinants (methylenetetrahydrofolate reductase, endothelial nitric oxide synthase, and the antioxidant enzymes cellular glutathione peroxidase and paraoxonase). SUMMARY: Overall, these genetic variants have a modest effect on risk when considered individually but gain potency when acting synergistically with other genetic or environmental risk factors. We conclude that a better characterization of these interactions, in addition to the identification of potential novel genetic determinants, constitute key issues in the future understanding of the pathogenesis of atherothrombosis.  相似文献   

14.
Within the past decade our understanding of thromboembolic disorders has become even more sophisticated as recent discoveries have suggested the influence of gene variants on the development of atherosclerotic disease and arterial thrombosis. Candidate genes encode proteins involved in processes relevant to atherosclerosis, ranging from cholesterol metabolism to arterial thrombosis. Platelets are key elements in primary hemostasis, but also in arterial thrombosis. Moreover, a number of genetic polymorphisms of platelet proteins may also induce gain or loss of function, supporting a role predisposing some individuals to thrombotic events. However, after thousands of studies, much controversy remains whether individual platelet polymorphisms contribute to an increased likelihood of thromboembolic disorders. Although platelet polymorphisms are a promising addition to more established cardiovascular risk factors, identifying genetic variants as a single cause of cardiovascular disease would be an oversimplification; instead, the contribution of these polymorphisms should also be considered in the context of a multifactorial disease. Gene-gene and gene-environment studies would identify specific combinations associated with a high risk to suffer from these diseases. The platelet's genetic heterogeneity should also be considered in every aspect of clinical medicine, ranging from susceptibility to diseases, pathogenesis, and clinical outcome to diversity in responses to drug treatment (pharmacogenomics), and bleeding.  相似文献   

15.
Genetic variation in human disease and a new role for copy number variants   总被引:3,自引:0,他引:3  
While complex diseases, such as inflammatory bowel disease, do not follow distinctive Mendelian inheritance patterns, there is now considerable evidence from twin and pedigree studies to show that there are significant genetic influences in the development of many such diseases. In times past, this type of information was considered to be interesting, and was used mainly to alert other members of the families that they may also be at increased risk of developing the disease. However, with the ability to evaluate the genetic basis of common disease, this information will have important consequences for the diagnosis, prevention and treatment of the disorder. The genetic basis for common disease is likely to be more complicated than we had previously anticipated, since we now recognise epigenetic causes of disease, and other subtle gene regulatory mechanisms. Copy number variants have been highlighted in this review, as being a phenomenon that we have known about for a long time, but that has not previously been clearly associated with human disease. As complex disease is related to changes in gene expression, any variation in the human genome that alters gene expression is now a candidate for being involved in the disease process.  相似文献   

16.
Osteoporosis is a leading public health problem in our rapidly growing, aging population. It is characterized by reduced bone mass and microarchitectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture risk. Osteoporosis is a complex multifactorial disease, determined by genetic and environmental factors as well as their interactions. A large number of molecular, genetic and environmental factors underlying osteoporosis have been identified in past decades. In this article, we review 1) the molecular mechanisms of several principal systemic and local factors regulating bone metabolism; and 2) the current status of genetic studies searching for genes underlying osteoporosis. Further, we attempt to integrate knowledge from those two fields, and their potential implications for osteoporosis treatment.  相似文献   

17.
Finding genes for complex diseases has been the goal of many genetic studies. Most of these studies have been successful by searching for genes and mutations in rare familial cases, by screening candidate genes and by performing genome wide association studies. However, only a small fraction of the total genetic risk for these complex genetic diseases can be explained by the identified mutations and associated genetic loci. In this review we focus on Hirschsprung disease (HSCR) as an example of a complex genetic disorder. We describe the genes identified in this congenital malformation and postulate that both common ‘low penetrant’ variants in combination with rare or private ‘high penetrant’ variants determine the risk on HSCR, and likely, on other complex diseases. We also discuss how new technological advances can be used to gain further insights in the genetic background of complex diseases. Finally, we outline a few steps to develop functional assays in order to determine the involvement of these variants in disease development.  相似文献   

18.
血栓形成是癌症患者最常见的并发症之一,也是仅次于癌症本身引起患者死亡的主要因素。癌症患者凝血系统的改变,将会对肿瘤的形成、转移等产生影响。本文通过介绍恶性肿瘤患者并发血栓形成的风险评估以及预防方法,总结恶性肿瘤血栓形成的危险因素及发生机制,探讨临床实践过程中恶性肿瘤血栓形成的风险评估方法和预防措施,为避免或减少血栓的发生提供参考。  相似文献   

19.
20.
Ankylosing spondylitis is a highly heritable, common rheumatic condition, primarily affecting the axial skeleton. The association with HLA-B27 has been demonstrated worldwide, and evidence for a role of HLA-B27 in disease comes from linkage and association studies in humans, and transgenic animal models. However, twin studies indicate that HLA-B27 contributes only 16% of the total genetic risk for disease. Furthermore, there is compelling evidence that non-B27 genes, both within and outwith the major histocompatability complex, are involved in disease aetiology. In this post-genomic era we have the tools to help elicit the genetic basis of disease. This review describes methods for genetic investigation of ankylosing spondylitis, and summarises the status of current research in this exciting area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号