首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Numerous nuclear proteins bind to chromatin by targeting unique DNA sequences or specific histone modifications. In contrast, HMGN proteins recognize the generic structure of the 147-bp nucleosome core particle. HMGNs alter the structure and activity of chromatin by binding to nucleosomes; however, the determinants of the specific interaction of HMGNs with chromatin are not known. Here we use systematic mutagenesis, quantitative fluorescence recovery after photobleaching, fluorescence imaging, and mobility shift assays to identify the determinants important for the specific binding of these proteins to both the chromatin of living cells and to purified nucleosomes. We find that several regions of the protein affect the affinity of HMGNs to chromatin; however, the conserved sequence RRSARLSA, is the sole determinant of the specific interaction of HMGNs with nucleosomes. Within this sequence, each of the 4 amino acids in the R-S-RL motif are the only residues absolutely essential for anchoring HMGN protein to nucleosomes, both in vivo and in vitro. Our studies identify a new chromatin-binding module that specifically recognizes nucleosome cores independently of DNA sequence or histone tail modifications.  相似文献   

13.
H2A.Z是组蛋白H2A的变异体之一,是高度保守的组蛋白变异体,参与保护常染色体,防止形成异染色质;并且与转录调节、抗沉默、沉默和基因组稳定性有关。组蛋白变异体H2A.Z可能与染色体形成独立的结构域,从而调节染色质结构功能。但是,H2A.Z对染色体结构功能的作用机制还不是很清楚。组蛋白变异体H2A.Z和它的表观遗传修饰对染色体动态结构和功能起重要的作用。该文将对组蛋白变异体H2A.Z进行综述。  相似文献   

14.
15.
16.
17.
18.
In C. elegans, mRNA production is initially repressed in the embryonic germline by a protein unique to C. elegans germ cells, PIE-1. PIE-1 is degraded upon the birth of the germ cell precursors, Z2 and Z3. We have identified a chromatin-based mechanism that succeeds PIE-1 repression in these cells. A subset of nucleosomal histone modifications, methylated lysine 4 on histone H3 (H3meK4) and acetylated lysine 8 on histone H4 (H4acetylK8), are globally lost and the DNA appears more condensed. This coincides with PIE-1 degradation and requires that germline identity is not disrupted. Drosophila pole cell chromatin also lacks H3meK4, indicating that a unique chromatin architecture is a conserved feature of embryonic germ cells. Regulation of the germline-specific chromatin architecture requires functional nanos activity in both organisms. These results indicate that genome-wide repression via a nanos-regulated, germ cell-specific chromatin organization is a conserved feature of germline maintenance during embryogenesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号