首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundGeneXpert MTB/RIF (Xpert) and Genotype MTBDRplus (DRplus) are two World Health Organization (WHO) endorsed probe based molecular drug susceptibility testing (DST) methods for rapid diagnosis of drug resistant tuberculosis. Both methods target the same 81 bp Rifampicin Resistance Determining Region (RRDR) of bacterial RNA polymerase β subunit (rpoB) for detection of Rifampicin (RIF) resistance associated mutations using DNA probes. So there is a correspondence of the probes of each other and expected similarity of probe binding.MethodsWe analyzed 92 sputum specimens by Xpert, DRplus and LJ proportion method (LJ-DST). We compared molecular DSTs with gold standard LJ-DST. We wanted to see the agreement level of two molecular methods for detection of RIF resistance associated mutations. The 81bp RRDR region of rpoB gene of discrepant cases between the two molecular methods was sequenced by Sanger sequencing.ResultsThe agreement of Xpert and DRplus with LJ-DST for detection of RIF susceptibility was found to be 93.5% and 92.4%, respectively. We also found 92.4% overall agreement of two molecular methods for the detection of RIF susceptibility. A total of 84 out of 92 samples (91.3%) had agreement on the molecular locus of RRDR mutation by DRplus and Xpert. Sanger sequencing of 81bp RRDR revealed that Xpert probes detected seven of eight discrepant cases correctly and DRplus was erroneous in all the eight cases.ConclusionAlthough the overall concordance with LJ-DST was similar for both Xpert and DRplus assay, Xpert demonstrated more accuracy in the detection of RIF susceptibility for discrepant isolates compared with DRplus. This observation would be helpful for the improvement of probe based detection of drug resistance associated mutations especially rpoB mutation in M. tuberculosis.  相似文献   

2.

Background

There is an urgent demand for rapid and accurate drug-susceptibility testing for the detection of multidrug-resistant tuberculosis. The GenoType MTBDRplus assay is a promising molecular kit designed for rapid identification of resistance to first-line anti-tuberculosis drugs, isoniazid and rifampicin. The aim of this meta-analysis was to evaluate the diagnostic accuracy of GenoType MTBDRplus in detecting drug resistance to isoniazid and rifampicin in comparison with the conventional drug susceptibility tests.

Methods

We searched PubMed, EMBASE, and Cochrane Library databases to identify studies according to predetermined criteria. A total of 40 studies were included in the meta-analysis. QUADAS-2 was used to assess the quality of included studies with RevMan 5.2. STATA 13.0 software was used to analyze the tests for sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and area under the summary receiver operating characteristic curves. Heterogeneity in accuracy measures was tested with Spearman correlation coefficient and Chi-square.

Results

Patient selection bias was observed in most studies. The pooled sensitivity (95% confidence intervals were 0.91 (0.88–0.94) for isoniazid, 0.96 (0.95–0.97) for rifampicin, and 0.91(0.86–0.94) for multidrug-resistance. The pooled specificity (95% CI) was 0.99 (0.98–0.99) for isoniazid, 0.98 (0.97–0.99) for rifampicin and 0.99 (0.99–1.00) for multidrug-resistance, respectively. The area under the summary receiver operating characteristic curves ranged from 0.99 to 1.00.

Conclusion

This meta-analysis determined that GenoType MTBDRplus had good accuracy for rapid detection of drug resistance to isoniazid and/or rifampicin of M. tuberculosis. MTBDRplus method might be a good alternative to conventional drug susceptibility tests in clinical practice.  相似文献   

3.

Background

Detection of drug-resistant tuberculosis is essential for the control of the disease but it is often hampered by the limitation of transport and storage of samples from remote locations to the reference laboratory. We performed a retrospective field study to evaluate the performance of four supports enabling the transport and storage of samples to be used for molecular detection of drug resistance using the GenoType MTBDRplus.

Methods

Two hundred Mycobacterium tuberculosis strains were selected and spotted on slides, FTA cards, GenoCards, and in ethanol. GenoType MTBDRplus was subsequently performed with the DNA extracted from these supports. Sensitivity and specificity were calculated and compared to the results obtained by drug susceptibility testing.

Results

For all supports, the overall sensitivity and specificity for detection of resistance to RIF was between 95% and 100%, and for INH between 95% and 98%.

Conclusion

The four transport and storage supports showed a good sensitivity and specificity for the detection of resistance to RIF and INH in M. tuberculosis strains using the GenoType MTBDRplus. These supports can be maintained at room temperature and could represent an important alternative cost-effective method useful for rapid molecular detection of drug-resistant TB in low-resource settings.  相似文献   

4.
To study the transmissibility of drug resistant mutant clones, M. tuberculosis samples were isolated from the patients of the clinical department and the polyclinic of the Central TB Research Institute (n = 1455) for 2011–2014. A number of clones were phenotypically resistant to rifampicin (n = 829), isoniazid (n = 968), and fluoroquinolones (n = 220). We have detected 21 resistance-associated variants in eight codons of rpoB, six variants in three codons of katG, three variants in two positions of inhA, four variants in four positions of ahpC, and nine variants in five codons of gyrA, which were represented in the analyzed samples with varied frequencies. Most common mutations were rpoB 531 Ser→Leu (77.93%), katG 315 (Ser→Thr) (94.11%), and gyrA 94 (Asp→Gly) (45.45%). We found that the mutations at position 15 of inhA (C→T) (frequency of 25.72%) are commonly associated with katG 315 (Ser→Thr). This association of two DNA variants may arise due to the double selection by coexposure of M. tuberculosis to isoniazid and ethionamide. The high transmissibility of mutated strains was observed, which may be explained by the minimal influence of the resistance determinants on strain viability. The high transmissibility of resistant variants may also explain the large populational prevalence of drug-resistant TB strains.  相似文献   

5.
BackgroundThere are limited data on region-specific drug susceptibility of tuberculosis (TB) in Uganda. We performed resistance testing on specimens collected from treatment-naive patients with pulmonary TB in Southwestern Uganda for first and second line anti-TB drugs. We sought to provide data to guide regional recommendations for empiric TB therapy.MethodsArchived isolates, obtained from patients at Mbarara Regional Referral Hospital from February 2009 to February 2013, were tested for resistance to isoniazid and rifampicin using the MTBDRplus and Xpert MTB/RIF assays. A subset of randomly selected isolates was tested for second line agents, including fluoroquinolones (FQs), aminoglycosides, cyclic peptides, and ethambutol using the MTBDRsl assay. We performed confirmatory testing for FQ resistance using repeated MTBDRsl, the Mycobacteria growth indicator tube (MGIT) assay, and sequencing of the gyrA and gyrB genes.ResultsWe tested isolates from 190 patients. The cohort had a median age of 33 years (IQR 26-43), 69% (131/190) were male, and the HIV prevalence was 42% (80/190). No isolates (0/190) were rifampicin-resistant and only 1/190 (0.5%) was isoniazid-resistant. Among 92 isolates tested for second-line drug resistance, 71 (77%) had interpretable results, of which none were resistant to aminoglycosides, cyclic peptides or ethambutol. Although 7 (10%) initially tested as resistant to FQs by the MTBDRsl assay, they were confirmed as susceptible by repeat MTBDRsl testing as well as by MGIT and gyrase gene sequencingConclusionWe found no MDR-TB and no resistance to ethambutol, FQs, or injectable anti-TB drugs in treatment naïve patients with pulmonary TB in Southwestern Uganda. Standard treatment guidelines for susceptible TB should be adequate for most patients with TB in this population. Where possible, molecular susceptibility testing methods should be routinely validated by culture methods.  相似文献   

6.

Background

The WHO has recommended the implementation of rapid diagnostic tests to detect and help combat M/XDR tuberculosis (TB). There are limited data on the performance and impact of these tests in field settings.

Methods

The performance of the commercially available Genotype MTBDRplus molecular assay was compared to conventional methods including AFB smear, culture and drug susceptibility testing (DST) using both an absolute concentration method on Löwenstein-Jensen media and broth-based method using the MGIT 960 system. Sputum specimens were obtained from TB suspects in the country of Georgia who received care through the National TB Program.

Results

Among 500 AFB smear-positive sputum specimens, 458 (91.6%) had both a positive sputum culture for Mycobacterium tuberculosis and a valid MTBDRplus assay result. The MTBDRplus assay detected isoniazid (INH) resistance directly from the sputum specimen in 159 (89.8%) of 177 specimens and MDR-TB in 109 (95.6%) of 114 specimens compared to conventional methods. There was high agreement between the MTBDRplus assay and conventional DST results in detecting MDR-TB (kappa = 0.95, p<0.01). The most prevalent INH resistance mutation was S315T (78%) in the katG codon and the most common rifampicin resistance mutation was S531L (68%) in the rpoB codon. Among 13 specimens from TB suspects with negative sputum cultures, 7 had a positive MTBDRplus assay (3 with MDR-TB). The time to detection of MDR-TB was significantly less using the MTBDRplus assay (4.2 days) compared to the use of standard phenotypic tests (67.3 days with solid media and 21.6 days with broth-based media).

Conclusions

Compared to conventional methods, the MTBDRplus assay had high accuracy and significantly reduced time to detection of MDR-TB in an area with high MDR-TB prevalence. The use of rapid molecular diagnostic tests for TB and drug resistance should increase the proportion of patients promptly placed on appropriate therapy.  相似文献   

7.

Background

Tuberculosis (TB) is one of the major public health problems in Congo. However, data concerning Mycobacterium tuberculosis drug resistance are lacking because of the insufficient processing capacity. So, the aim of this study was to investigate for the first time the resistance patterns and the strain lineages of a sample of M. tuberculosis complex (MTBC) isolates collected in the two main cities of Congo.

Methods

Over a 9-day period, 114 smear-positive sputa isolated from 114 patients attending centers for the diagnosis and treatment of TB in Brazzaville and Pointe Noire were collected for culture and drug susceptibility testing (DST). Detection of mutations conferring drug resistance was performed by using line probe assays (GenoType MTBDRplus and MTBDRsl) and DNA sequencing. Strain lineages were determined by MIRU-VNTR genotyping.

Results

Of the 114 sputa, 46 were culture positive for MTBC. Twenty-one (46%) were resistant to one or more first-line antiTB drugs. Of these, 15 (71%) were multidrug resistant (MDR). The most prevalent mutations involved in rifampin and isoniazid resistance, D516V (60%) in rpoB and S315T (87%) in katG respectively, were well detected by MTBDRplus assay. All the 15 MDR strains were susceptible to fluoroquinolone and injectable second-line drug. No mutation was detected in the rrs locus involved in resistance to amikacin and capreomycin by both the MTBDRsl assay and DNA sequencing. By contrast, 9 MDR strains belonging to the same cluster related to T-family were identified as being falsely resistant to fluoroquinolone by the MTBDRsl assay due to the presence of a double substitution T80A-A90G in GyrA.

Conclusions

Taken together, these data revealed a possible spread of a particular MDR clone in Congo, misidentified as fluoroquinolone resistant by MTBDRsl assay. Thus, this test cannot replace gold-standard culture method and should be interpreted carefully in view of the patient''s native land.  相似文献   

8.

Background

Rapid new diagnostic methods (including Xpert MTB/RIF assay) use rifampicin resistance as a surrogate marker for multidrug resistant tuberculosis. Patients infected with rifampicin susceptible strains are prescribed first line anti-tuberculosis therapy. The roll out of such methods raises a concern that strains with resistance to other first line anti-tuberculosis drugs including isoniazid will be missed and inappropriate treatment given. To evaluate implications of using such methods review of resistance data from high burden settings such as ours is essential.

Objective

To determine resistance to first line anti-tuberculosis drugs amongst rifampicin susceptible pulmonary Mycobacterium tuberculosis (MTB) isolates from Pakistan.

Materials and Methods

Data of pulmonary Mycobacterium tuberculosis strains isolated in Aga Khan University Hospital (AKUH) laboratory (2009–2011) was retrospectively analyzed. Antimicrobial susceptibility profile of rifampicin susceptible isolates was evaluated for resistance to isoniazid, pyrazinamide, ethambutol, and streptomycin.

Results

Pulmonary specimens submitted to AKUH from 2009 to 2011 yielded 7738 strains of Mycobacterium tuberculosis. These included 54% (n 4183) rifampicin susceptible and 46% (n: 3555) rifampicin resistant strains. Analysis of rifampicin susceptible strains showed resistance to at least one of the first line drugs in 27% (n:1133) of isolates. Overall isoniazid resistance was 15.5% (n: 649), with an isoniazid mono-resistance rate of 4% (n: 174). Combined resistance to isoniazid, pyrazinamide, and ethambutol was noted in 1% (n: 40), while resistance to isoniazid, pyrazinamide, ethambutol, and streptomycin was observed in 1.7% (n: 70) of strains.

Conclusions

Our data suggests that techniques (including Xpert MTB/RIF assay) relying on rifampicin susceptibility as an indicator for initiating first line therapy will not detect patients infected with MTB strains resistant to other first line drugs (including isoniazid). The roll out of these techniques must therefore be accompanied by strict monitoring ensuring early resistance detection to increase chances of improved patient outcomes.  相似文献   

9.
The Xpert MTB/RIF assay was introduced for timely and accurate detection of tuberculosis (TB). The aim of this study was to determine the diagnostic accuracy and turnaround time (TAT) of Xpert MTB/RIF assay in clinical practice in South Korea. We retrospectively reviewed the medical records of patients in whom Xpert MTB/RIF assay using sputum were requested. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for the diagnosis of pulmonary tuberculosis (PTB) and detection of rifampicin resistance were calculated. In addition, TAT of Xpert MTB/RIF assay was compared with those of other tests. Total 681 patients in whom Xpert MTB/RIF assay was requested were included in the analysis. The sensitivity, specificity, PPV and NPV of Xpert MTB/RIF assay for diagnosis of PTB were 79.5% (124/156), 100.0% (505/505), 100.0% (124/124) and 94.0% (505/537), respectively. Those for the detection of rifampicin resistance were 57.1% (8/14), 100.0% (113/113), 100.0% (8/8) and 94.9% (113/119), respectively. The median TAT of Xpert MTB/RIF assay to the report of results and results confirmed by physicians in outpatient settings were 0 (0–1) and 6 (3–7) days, respectively. Median time to treatment after initial evaluation was 7 (4–9) days in patients with Xpert MTB/RIF assay, but was 21 (7–33.5) days in patients without Xpert MTB/RIF assay. Xpert MTB/RIF assay showed acceptable sensitivity and excellent specificity for the diagnosis of PTB and detection of rifampicin resistance in areas with intermediate TB burden. Additionally, the assay decreased time to the initiation of anti-TB drugs through shorter TAT.  相似文献   

10.
BackgroundXpert MTB/RIF, the first automated molecular test for tuberculosis, is transforming the diagnostic landscape in high-burden settings. This study assessed the impact of up-front Xpert MTB/RIF testing on detection of pulmonary tuberculosis (PTB) and rifampicin-resistant PTB (DR-TB) cases in India.MethodsThis demonstration study was implemented in 18 sub-district level TB programme units (TUs) in India in diverse geographic and demographic settings covering a population of 8.8 million. A baseline phase in 14 TUs captured programmatic baseline data, and an intervention phase in 18 TUs had Xpert MTB/RIF offered to all presumptive TB patients. We estimated changes in detection of TB and DR-TB, the former using binomial regression models to adjust for clustering and covariates.ResultsIn the 14 study TUs, which participated in both phases, 10,675 and 70,556 presumptive TB patients were enrolled in the baseline and intervention phase, respectively, and 1,532 (14.4%) and 14,299 (20.3%) bacteriologically confirmed PTB cases were detected. The implementation of Xpert MTB/RIF was associated with increases in both notification rates of bacteriologically confirmed TB cases (adjusted incidence rate ratio [aIRR] 1.39; CI 1.18-1.64), and proportion of bacteriological confirmed TB cases among presumptive TB cases (adjusted risk ratio (aRR) 1.33; CI 1.6-1.52). Compared with the baseline strategy of selective drug-susceptibility testing only for PTB cases at high risk of drug-resistant TB, Xpert MTB/RIF implementation increased rifampicin resistant TB case detection by over fivefold. Among, 2765 rifampicin resistance cases detected, 1055 were retested with conventional drug susceptibility testing (DST). Positive predictive value (PPV) of rifampicin resistance detected by Xpert MTB/RIF was 94.7% (CI 91.3-98.1), in comparison to conventional DST.ConclusionIntroduction of Xpert MTB/RIF as initial diagnostic test for TB in public health facilities significantly increased case-notification rates of all bacteriologically confirmed TB by 39% and rifampicin-resistant TB case notification by fivefold.  相似文献   

11.
摘要 目的:探讨结核分枝杆菌/利福平耐药实时荧光定量核酸扩增检测技术(Xpert MTB/RIF)对肺外结核性脓肿的诊断价值。方法:收集2020年1月至2021年12月无锡市第五人民医院住院的122例高度疑似肺外结核性脓肿患者为研究对象,在超声引导下对脓肿病灶进行针吸穿刺活检,脓液标本分别进行Xpert MTB/RIF检测、结核杆菌脱氧核糖核酸(TB-DNA)检测、MGIT 960培养以及涂片抗酸染色。以临床综合诊断作为参考标准,比较Xpert MTB/RIF检测、TB-DNA检测、MGIT 960培养以及涂片抗酸染色四种方法对肺外结核性脓肿的诊断效能。对比Xpert MTB/RIF检测和MGIT 960药敏试验对利福平的耐药性。观察各类肺外结核性脓肿患者的诊断延迟时间。结果:122例疑似患者中,最终确诊肺外结核性脓肿患者73例,非结核性脓肿者49例。Xpert MTB/RIF检测、MGIT 960培养、TB-DNA检测以及涂片抗酸染色四种方法在肺外结核性脓肿标本中的阳性检出率结果分别为89.04%、20.55%、58.90%、36.99%,四种方法的阳性检出率整体比较差异有统计学意义(P<0.01),Xpert MTB/RIF检测的阳性检出率明显高于MGIT 960培养、TB-DNA检测以及涂片抗酸染色法,差异均有统计学意义(P<0.05)。以临床综合诊断作为参考标准,Xpert MTB/RIF检测诊断肺外结核性脓肿者的临床诊断价值最高,其敏感度、特异度、阳性预测值、阴性预测值分别为89.04%、100.00%、100.00%、85.96%。Xpert MTB/RIF检测与MGIT 960药敏试验对利福平耐药率之间差异无统计学意义(P>0.05)。肺外结核性脓肿诊断存在明显延迟,尤其以关节结核性脓肿诊断延迟时间最长,平均为103.5天;但在结核性脓胸患者中诊断延迟时间最短,平均为7.6天。结论:与MGIT 960培养、TB-DNA检测以及涂片抗酸染色比较,Xpert MTB/RIF在肺外结核性脓肿中的阳性检出率较高,临床诊断价值最佳,表明其可用作为疑似结核性脓肿患者的快速诊断工具,同时在结核耐药性方面亦可以做到快速筛查。  相似文献   

12.
Pulmonary tuberculosis still remains a major communicable disease worldwide. In 2013, 9 million people developed TB and 1.5 million people died from the disease. India constitutes 24% of the total TB burden. Early detection of TB cases is the key to successful treatment and reduction of disease transmission. Xpert MTB/RIF, an automated cartridge-based molecular technique detects Mycobacterium tuberculosis and rifampicin resistance within two hours has been endorsed by WHO for rapid diagnosis of TB. Our study is the first study from India with a large sample size to evaluate the performance of Xpert MTB/RIF assay in PTB samples. The test showed an overall sensitivity and specificity of 95.7% (430/449) and 99.3% (984/990) respectively. In smear negative-culture positive cases, the test had a sensitivity of 77.7%. The sensitivity and specificity for detecting rifampicin resistance was 94.5% and 97.7% respectively with respect to culture as reference standard. However, after resolving the discrepant samples with gene sequencing, the sensitivity and specificity rose to 99.0% and 99.3% respectively. Hence, while solid culture still forms the foundation of TB diagnosis, Xpert MTB/RIF proposes to be a strong first line diagnostic tool for pulmonary TB cases.  相似文献   

13.

Background

The World Health Organization has endorsed the Xpert MTB/RIF assay for investigation of patients suspected of having tuberculosis (TB). However, its utility for routine TB screening and detection of rifampicin resistance among HIV-infected patients with advanced immunodeficiency enrolling in antiretroviral therapy (ART) services is unknown.

Methods and Findings

Consecutive adult HIV-infected patients with no current TB diagnosis enrolling in an ART clinic in a South African township were recruited regardless of symptoms. They were clinically characterised and invited to provide two sputum samples at a single visit. The accuracy of the Xpert MTB/RIF assay for diagnosing TB and drug resistance was assessed in comparison with other tests, including fluorescence smear microscopy and automated liquid culture (gold standard) and drug susceptibility testing. Of 515 patients enrolled, 468 patients (median CD4 cell count, 171 cells/µl; interquartile range, 102–236) produced at least one sputum sample, yielding complete sets of results from 839 samples. Mycobacterium tuberculosis was cultured from 81 patients (TB prevalence, 17.3%). The overall sensitivity of the Xpert MTB/RIF assay for culture-positive TB was 73.3% (specificity, 99.2%) compared to 28.0% (specificity, 100%) using smear microscopy. All smear-positive, culture-positive disease was detected by Xpert MTB/RIF from a single sample (sensitivity, 100%), whereas the sensitivity for smear-negative, culture-positive TB was 43.4% from one sputum sample and 62.3% from two samples. Xpert correctly identified rifampicin resistance in all four cases of multidrug-resistant TB but incorrectly identified resistance in three other patients whose disease was confirmed to be drug sensitive by gene sequencing (specificity, 94.1%; positive predictive value, 57%).

Conclusions

In this population of individuals at high risk of TB, intensive screening using the Xpert MTB/RIF assay increased case detection by 45% compared with smear microscopy, strongly supporting replacement of microscopy for this indication. However, despite the ability of the assay to rapidly detect rifampicin-resistant disease, the specificity for drug-resistant TB was sub-optimal. Please see later in the article for the Editors'' Summary  相似文献   

14.
The World Health Organization recommends diagnosing Multidrug-Resistant Tuberculosis (MDR-TB) in high burden countries by detection of mutations in Rifampin (RIF) Resistance Determining Region of Mycobacterium tuberculosis rpoB gene with rapid molecular tests GeneXpert MTB/RIF and Hain MTBDRplus. Such mutations are found in >95% of Mycobacterium tuberculosis strains resistant to RIF by conventional culture-based drug susceptibility testing (DST). However routine diagnostic screening with molecular tests uncovered specific “low level” rpoB mutations conferring resistance to RIF below the critical concentration of 1 μg/ml in some phenotypically susceptible strains. Cases with discrepant phenotypic (susceptible) and genotypic (resistant) results for resistance to RIF account for at least 10% of resistant diagnoses by molecular tests and urgently require new guidelines to inform therapeutic decision making. Eight strains with a “low level” rpoB mutation L511P were isolated by GHESKIO laboratory between 2008 and 2012 from 6 HIV-negative and 2 HIV-positive patients during routine molecular testing. Five isolates with a single L511P mutation and two isolates with double mutation L511P&M515T had MICs for RIF between 0.125 and 0.5 μg/ml and tested susceptible in culture-based DST. The eighth isolate carried a double mutation L511P&D516C and was phenotypically resistant to RIF. All eight strains shared the same spoligotype SIT 53 commonly found in Haiti but classic epidemiological investigation failed to uncover direct contacts between the patients. Whole Genome Sequencing (WGS) revealed that L511P cluster isolates resulted from a clonal expansion of an ancestral strain resistant to Isoniazid and to a very low level of RIF. Under the selective pressure of RIF-based therapy the strain acquired mutation in the M306 codon of embB followed by secondary mutations in rpoB and escalation of resistance level. This scenario highlights the importance of subcritical resistance to RIF for both clinical management of patients and public health and provides support for introducing rpoB mutations as proxy for MICs into laboratory diagnosis of RIF resistance. This study illustrates that WGS is a promising multi-purpose genotyping tool for high-burden settings as it provides both “gold standard” sequencing results for prediction of drug susceptibility and a high-resolution data for epidemiological investigation in a single assay.  相似文献   

15.
BackgroundA critical challenge in providing TB care to People Living with HIV (PLHIV) is establishing an accurate bacteriological diagnosis. Xpert MTB/RIF, a highly sensitive and specific rapid tool, offers a promising solution in addressing these challenges. This study presents results from PLHIV taking part in a large demonstration study across India wherein upfront Xpert MTB/RIF testing was offered to all presumptive PTB cases in public health facilities.MethodThe study covered a population of 8.8 million across 18 sub-district level tuberculosis units (TU), with one Xpert MTB/RIF platform established at each TU. All HIV-infected patients suspected of TB (both TB and Drug Resistant TB (DR-TB)) accessing public health facilities in study area were prospectively enrolled and provided upfront Xpert MTB/RIF testing.Result2,787 HIV-infected presumptive pulmonary TB cases were enrolled and 867 (31.1%, 95% Confidence Interval (CI) 29.4‒32.8) HIV-infected TB cases were diagnosed under the study. Overall 27.6% (CI 25.9–29.3) of HIV-infected presumptive PTB cases were positive by Xpert MTB/RIF, compared with 12.9% (CI 11.6–14.1) who had positive sputum smears. Upfront Xpert MTB/RIF testing of presumptive PTB and DR-TB cases resulted in diagnosis of 73 (9.5%, CI 7.6‒11.8) and 16 (11.2%, CI 6.7‒17.1) rifampicin resistance cases, respectively. Positive predictive value (PPV) for rifampicin resistance detection was high 97.7% (CI 89.3‒99.8), with no significant difference with or without prior history of TB treatment.ConclusionThe study results strongly demonstrate limitations of using smear microscopy for TB diagnosis in PLHIV, leading to low TB and DR-TB detection which can potentially lead to either delayed or sub-optimal TB treatment. Our findings demonstrate the usefulness and feasibility of addressing this diagnostic gap with upfront of Xpert MTB/RIF testing, leading to overall strengthening of care and support package for PLHIV.  相似文献   

16.

Background

Diagnosis of pulmonary tuberculosis (PTB) in children is challenging due to difficulties in obtaining good quality sputum specimens as well as the paucibacillary nature of disease. Globally a large proportion of pediatric tuberculosis (TB) cases are diagnosed based only on clinical findings. Xpert MTB/RIF, a highly sensitive and specific rapid tool, offers a promising solution in addressing these challenges. This study presents the results from pediatric groups taking part in a large demonstration study wherein Xpert MTB/RIF testing replaced smear microscopy for all presumptive PTB cases in public health facilities across India.

Methods

The study covered a population of 8.8 million across 18 programmatic sub-district level tuberculosis units (TU), with one Xpert MTB/RIF platform established at each study TU. Pediatric presumptive PTB cases (both TB and Drug Resistant TB (DR-TB)) accessing any public health facilities in study area were prospectively enrolled and tested on Xpert MTB/RIF following a standardized diagnostic algorithm.

Results

4,600 pediatric presumptive pulmonary TB cases were enrolled. 590 (12.8%, CI 11.8–13.8) pediatric PTB were diagnosed. Overall 10.4% (CI 9.5–11.2) of presumptive PTB cases had positive results by Xpert MTB/RIF, compared with 4.8% (CI 4.2–5.4) who had smear-positive results. Upfront Xpert MTB/RIF testing of presumptive PTB and presumptive DR-TB cases resulted in diagnosis of 79 and 12 rifampicin resistance cases, respectively. Positive predictive value (PPV) for rifampicin resistance detection was high (98%, CI 90.1–99.9), with no statistically significant variation with respect to past history of treatment.

Conclusion

Upfront access to Xpert MTB/RIF testing in pediatric presumptive PTB cases was associated with a two-fold increase in bacteriologically-confirmed PTB, and increased detection of rifampicin-resistant TB cases under routine operational conditions across India. These results suggest that routine Xpert MTB/RIF testing is a promising solution to present-day challenges in the diagnosis of PTB in pediatric patients.  相似文献   

17.
Isoniazid (INH) and rifampicin (RIF) are the two most effective drugs in tuberculosis therapy. Understanding the molecular mechanisms of resistance to these two drugs is essential to quickly diagnose multidrug-resistant (MDR) tuberculosis and extensive drug-resistant tuberculosis. Nine clinical Mycobacterium tuberculosis isolates resistant to only INH and RIF and 10 clinical pan-sensitive isolates were included to evaluate the expression of 20 putative drug efflux pump genes and sequence mutations in rpoB (RIF), katG (INH), the inhA promoter (INH), and oxyR-ahpC (INH). Nine and three MDR isolates were induced to overexpress efflux pump genes by INH and RIF, respectively. Eight and two efflux pump genes were induced to overexpress by INH and RIF in MDR isolates, respectively. drrA, drrB, efpA, jefA (Rv2459), mmr, Rv0849, Rv1634, and Rv1250 were overexpressed under INH or RIF stress. Most efflux pump genes were overexpressed under INH stress in a MDR isolates that carried the wild-type katG, inhA, and oxyR-ahpC associated with INH resistance than in those that carried mutations. The expression levels of 11 genes (efpA, Rv0849, Rv1250, P55 (Rv1410c), Rv1634, Rv2994, stp, Rv2459, pstB, drrA, and drrB) without drug inducement were significantly higher (P < 0.05) in nine MDR isolates than in 10 pan-sensitive isolates. In conclusion, efflux pumps may play an important role in INH acquired resistance in MDR M. tuberculosis, especially in those strains having no mutations in genes associated with INH resistance; basal expression levels of some efflux pump genes are higher in MDR isolates than in pan-sensitive isolates and the basal expressional differences may be helpful to diagnose and treat resistant tuberculosis.  相似文献   

18.
BackgroundThis study aimed to evaluate the usefulness of the Xpert MTB/RIF assay for the rapid direct detection of M. tuberculosis complex (MTBC) strains and rifampicin resistance associated mutations in a resource-limited setting such as Guinea-Bissau and its implications in the management of tuberculosis (TB) and drug resistant tuberculosis, complementing the scarce information on resistance and genotypic diversity of MTBC strains in this West African country.ConclusionsThe Xpert MTB/RIF assay was reliable for the detection of rifampicin resistant MTBC strains directly from sputum samples of patients undergoing first-line treatment for two months, being more trustworthy than the simple presence of acid-fast bacilli in the smear. Its implementation is technically simple, does not require specialized laboratory infrastructures and is suitable for resource-limited settings when a regular source of electricity and maintenance is available as well as financial and operation sustainability is guaranteed by the health authorities. A high prevalence of MDR-TB among patients at risk of MDR-TB after two months of first-line treatment was found, in support of the WHO recommendations for its use in the management of this risk group.  相似文献   

19.
Rapid, reliable results can be given by molecular, direct detection and identification of the Mycobacterium tuberculosis (MTB/Mtb) complex from clinical samples. The Xpert MTB/RIF assay is an assay that has been availablefor more than a decade for identification of Mycobacterium tuberculosis and resistance to rifampicin. However, there is minimal evidence on its clinical usefulness in paucibacillary, non-respiratory samples. The Xpert MTB/RIF assay clinical utility index, its diagnostic characteristics and the number required to diagnose 2935 non-respiratory specimens submitted for routine mycobacterial work-up in a reference laboratory in an intermediate prevalence setting per specimen form were evaluated. The Xpert MTB/RIF assay showed a variable clinical utility index and number required to diagnose (NND) depending on the type of specimen, which was moderate in tissue biopsies (NND = 1.8) and excellent in pus and urine samples, compared to acid-fast microscopy and culture as a gold standard technique (NND = 1.1 and 1.2). Microscopy, on the other hand, consistently showed a weak to fair index of clinical usefulness in all specimen forms, with in NND of 2.3–12.5. The NND for detecting tuberculous infection in the cerebrospinal fluid by the Xpert MTB/RIF assay was noted to be 1.2, with a moderate clinical utility index of 0.8. The evidence presented indicates that the overall appropriate diagnostic utility of the Xpert MTB/RIF assay is clinically successful in most non-respiratory samples. To check the cost-effectiveness and prognostic effect of integrating this completely automated molecular-based assay into the routine testing algorithm for non-respiratory mycobacterial specimens, further data must be collected.  相似文献   

20.

Background

The Xpert MTB/RIF (Cepheid) non-laboratory-based molecular assay has potential to improve the diagnosis of tuberculosis (TB), especially in HIV-infected populations, through increased sensitivity, reduced turnaround time (2 h), and immediate identification of rifampicin (RIF) resistance. In a prospective clinical validation study we compared the performance of Xpert MTB/RIF, MTBDRplus (Hain Lifescience), LightCycler Mycobacterium Detection (LCTB) (Roche), with acid fast bacilli (AFB) smear microscopy and liquid culture on a single sputum specimen.

Methods and Findings

Consecutive adults with suspected TB attending a primary health care clinic in Johannesburg, South Africa, were prospectively enrolled and evaluated for TB according to the guidelines of the National TB Control Programme, including assessment for smear-negative TB by chest X-ray, clinical evaluation, and HIV testing. A single sputum sample underwent routine decontamination, AFB smear microscopy, liquid culture, and phenotypic drug susceptibility testing. Residual sample was batched for molecular testing. For the 311 participants, the HIV prevalence was 70% (n = 215), with 120 (38.5%) culture-positive TB cases. Compared to liquid culture, the sensitivities of all the test methodologies, determined with a limited and potentially underpowered sample size (n = 177), were 59% (47%–71%) for smear microscopy, 76% (64%–85%) for MTBDRplus, 76% (64%–85%) for LCTB, and 86% (76%–93%) for Xpert MTB/RIF, with specificities all >97%. Among HIV+ individuals, the sensitivity of the Xpert MTB/RIF test was 84% (69%–93%), while the other molecular tests had sensitivities reduced by 6%. TB detection among smear-negative, culture-positive samples was 28% (5/18) for MTBDRplus, 22% (4/18) for LCTB, and 61% (11/18) for Xpert MTB/RIF. A few (n = 5) RIF-resistant cases were detected using the phenotypic drug susceptibility testing methodology. Xpert MTB/RIF detected four of these five cases (fifth case not tested) and two additional phenotypically sensitive cases.

Conclusions

The Xpert MTB/RIF test has superior performance for rapid diagnosis of Mycobacterium tuberculosis over existing AFB smear microscopy and other molecular methodologies in an HIV- and TB-endemic region. Its place in the clinical diagnostic algorithm in national health programs needs exploration. Please see later in the article for the Editors'' Summary  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号