首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The method of ion exchange on immobilized DNA, which allows to determine quantitative parameters of ion binding with a high precision, is used for studying of DNA ion selectivity. Insoluble ion exchangers on the DNA basis with the exchange capacity of 0.09 and 0.17 mg-equiv. per 1 g of dry gel are synthesized by means of immobilization of DNA gel in polyacrylamide gel. Constants of ion-exchange equilibrium for the exchanges K+-Na+ and K+-Li+ are determined on these exchangers in water and 50% water-dioxane solution. It is shown that DNA binds selectively only Li+. The selectivity to Li+ increases with the increase of DNA concentration in gel. The specific properties of Li+-DNA in solutions and in the solid state, for example, the impossibility of the B-A transition, are discussed. The selectivity reversal in favor of K+ is observed in water-dioxane solution. The cause of the selectivity reversal and the question of possible participation of cell polyelectrolytes in creation of ion gradients in the living cell are discussed.  相似文献   

2.
Kern JT  Thomas PW  Kerwin SM 《Biochemistry》2002,41(38):11379-11389
Human telomeres are comprised of d(TTAGGG) repeats that are capable of forming G-quadruplex DNA structures. Ligands that bind to and stabilize these G-quadruplex DNA structures are potential inhibitors of the cancer cell-associated enzyme telomerase. Other potential biological uses of G-quadruplex targeting ligands have been proposed. One particularly challenging aspect of the contemplated uses of G-quadruplex targeting ligands is their selectivity for G-quadruplex DNA versus double-stranded DNA structures. We have previously reported the observation that two structurally related 3,4,9,10-perylenetetracarboxylic acid diimide-based G-quadruplex DNA ligands, PIPER [N,N'-bis(2-(1-piperidino)ethyl)-3,4,9,10-perylenetetracarboxylic acid diimide] and Tel01 [N,N'-bis(3-(4-morpholino)propyl)-3,4,9,10-perylenetetracarboxylic acid diimide], have different levels of G-quadruplex DNA binding selectivity at pH 7 as determined by absorbance changes in the presence of different DNA structures [Kerwin, S. M., Chen, G., Kern, J. T., and Thomas, P. W. (2002) Bioorg. Med. Chem. Lett. 12, 447-450]. Here we report that the less G-quadruplex DNA selective ligand PIPER can unwind double-stranded, closed circular plasmid DNA, as determined by a topoisomerase I assay. A model for the interaction of Tel01 with the G-quadruplex DNA structure formed by d(TAGGGTTA) was determined from NMR experiments. This model is similar to the previously published model for PIPER bound to the same G-quadruplex DNA and failed to provide a structural basis for the observed increased selectivity of Tel01 interaction with G-quadruplex DNA. In contrast, investigation into the aggregation state of Tel01 and PIPER as well as other 3,4,9,10-perylenetetracarboxylic acid diimide analogues bearing basic side chains demonstrates that ligand aggregation is correlated with G-quadruplex DNA binding selectivity. For all six analogues examined, those ligands that were aggregated at pH 7 in 70 mM potassium phosphate, 100 mM KCl, 1 mM EDTA buffer also demonstrated G-quadruplex DNA binding selectivity under these buffer conditions. Ligands that were not aggregated under these conditions display much lower levels of G-quadruplex DNA selectivity. The aggregation state of these ligands is extremely sensitive to the buffer pH. Tel01, which is aggregated at pH 7, is not aggregated at pH 6.4, where it demonstrates only modest G-quadruplex DNA binding selectivity, and PIPER in pH 8.5 buffer is both aggregated and highly G-quadruplex DNA-selective. To our knowledge, these studies demonstrate the first DNA structure selectivity as achieved through pH-mediated ligand aggregation. The potential impact of these findings on the selectivity of other classes of G-quadruplex DNA ligands is discussed.  相似文献   

3.
Studies on the selectivity of DNA precipitation by spermine.   总被引:61,自引:12,他引:49       下载免费PDF全文
We have examined the selectivity of the precipitation of DNA by spermine. We have found that the intra- and intermolecular condensation of DNA induced by spermine is highly selective even in the presence of added protein or triphosphates. We have also investigated the influence of buffer components on the threshold concentration of spermine required for DNA precipitation. Representative applications exploiting the selectivity of the precipitation reaction are also described.  相似文献   

4.
(+)-Yatakemycin (1, Fig. 1) and (+)-duocarmycin SA (2) are exceptionally potent, naturally occurring antitumor agents that derive their biological properties through a characteristic sequence-selective DNA-alkylation reaction. Studies have shown that both the AT-rich binding selectivity (shape-selective recognition) and the alkylation catalysis (shape-dependent catalysis) that contribute to the alkylation selectivity are dependent on the DNA minor groove shape and size characteristics of an AT-rich sequence (ref. 6 and references therein; refs. 7,8). Here we report the alkylation properties of yatakemycin and duocarmycin SA on free DNA (alpha-satellite DNA) and the same sequence bound in a nucleosome core particle (NCP) modeling the state of DNA in eukaryotic cells. Both compounds showed a clear, relatively unaltered ability to alkylate DNA packaged in NCPs in terms of both alkylating efficiency and sequence selectivity, despite the steric and conformational perturbations imposed by NCP packaging. These findings highlight the dynamic nature of NCP-bound DNA and illustrate that cell- and protein-free DNA-alkylation studies of members of this class of antitumor drugs provide valuable insights into their properties.  相似文献   

5.
A growing number of new technologies are supported by a single- or multi-nanopore architecture for capture, sensing, and delivery of polymeric biomolecules. Nanopore-based single-molecule DNA sequencing is the premier example. This method relies on the uniform linear charge density of DNA, so that each DNA strand is overwhelmingly likely to pass through the nanopore and across the separating membrane. For disordered peptides, folded proteins, or block copolymers with heterogeneous charge densities, by contrast, translocation is not assured, and additional strategies to monitor the progress of the polymer molecule through a nanopore are required. Here, we demonstrate a single-molecule method for direct, model-free, real-time monitoring of the translocation of a disordered, heterogeneously charged polypeptide through a nanopore. The crucial elements are two “selectivity tags”—regions of different but uniform charge density—at the ends of the polypeptide. These affect the selectivity of the nanopore differently and enable discrimination between polypeptide translocation and retraction. Our results demonstrate exquisite sensitivity of polypeptide translocation to applied transmembrane potential and prove the principle that nanopore selectivity reports on biopolymer substructure. We anticipate that the selectivity tag technique will be broadly applicable to nanopore-based protein detection, analysis, and separation technologies, and to the elucidation of protein translocation processes in normal cellular function and in disease.  相似文献   

6.
Although there have been a few reports that the HIV-1 genome can be selectively integrated into the genomic DNA of cultured host cell, the biochemistry of integration selectivity has not been fully understood. We modified the in vitro integration reaction protocol and developed a reaction system with higher efficiency. We used a substrate repeat, 5'-(GTCCCTTCCCAGT)(n)(ACTGGGAAGGGAC)(n)-3', and a modified sequence DNA ligated into a circular plasmid. CAGT and ACTG (shown in italics in the above sequence) in the repeat units originated from the HIV-1 proviral genome ends. Following the incubation of the HIV-1 genome end cDNA and recombinant integrase for the formation of the pre-integration (PI) complex, substrate DNA was reacted with this complex. It was confirmed that the integration selectively occurred in the middle segment of the repeat sequence. In addition, integration frequency and selectivity were positively correlated with repeat number n. On the other hand, both frequency and selectivity decreased markedly when using sequences with deletion of CAGT in the middle position of the original target sequence. Moreover, on incubation with the deleted DNAs and original sequence, the integration efficiency and selectivity for the original target sequence were significantly reduced, which indicated interference effects by the deleted sequence DNAs. Efficiency and selectivity were also found to vary discontinuously with changes in manganese dichloride concentration in the reaction buffer, probably due to its influence on the secondary structure of substrate DNA. Finally, integrase was found to form oligomers on the binding site and substrate DNA formed a loop-like structure. In conclusion, there is a considerable selectivity in HIV-integration into the specified sequence; however, similar DNA sequences can interfere with the integration process, and it is therefore difficult for in vivo integration to occur selectively in the actual host genome DNA.  相似文献   

7.
Nomura W  Sugiura Y 《Biochemistry》2003,42(50):14805-14813
Engineered zinc finger proteins revealed that a linker sequence connecting zinc finger units has a significant effect on the DNA binding property of the protein. The recognition for a noncontiguous DNA target beyond the current recognition code of zinc finger proteins has never been determined because of the limitation of a zinc finger framework. DNA recognition of zinc finger proteins is limited only to a contiguous subset of three base pairs. We propose the recognition for a noncontiguous DNA target by inserting amino acids into the canonical linker between zinc finger units. The sequence selectivity of the new zinc finger peptides was evaluated by gel mobility shift assays. DNase I footprinting analyses clearly showed different DNA binding of various linker-extended zinc finger peptides. The application of a SPR measurement also revealed a DNA sequence selectivity of peptides. Insertion of three amino acids is enough for recognition of a noncontiguous DNA target with sequence selectivity. An extended linker will be useful for expansion of the recognition code of zinc finger proteins and for development of a new role for linker sequences in DNA binding of zinc finger proteins.  相似文献   

8.
RecA protein in bacteria and its eukaryotic homolog Rad51 protein are responsible for initiation of strand exchange between homologous DNA molecules. This process is crucial for homologous recombination, the repair of certain types of DNA damage and for the reinitiation of DNA replication on collapsed replication forks. We show here, using two different types of in vitro assays, that in the absence of ATP hydrolysis RecA-mediated strand exchange traverses small substitutional heterologies between the interacting DNAs, whereas small deletions or insertions block the ongoing strand exchange. We discuss evolutionary implications of RecA selectivity against insertions and deletions and propose a molecular mechanism by which RecA can exert this selectivity.  相似文献   

9.
Multiwavelength detection of laser induced fluorescence for dideoxynucleotide DNA sequencing with four different fluorophores and separation by capillary gel electrophoresis is described. A cryogenically cooled, low readout noise, 2-dimensional charge-coupled device is used as a detector for the on-line, on-column recording of emission spectra. The detection system has no moving parts and provides wavelength selectivity on a single detector device. The detection limit of fluorescently labeled oligonucleotides meets the high sensitivity requirements for capillary DNA sequencing largely due to the efficient operation of the CCD detector with a 94% duty cycle. Using the condition number as a selectivity criterion, multiwavelength detection provides better analytical selectivity than detection with four bandpass filters. Monte Carlo studies and analytical estimates show that base assignment errors are reduced with peak identification based on entire emission spectra. High-speed separation of sequencing samples and the treatment of the 2-dimensional electropherogram data is presented. Comparing the DNA sequence of a sample separated by slab gel electrophoresis with sequence from capillary gel electrophoresis and multiwavelength detection we find no significant difference in the amount of error attributable to the instrumentation.  相似文献   

10.
To examine the hypothesis that interactions between a DNA polymerase and the DNA minor groove are critical for accurate DNA synthesis, we studied the fidelity of DNA polymerase beta mutants at residue Arg(283), where arginine, which interacts with the minor groove at the active site, is replaced by alanine or lysine. Alanine substitution, removing minor groove interactions, strongly reduces polymerase selectivity for all single-base mispairs examined. In contrast, the lysine substitution, which retains significant interactions with the minor groove, has wild-type-like selectivity for T.dGMP and A.dGMP mispairs but reduced selectivity for T.dCMP and A.dCMP mispairs. Examination of DNA crystal structures of these four mispairs indicates that the two mispairs excluded by the lysine mutant have an atom (N2) in an unfavorable position in the minor groove, while the two mispairs permitted by the lysine mutant do not. These results suggest that unfavorable interactions between an active site amino acid side chain and mispair-specific atoms in the minor groove contribute to DNA polymerase specificity.  相似文献   

11.
Xer site-specific recombination at the psi site from plasmid pSC101 displays topological selectivity, such that recombination normally occurs only between directly repeated sites on the same circular DNA molecule. This intramolecular selectivity is important for the biological role of psi, and is imposed by accessory proteins PepA and ArcA acting at accessory DNA sequences adjacent to the core recombination site. Here we show that the selectivity for intramolecular recombination at psi can be bypassed in multiply interlinked catenanes. Xer site-specific recombination occurred relatively efficiently between antiparallel psi sites located on separate rings of right-handed torus catenanes containing six or more nodes. This recombination introduced one additional node into the catenanes. Antiparallel sites on four-noded right-handed catenanes, the normal product of Xer recombination at psi, were not recombined efficiently. Furthermore, parallel psi sites on right-handed torus catenanes were not substrates for Xer recombination. These findings support a model in which psi sites are plectonemically interwrapped, trapping a precise number of supercoils that are converted to four catenation nodes by Xer strand exchange.  相似文献   

12.
New highly sensitive and selective catalytic DNA biosensors for metal ions   总被引:3,自引:0,他引:3  
While remarkable progress has been made in developing sensors for metal ions such as Ca(II) and Zn(II), designing and synthesizing sensitive and selective metal ion sensors remains a significant challenge. Perhaps the biggest challenge is the design and synthesis of a sensor capable of specific and strong metal binding. Since our knowledge about the construction of metal-binding sites in general is limited, searching for sensors in a combinatorial way is of significant value. Therefore, we have been able to use a combinatorial method called in vitro selection to obtain catalytic DNA that can bind a metal ion of choice strongly and specifically. The metal ion selectivity of the catalytic DNA was further improved using a 'negative selection' strategy where catalytic DNA that are selective for competing metal ions are discarded in the in vitro selection processes. By labeling the resulting catalytic DNA with a fluorophore/quencher pair, we have made a new class of metal ion fluorescent sensors that are the first examples of catalytic DNA biosensors for metal ions. The sensors combine the high selectivity of catalytic DNA with the high sensitivity of fluorescent detection, and can be applied to the quantitative detection of metal ions over a wide concentration range and with high selectivity. The use of DNA sensors in detection and quantification of lead ions in environmental samples such as water from Lake Michigan has been demonstrated. DNA is stable, cost-effective, environmentally benign, and easily adaptable to optical fiber and microarray technology for device manufacture. Thus, the DNA sensors explained here hold great promise for on-site and real-time monitoring of metal ions in the fields of environmental monitoring, developmental biology, clinical toxicology, wastewater treatment, and industrial process monitoring.  相似文献   

13.
A number of N,N'-disubstituted perylenetetracarboxylic diimides have been reported to bind effectively to DNA that adopts G-quadruplex motifs. In some cases, this binding may actively drive the transition from single-strand DNA to the quadruplex form. The perylenediimides in the reported cases all have amine-containing side chains, which are thought to interact with the grooves of the quadruplex and help dictate the selectivity of these compounds for quadruplex versus duplex DNA. We synthesized a polyethyleneglycol-swallowtailed (PEG-tailed) perylenediimide that is water-soluble even though it is uncharged. Binding to duplex and quadruplex DNA of this perylenediimide was studied by fluorescence quenching titrations under a variety of salt conditions, and the compound's effect on quadruplex formation was studied by non-denaturing gel electrophoresis. Our results indicate that while the molecule binds to single-stranded DNA quite effectively and with selectivity, it does not drive the transition of the DNA to the tetrameric quadruplex structure, supporting the idea that charge neutralization is a key component of perylene compounds that stabilize tetrameric quadruplexes.  相似文献   

14.
Peptide nucleic acids are DNA mimics able to form duplexes with complementary DNA or RNA strands of remarkable affinity and selectivity. Oligopyrimidine PNA can displace one strand of dsDNA by forming PNA(2):DNA triplexes of very high stability. Many PNA analogs have been described in recent years, in particular, chiral PNA analogs. In the present article the results obtained recently using PNA derived from N-aminoethylamino acids 7 are illustrated. In particular, the dependence of optical purity on synthetic methodologies and a rationale for the observed effects of chirality on DNA binding ability is proposed. Chirality as a tool for improving sequence selectivity is also described. PNA analogs derived from D- or L-ornithine 8 were also found to be subjected to epimerization during solid phase synthesis. Modification of the coupling conditions or the use of a submonomeric strategy greatly reduced epimerization. The optically pure oligothymine PNAs 8 were found to bind to RNA by forming triplexes of unusual CD spectra. The melting curves of these adducts presented two transitions, suggesting a conformational change followed by melting at high temperature.  相似文献   

15.
Abstract

Repetitive basic polypeptides containing lysine or arginine as every third amino acid were shown to cause DNA condensation at physiological salt concentration connected with selective DNA binding with respect to DNA composition and sequence. This selectivity is very similar to that existing in the case of histone H1 and other basic proteins and does not depend on polypeptide chain conformation. The effect of the minor groove binding drugs netropsin and distamycin was tested to elucidate the origin of the binding selectivity. The results suggest that the binding preferences are due to the variations in the conformation in various types of B-DNA that depend on DNA composition and sequence. The most important factor affecting the selectivity is probably the value of the negative electrostatic potential in the minor groove.  相似文献   

16.
17.
The design and synthesis of 2,6-diphenylthiazolo[3,2-b][1,2,4]triazoles characterized by a large aromatic building block bearing cationic side chains are reported. These molecules are evaluated as telomeric G-quadruplex stabilizers and for their selectivity towards duplex DNA by competition experiments. Two compounds (14a, 19) were found active with high selectivity for telomeric G-quadruplex over duplex DNA.  相似文献   

18.
Four hairpin polyamides bearing subtle N- and C-terminal substitutions were examined in a fluorescent intercalator displacement (FID) assay enlisting a library of 512 DNA hairpins that contain all possible five base pair sequences in a challenging probe of its capabilities for establishing DNA binding sequence selectivity. Not only did the assay define the global sequence selectivity expected based on known structural interactions and Dervan's pairing rules establishing the utility of the method for characterizing such polyamides, but previously unappreciated subtle substituent effects on global sequence selectivity were also revealed. Thus, we report the discovery of a novel five base pair high affinity binding site of the form 5'-WWCWW (vs 5'-WGWWW) for the polyamide ImPyPy-gamma-PyPyPy-beta-Dp and its structural basis.  相似文献   

19.
We compared the selectivity of six anti-varicella-zoster virus (VZV) drugs, which are clinically available or of which clinical efficacy for the treatment of VZV infections has been reported. Sorivudine (BV-araU) had the most potent anti-VZV effect in the plaque inhibition assay, followed by brivudine (BVDU) and 5-propynyl-arabinofuranosyluracil (Pry-araU). All test compounds, except vidarabine (AraA), had only a very weak effect on human embryonic lung cell growth. The selectivity indexes (ID50 for cell growth/ED50 for VZV plaque inhibition) of BV-araU, BVDU, and Pry-araU were > 1,000,000, 20,000, and > 10,000, respectively, while those of acyclovir and penciclovir ranged from 600 to 800. AraA was much less selective than any of the other drugs tested. We measured the amount of pH] thymidine incorporated into the acid-insoluble fraction of VZV-infected cells to determine the ability of these drugs to selectively inhibit viral DNA synthesis. [3H]Thymidine incorporation was markedly inhibited by all anti-VZV compounds, except BVDU. Treatment of infected cells with drugs from 32 to 38 hr after infection inhibited the DNA synthesis to the same extent as VZV plaque formation, except that AraA inhibited the DNA synthesis at a lower dose than for VZV plaque formation. DNA synthesis in non-infected growing cells was inhibited to the same extent as cell growth. A particularly high selectivity index for the inhibition of DNA synthesis was noted for BV-araU, which was defined as the ratio of inhibitions of DNA synthesis in VZV-infected and non-infected. The highest selectivity indexes were recorded for BV-araU > Pry-araU > acyclovir ≥ penciclovir > AraA.  相似文献   

20.
All DNA sequencing methods have benefited from the development of new F667Y versions of Taq DNA polymerase. However, terminator chemistry methods show less uniform peak height patterns when compared to primer chemistry profiles suggesting that the dyes and/or their linker arms affect enzyme selectivity. We have measured elementary nucleotide rate and binding constants for representative rhodamine- and fluorescein-labeled terminators to determine how they interact with F667 versions of Taq Pol I. We have also developed a rapid gel-based selectivity assay that can be used to screen and to quantify dye-enzyme interactions with F667Y versions of the enzyme. Our results show that 6-TAMRA-ddTTP behaves like unlabeled ddTTP, while 6-FAM-ddTTP shows a 40-fold reduction in the rate constant for polymerization without affecting ground-state nucleotide binding. Detailed mechanism studies indicate that both isomers of different fluorescein dyes interfere with a conformational change step which the polymerase undergoes following nucleotide binding but only when these dyes are attached to pyrimidines. When these same dyes are attached to purines by the same propargylamino linker arm, they show no effect on enzyme selectivity. These studies suggest that it may be possible to develop fluorescein terminators for thermocycle DNA sequencing methods for polymerases that do not discriminate between deoxy- and dideoxynucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号