首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
If it is assumed that the primary sequence determines the three-dimensional folded structure of a protein, then the regular folding patterns, such as alpha-helix, beta-sheet, and other ordered patterns in the three-dimensional structure must correspond to the periodic distribution of the physical properties of the amino acids along the primary sequence. An AutoRegressive Moving Average (ARMA) model method of spectral analysis is applied to analyze protein sequences represented by the hydrophobicity of their amino acids. The results for several membrane proteins of known structures indicate that the periodic distribution of hydrophobicity of the primary sequence is closely related to the regular folding patterns in a protein's three-dimensional structure. We also applied the method to the transmembrane regions of acetylcholine receptor alpha subunit and Shaker potassium channel for which no atomic resolution structure is available. This work is an extension of our analysis of globular proteins by a similar method.  相似文献   

2.
It is difficult to understand the functional mechanisms of integral membrane proteins without having protein chemical information on these proteins. Although there have been many attempts to identify functionally important amino acids in membrane proteins, chemically and enzymatically cleaved peptides of integral membrane proteins have been difficult to handle because of their hydrophobic properties. In the present study, we have applied an analytical method to transmembrane proteins combining amino acid sequencing, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, and liquid chromatography with electrospray ionization (LC/ESI) mass spectrometry. We could analyze most (97%) of the tryptic fragments of the transmembrane domains of band 3 as well as other minor membrane proteins. The peptide mapping of the transmembrane domain of band 3 was completed and the peptide mapping information allowed us to identify the fragments containing lysine residues susceptible to 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS) and to 2,4-dinitrofluorobenzene (DNFB). This method should be applicable to membrane proteins not only in erythrocyte membranes but also in other membranes.  相似文献   

3.
A sequence comparison of signal receptor proteins (SR) was carried out using computer techniques based on physicochemical characteristics of amino acids. A new method of conserved regions determination for a family of proteins is described. Visual pigments have four, and all SR--three such regions in the cytoplasmic loops. Possible functional significance of these regions is discussed. We also report here that the family of SR is similar with the family of G-proteins involved in extracellular signal transduction. Both families have similar regions consisting of 7-8 amino acids and a number of identical amino acids distributed on the considerable part of the polypeptide chain of the proteins. These facts may indicate that the whole ensemble of the proteins participating in transmembrane signalling pathways (or some part of it) could evolve from a common progenitor. At the same time, similar structure elements of members of the mentioned protein families my be functionally important for protein-protein interaction.  相似文献   

4.
5.
pOMD29 is a hybrid protein containing the NH2-terminal topogenic sequence of a bitopic, integral protein of the outer mitochondrial membrane in yeast, OMM70, fused to dihydrofolate reductase. The topogenic sequence consists of two structural domains: an NH2-terminal basic region (amino acids 1-10) and an apolar region which is the predicted transmembrane segment (amino acids 11-29). The transmembrane segment alone was capable of targeting and inserting the hybrid protein into the outer membrane of intact mitochondria from rat heart in vitro. The presence of amino acids 1-10 enhanced the rate of import, and this increased rate depended, in part, on the basic amino acids located at positions 2, 7, and 9. Deletion of a large portion of the transmembrane segment (amino acids 16-29) resulted in a protein that exhibited negligible import in vitro. Insertion of pOMD29 into the outer membrane was not competed by import of excess precursor protein destined for the mitochondrial matrix, indicating that the two proteins may have different rate-limiting steps during import. We propose that the structural domains within amino acids 1-29 of pOMD29 cooperate to form a signal-anchor sequence, the characteristics of which suggest a model for proper sorting to the mitochondrial outer membrane.  相似文献   

6.
In contrast to water-soluble proteins, membrane proteins reside in a heterogeneous environment, and their surfaces must interact with both polar and apolar membrane regions. As a consequence, the composition of membrane proteins' residues varies substantially between the membrane core and the interfacial regions. The amino acid compositions of helical membrane proteins are also known to be different on the cytoplasmic and extracellular sides of the membrane. Here we report that in the 16 transmembrane beta-barrel structures, the amino acid compositions of lipid-facing residues are different near the N and C termini of the individual strands. Polar amino acids are more prevalent near the C termini than near the N termini, and hydrophobic amino acids show the opposite trend. We suggest that this difference arises because it is easier for polar atoms to escape from the apolar regions of the bilayer at the C terminus of a beta-strand. This new characteristic of beta-barrel membrane proteins enhances our understanding of how a sequence encodes a membrane protein structure and should prove useful in identifying and predicting the structures of trans-membrane beta-barrels.  相似文献   

7.
Prediction of transmembrane spans and secondary structure from the protein sequence is generally the first step in the structural characterization of (membrane) proteins. Preference of a stretch of amino acids in a protein to form secondary structure and being placed in the membrane are correlated. Nevertheless, current methods predict either secondary structure or individual transmembrane states. We introduce a method that simultaneously predicts the secondary structure and transmembrane spans from the protein sequence. This approach not only eliminates the necessity to create a consensus prediction from possibly contradicting outputs of several predictors but bears the potential to predict conformational switches, i.e., sequence regions that have a high probability to change for example from a coil conformation in solution to an α‐helical transmembrane state. An artificial neural network was trained on databases of 177 membrane proteins and 6048 soluble proteins. The output is a 3 × 3 dimensional probability matrix for each residue in the sequence that combines three secondary structure types (helix, strand, coil) and three environment types (membrane core, interface, solution). The prediction accuracies are 70.3% for nine possible states, 73.2% for three‐state secondary structure prediction, and 94.8% for three‐state transmembrane span prediction. These accuracies are comparable to state‐of‐the‐art predictors of secondary structure (e.g., Psipred) or transmembrane placement (e.g., OCTOPUS). The method is available as web server and for download at www.meilerlab.org . Proteins 2013; 81:1127–1140. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
T Koivula  I Palva  H Hemil? 《FEBS letters》1991,288(1-2):114-118
Sec Y is an integral membrane protein which participates in the translocation of proteins through the bacterial cell membrane. We have cloned the sec Y gene of Lactococcus lactis, and found its deduced protein sequence, 439 amino acids long, to be similar in length to the previously determined Sec Y proteins of Escherichia coli, Bacillus subtilis and Mycoplasma capricolum. Comparison of the L. lactis Sec Y to the 3 other Sec Y proteins revealed 90 conserved amino acid residues (21%). Nearly half of the conserved residues are clustered in 2 of the 10 transmembrane segments, and in 2 of the 6 cytoplasmic regions. Some of the conserved regions are apparently responsible for the interactions of Sec Y with signal sequences, and the proteins SecE and SecA.  相似文献   

9.
Signal peptides and transmembrane helices both contain a stretch of hydrophobic amino acids. This common feature makes it difficult for signal peptide and transmembrane helix predictors to correctly assign identity to stretches of hydrophobic residues near the N-terminal methionine of a protein sequence. The inability to reliably distinguish between N-terminal transmembrane helix and signal peptide is an error with serious consequences for the prediction of protein secretory status or transmembrane topology. In this study, we report a new method for differentiating protein N-terminal signal peptides and transmembrane helices. Based on the sequence features extracted from hydrophobic regions (amino acid frequency, hydrophobicity, and the start position), we set up discriminant functions and examined them on non-redundant datasets with jackknife tests. This method can incorporate other signal peptide prediction methods and achieve higher prediction accuracy. For Gram-negative bacterial proteins, 95.7% of N-terminal signal peptides and transmembrane helices can be correctly predicted (coefficient 0.90). Given a sensitivity of 90%, transmembrane helices can be identified from signal peptides with a precision of 99% (coefficient 0.92). For eukaryotic proteins, 94.2% of N-terminal signal peptides and transmembrane helices can be correctly predicted with coefficient 0.83. Given a sensitivity of 90%, transmembrane helices can be identified from signal peptides with a precision of 87% (coefficient 0.85). The method can be used to complement current transmembrane protein prediction and signal peptide prediction methods to improve their prediction accuracies.  相似文献   

10.
Internal homologies in an amino acid sequence of a protein and in amino acid sequences of two different proteins are examined, using correlation coefficients calculated from the sequences when residues are replaced by various quantitative properties of the amino acids such as hydrophobicity. To improve the signal-noise ratio the average correlation coefficient is used to detect homology because the correlation depends on the property considered. In this way, any sequence repetition in a protein and the extent of the similarity and difference among proteins can be estimated quantitatively. The procedure was applied first to the sequences of proteins which have been assumed on other grounds to contain some internal sequence repetitions, α-tropomyosin from rabbit skeletal muscle, calmodulin from bovine brain, troponin C from skeletal and cardiac muscle, and then to the sequences of calcium binding proteins, calmodulin, troponin C, and L2 light chain of myosin. The results show that α-tropomyosin has a markedly periodic sequence at intervals of multiples of seven residues throughout the whole sequence, and calmodulin and skeletal troponin C contain two homologous sequences, the homology of troponin C being weaker than that of calmodulin. Candidates for the calcium binding regions of both troponin C, calmodulin, and L2 light chain are the homologous parts having a high average correlation coefficient (about 0·5) with respect to the sequences of the CD and EF hand regions of carp parvalbumin. The procedure may be a useful method for searching for homologous segments in amino acid sequences.  相似文献   

11.
A suite of FORTRAN programs, PREF, is described for calculating preference functions from the data base of known protein structures and for comparing smoothed profiles of sequence-dependent preferences in proteins of unknown structure. Amino acid preferences for a secondary structure are considered as functions of a sequence environment. Sequence environment of amino acid residue in a protein is defined as an average over some physical, chemical, or statistical property of its primary structure neighbors. The frequency distribution of sequence environments in the data base of soluble protein structures is approximately normal for each amino acid type of known secondary conformation. An analytical expression for the dependence of preferences on sequence environment is obtained after each frequency distribution is replaced by corresponding Gaussian function. The preference for the α-helical conformation increases for each amino acid type with the increase of sequence environment of buried solvent-accessible surface areas. We show that a set of preference functions based on buried surface area is useful for predicting folding motifs in α-class proteins and in integral membrane proteins. The prediction accuracy for helical residues is 79% for 5 integral membrane proteins and 74% for 11 α-class soluble proteins. Most residues found in transmembrane segments of membrane proteins with known α-helical structure are predicted to be indeed in the helical conformation because of very high middle helix preferences. Both extramembrane and transmembrane helices in the photosynthetic reaction center M and L subunits are correctly predicted. We point out in the discussion that our method of conformational preference functions can identify what physical properties of the amino acids are important in the formation of particular secondary structure elements. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
MOTIVATION: Database searching algorithms for proteins use scoring matrices based on average protein properties, and thus are dominated by globular proteins. However, since transmembrane regions of a protein are in a distinctly different environment than globular proteins, one would expect generalized substitution matrices to be inappropriate for transmembrane regions. RESULTS: We present the PHAT (predicted hydrophobic and transmembrane) matrix, which significantly outperforms generalized matrices and a previously published transmembrane matrix in searches with transmembrane queries. We conclude that a better matrix can be constructed by using background frequencies characteristic of the twilight zone, where low-scoring true positives have scores indistinguishable from high-scoring false positives, rather than the amino acid frequencies of the database. The PHAT matrix may help improve the accuracy of sequence alignments and evolutionary trees of membrane proteins.  相似文献   

13.
The evolutionary adaptations of thermophilic water‐soluble proteins required for maintaining stability at high temperature have been extensively investigated. Little is known about the adaptations in membrane proteins, however. Here, we compare many properties of mesophilic and thermophilic membrane protein structures, including side‐chain burial, packing, hydrogen bonding, transmembrane kinks, loop lengths, hydrophobicity, and other sequence features. Most of these properties are quite similar between mesophiles and thermophiles although we observe a slight increase in side‐chain burial and possibly a slight decrease in the frequency of transmembrane kinks in thermophilic membrane protein structures. The most striking difference is the increased hydrophobicity of thermophilic transmembrane helices, possibly reflecting more stringent hydrophobicity requirements for membrane partitioning at high temperature. In agreement with prior work examining transmembrane sequences, we find that thermophiles have an increase in small residues (Gly, Ala, Ser, and Val) and a strong suppression of Cys. We also find a relative dearth of most strongly polar residues (Asp, Asn, Glu, Gln, and Arg). These results suggest that in thermophiles, there is significant evolutionary pressure to offload destabilizing polar amino acids, to decrease the entropy cost of side chain burial, and to eliminate thermally sensitive amino acids.  相似文献   

14.
应用生物信息学的方法和工具对番茄LeNHX1蛋白质的理化性质、跨膜区域、疏水性/亲水性、二级结构、结构功能域、功能分类和同源性进行分析.结果表明此蛋白为疏水性稳定蛋白,包含一个保守的氨氯吡嗪咪结合位点LFFIYVLPPI区域,相对分子量为59.0 kD,等电点为6.60,存在10个跨膜区域,蛋白质二级结构中的主要构成元件是α-螺旋和不规则卷曲,功能分类和蛋白质同源性分析表明番茄LeNHX1属于液泡膜Na+/H+反向转运蛋白.  相似文献   

15.
We report a comprehensive analysis of the numbers, lengths and amino acid compositions of transmembrane helices in 235 high-resolution structures of integral membrane proteins. The properties of 1551 transmembrane helices in the structures were compared with those obtained by analysis of the same amino acid sequences using topology prediction tools. Explanations for the 81 (5.2%) missing or additional transmembrane helices in the prediction results were identified. Main reasons for missing transmembrane helices were mis-identification of N-terminal signal peptides, breaks in α-helix conformation or charged residues in the middle of transmembrane helices and transmembrane helices with unusual amino acid composition. The main reason for additional transmembrane helices was mis-identification of amphipathic helices, extramembrane helices or hairpin re-entrant loops. Transmembrane helix length had an overall median of 24 residues and an average of 24.9 ± 7.0 residues and the most common length was 23 residues. The overall content of residues in transmembrane helices as a percentage of the full proteins had a median of 56.8% and an average of 55.7 ± 16.0%. Amino acid composition was analysed for the full proteins, transmembrane helices and extramembrane regions. Individual proteins or types of proteins with transmembrane helices containing extremes in contents of individual amino acids or combinations of amino acids with similar physicochemical properties were identified and linked to structure and/or function. In addition to overall median and average values, all results were analysed for proteins originating from different types of organism (prokaryotic, eukaryotic, viral) and for subgroups of receptors, channels, transporters and others.  相似文献   

16.
The structural gene for the type 24 M protein of group A streptococci has been cloned and expressed in Escherichia coli. The complete nucleotide sequence of the gene and the 3' and 5' flanking regions was determined. The sequence includes an open reading frame of 1,617 base pairs encoding a pre-M24 protein of 539 amino acids and a predicted Mr of 58,738. The structural gene contains two distinct tandemly reiterated elements. The first repeated element consists of 5.3 units, and the second contains 2.7 units. Each element shows little variation of the basic 35-amino-acid unit. Comparison of the sequence of the M24 protein with the sequence of the M6 protein (S. K. Hollingshead, V. A. Fischetti, and J. R. Scott, J. Biol. Chem. 261:1677-1686, 1986) indicates that these molecules have are conserved except in the regions coding for the antigenic (type specific) determinant and they have three regions of homology within the structural genes: 38 of 42 amino acids within the amino terminal signal sequence, the second repeated element of the M24 protein is found in the M6 molecule at the same position in the protein, and the carboxy terminal 164 amino acids, including a membrane anchor sequence, are conserved in both proteins. In addition, the sequences flanking the two genes are strongly conserved.  相似文献   

17.
Sea urchin spermatozoa are model cells for studying signal transduction events underlying flagellar motility and the acrosome reaction. We previously described the sea urchin sperm receptor for egg jelly 1 (suREJ1) which consists of 1450 amino acids, has one transmembrane segment and binds to the fucose sulfate polymer of egg jelly to induce the sperm acrosome reaction. We also cloned suREJ3 which consists of 2681 amino acids and has 11 putative transmembrane segments. Both these proteins localize to the plasma membrane over the acrosomal vesicle. While cloning suREJ1, we found suREJ2, which consists of 1472 amino acids, has two transmembrane segments and is present in the entire sperm plasma membrane, but is concentrated over the sperm mitochondrion. Experimental evidence suggests that, unlike suREJ1 and suREJ3, suREJ2 does not project extracellularly from the plasma membrane, but is an intracellular plasma membrane protein. All three sea urchin sperm REJ proteins possess a protein module of > 900 amino acids, termed 'the REJ module', that is shared by the human autosomal dominant polycystic kidney disease protein, polycystin-1, and PKDREJ, a testis-specific protein in mammals whose function is unknown. In the present study, we describe the sequence, domain structure and localization of suREJ2 and speculate on its possible function.  相似文献   

18.
Formation of non-covalent functional complexes of integral membrane proteins is frequently supported by sequence-specific interaction of their transmembrane helices. Here, we aligned human single-span membrane proteins with orthologs from other eukaryotes. We find that almost half of the human single-span membrane proteins contain a transmembrane helix that exhibits significant non-random unilateral conservation. Furthermore, unilateral conservation of transmembrane domains (TMDs) correlates well with their ability to self-interact. Glycine, polar non-ionizable, and aromatic amino acids are overrepresented in conserved versus non-conserved helix faces. Hence, our genome-wide analysis indicates that these amino acid types generally support interaction of single-span membrane protein TMDs.  相似文献   

19.
A 1.8 kb HindIII DNA fragment containing the secY gene of alkalophilic Bacillus sp. C125 has been cloned into plasmid pUC119 using the B. subtilis secY gene as a probe. The complete nucleotide sequence of the cloned DNA indicated that it contained one complete ORF and parts of two other ORFs. The similarity of these ORFs to the sequences of the B. subtilis proteins indicated that they were the genes for ribosomal protein L15-SecY-adenylate kinase, in that order. The gene product of the alkalophilic Bacillus sp. C125 secY homologue was composed of 431 amino acids and its M(r) value has been calculated to be 47,100. The distribution of hydrophobic amino acids in the gene product suggested that the protein was a membrane integrated protein with ten transmembrane segments. The total amino acid sequence of alkalophilic Bacillus sp. C125 secY homologue showed 69.7% homology with that of B. subtilis secY. Regions of remarkably high homology (78% identity) were present in transmembrane regions, and cytoplasmic domains (73% identity) with less homologous regions present in extracellular domains (43% identity).  相似文献   

20.
Hybrid genes were constructed to express bifunctional hybrid proteins in which staphyloccal nuclease A with or without an amino-terminai OmpA signal sequence was fused with TEM β-lactamase (at the carboxyl terminal side) using the signal peptide of the major outer membrane lipoprotein of Escherichia coli as an internal linker. The hybrid proteins were found to be inserted in the membrane. Orientation of the hybrid protein with the OmpA signal peptide showed that the nuclease was translocated into the periplasm and the β-lactamase remained in the cytoplasm. This indicates that the cleavable OmpA signal peptide served as a secretory signal for nuclease and the internal lipoprotein signal served as the transmembrane anchor, in the absence of the OmpA signal sequence the topology of the hybrid protein was reversed indicating that the internal lipoprotein signal peptide initially served as the signal peptide for the secretion of the carboxy terminal β-lactamase domain across the membrane and subsequently as a membrane anchoring signal. The role of charged amino acids in the translocation and transmembrane orientation of membrane proteins was also analysed by introducing charged amino acids to either or both sides of the internal lipoprotein signal sequence in the bifunctional hybrid proteins in the absence of the amino-terminal signal sequence. Introduction of two lysine residues at the carboxy-terminal side of the internal signal sequence reversed the topology of the transmembrane protein by translocating the aminoterminal nuclease domain across the membrane, leaving the carboxyl terminal β-actamase domain in the cytoplasm. When three more lysine residues were added to the amino-terminal side of the internal signal sequence of the same construct the membrane topology flipped back to the original orientation. A similar reversion of the topology could be obtained by introducing negatively charged residues at the amino-terminal side of the internal signal sequence. Present results demonstrate for the first time that a bifunctional transmembrane protein can be engineered to assume either of the two opposite orientations and that charge balance around the transmembrane domain is a major factor in controlling the topology of a transmembrane protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号