首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymorphism in intron 4 of chicken growth hormone (cGH) gene was studied in 20 Chinese native chicken populations and broiler or layer populations. A total of eight restriction digestion profiles were identified in intron 4 and confirmed by sequencing. Among 20 populations, there were distinctively different allele numbers and frequencies of intron 4 restriction fragment length polymorphisms (RFLPs) between Chinese native chickens and broilers or layers. Two new alleles, allele D and allele E, were identified in Taihe Silkies. Allele D was also identified in other Chinese native breeds and a 50 bp fragment deletion was identified in allele E.  相似文献   

2.
The possibility that chicken growth hormone (cGH) can be phosphorylated has been examined. Both native and biosynthetic cGH were phosphorylated by cAMP-dependent protein kinase (and gamma -32P-ATP). The extent of phosphorylation was however less than that observed with ovine prolactin. Under the conditions employed, glycosylated cGH was not phosphorylated. Chicken anterior pituitary cells in primary culture were incubated in the presence of 32P-phosphate. Radioactive phosphate was incorporated in vitro into the fraction immunoprecipitable with antisera against cGH. Incorporation was increased with cell number and time of incubation. The presence of GH releasing factor (GRF) increased the release of 32P-phosphate labelled immunoprecipitable GH into the incubation media but not content of immunoprecipitable GH in the cells. The molecular weight of the phosphorylated immunoreactive cGH in the cells corresponded to cGH dimer.  相似文献   

3.
Structure of the chicken growth hormone-encoding gene and its promoter region.   总被引:12,自引:0,他引:12  
M Tanaka  Y Hosokawa  M Watahiki  K Nakashima 《Gene》1992,112(2):235-239
  相似文献   

4.
The effects of dietary triiodothyronine (T3), injections of a preparation of growth hormone (GH) (purified from chicken pituitary tissue) and their combination on growth were investigated in three lines of chickens. The three lines were the Cornell K strain (K) (a single Comb White Leghorn strain), the Cornell K strain hemizygous for the sex-linked dwarfing gene (SLD), and the Cornell K strain homozygous recessive for the autosomal dwarfing gene (ADW). A dietary T3 treatment by genotype interaction was observed. Dietary T3 (0.1 ppm) decreased growth in the K line, tended to decrease growth in the ADW line while it tended to increase growth in the SLD line. Chicken growth hormone (100 micrograms/kg body wt) alone did not affect growth in any of the lines studied. There was, however, a GH treatment by T3 treatment interaction. Chicken GH overcame the growth-depressing effects of T3 in the K and ADW lines while it tended to promote growth in T3 treated SLD birds. Dwarf (SLD) chickens had higher basal circulating GH concentrations, lower circulating immunoreactive somatomedin C concentrations, and lower circulating T3 concentrations than the K or ADW chickens.  相似文献   

5.
The growth hormone (GH) gene of the gilthead seabream (Sparus aurata) (saGH) has been cloned, sequenced, and characterized. The saGH gene spans approximately 4.3 kb and consists of six exons and five introns, as found for all cloned teleost GH genes with the exception of carps and catfish. The first and third introns contain long stretches of repetitive tandem repeats. The second intron, which is unusually long compared with that in other teleosts (and other vertebrates) spans 1747 nucleotides (nt) and contains several inverted repeats. Intron-targeted polymerase chain reaction (PCR) analysis identified length polymorphism of the first intron. Sequence analysis of four variants (405, 424, 636, and 720 nt) out of many variants found revealed that the variation in length is due to differences in the number of repeat monomers (17-mer or 15-mer) as well as minor changes in their length. This repeat unit contains the consensus half-site motif of the thyroid hormone response element (TRE) and estrogen response element (ERE). Polymorphism was found also in the third intron. This is the first report of such high polymorphism of the first intron of GH gene in a vertebrate.  相似文献   

6.
鸡、鸭甲状腺激素应答基因(THRSP)的研究进展   总被引:3,自引:0,他引:3  
詹凯  杨宁  徐桂云  许月英  赵瑞宏 《遗传》2009,31(2):131-136
甲状腺激素应答Spot 14(Thyroid hormone responsive spot 14, THRSP)是一个参与多种脂肪合成限速酶基因表达的转录调控因子, 在动物肝脏、乳腺和脂肪组织中高度表达。家禽中鸡和鸭THRSP基因在cDNA水平均发现THRSPα和THRSPβ两种同工型, 其中鸡THRSPα基因编码区碱基的插入/缺失影响鸡体重和腹脂性状, 与鸡的生长发育和脂肪代谢有关。文章综述了鸡THRSP基因与鸭同源基因结构特性和表达差异, 以及鸡、鸭THRSP基因多态性及其遗传效应。  相似文献   

7.
A rapid and sensitive homologous radioimmunoassay (RIA) system is described for the measurement of growth hormone (GH) in dog plasma. The method requires only 40 hr and is able to detect concentrations of GH as low as 1.0 ng/ml of dog plasma. Antiserum to canine growth hormone (cGH) prepared in monkeys, exhibited a complete cross-reactivity with porcine GH, suggesting that the latter can substitute cGH in a heterologous radioimmunoassay for cGH. Studies on GH regulation performed with this RIA in the unanesthetized dog showed that this species resembles the primate more than the rat or the rabbit.  相似文献   

8.
Wu Y  Pan AL  Pi JS  Pu YJ  Du JP  Liang ZH  Shen J 《Molecular biology reports》2012,39(8):8027-8033
In this study, the growth hormone (GH) gene was studied as a candidate gene for growth and carcass traits of three duck populations (Cherry Valley duck, Muscovy duck and Jingjiang duck). Three pairs of primers were designed to detect single nucleotide polymorphisms of introns 2, 3 and 4 of the GH gene by polymerase chain reaction-restriction fragment length polymorphism and sequencing methods. Only the products amplified from intron 2 displayed polymorphism. The results showed one novel polymorphism: a variation in intron 2 of GH gene (C172T, JN408701 and JN408702). It was associated with some growth and carcass traits in three duck populations including birth weight, 8-week weight, carcass weight, breast muscle weight, leg muscle weight, eviscerated weight, lean meat rate, dressing percentage, etc. And the TT and CT genotypes were associated with superior growth and carcass traits in carcass weight, dressing percentage and percentage of eviscerated weight. Therefore, the variation in intron 2 of GH may be a molecular marker for superior growth and carcass traits in above duck populations.  相似文献   

9.
The chicken growth hormone (cGH) gene plays a crucial role in controlling growth and metabolism, leading to potential correlations between cGH polymorphisms and economic traits. In this study, DNA from four divergent chicken breeds were screened for single nucleotide polymorphisms (SNPs) in the cGH gene using denaturing high-performance liquid chromatography and sequencing. A total of 46 SNPs were identified, of which 4 were in the 5' untranslated region, 1 in the 3' untranslated region, 5 in exons (two of which are nonsynonymous), with the remaining 36 in introns. The nucleotide diversity in the cGH gene ( theta = 2.7 x 10(-3)) was higher than that reported for other chicken genes, even within the same breeds. The associations of five of these SNPs and their haplotypes with chicken growth and carcass traits were determined using polymerase chain reaction-restriction fragment length polymorphism analysis in a F2 resource population cross of two of the four chicken breeds (White Recessive Rock and Xinghua). This analysis shows that, among other correlations, G+1705A was significantly associated with body weight at all ages measured, shank length at three of four ages measured, and average daily gain within weeks 0 to 4. Thus, this cGH polymorphism, or another polymorphism that is in linkage disequilibrium with G+1705A, appears to correspond to a significant growth-related quantitative trait locus difference between the two breeds used to construct the resource population.  相似文献   

10.
《Gene》1996,168(2):247-249
Characterization of the prolactin (PRL) amino acid (aa) or cDNA sequences has not been reported for any member of the Felidae family. We cloned cat growth hormone (cGH) and cat PRL (cPRL) cDNA sequences from a feline pituitary cDNA library. High homology between species allowed bovine PRL (bPRL) and bGH cDNA clones to be used to identify clones encoding the 229-aa cPRL and 216-aa cGH sequences. The cGH protein is most homologous to pig and dog GH. Similarly, cPRL shares the most aa identity to pig PRL (pPRL). Northern blot analysis revealed the mRNA size for cGH and cPRL to be approx. 1 and 1.1 kb, respectively. These results reveal that GH and PRL from the Felidae family are highly conserved to other families of GH and PRL.  相似文献   

11.
Adult fed and starved Warren chickens, 2 yr of age, and approaching the end of the second laying year, were injected iv with 1 of the following products: 10 micrograms of thyrotropin releasing hormone (TRH); 100 micrograms of bovine thyrotropin (bTSH); 100 micrograms of ovine growth hormone (oGH); saline. The influence on plasma concentrations of thyroxine (T4), triiodothyronine (T3) or chicken GH (cGH) were followed. Prior to injection, it was clear from the control values that starvation for 3 d decreased plasma levels of T3 and increased cGH, whereas 7 d of fasting increased T4 and cGH. The plasma levels of cGH were elevated greater than 10-fold at 15 min following the TRH challenge in food-deprived chickens compared to a less than 4-fold increase in normal fed hens. This increase was followed by a rise in T3 after 1 h, which was also more pronounced in the starved animals, whereas T4 decreased or remained unaffected. Increases in T4 can, however, be obtained with 100 micrograms TSH in normal fed (2-fold) or starved animals (greater than 3-fold). Following injection of 100 micrograms oGH, a significant increase in T3 levels was observed which in fed animals was already present at 30 min, but the higher levels persisted for 1 and 2 h in fed and starved hens. At the same time, a decrease in T4 was observed in both groups of GH-treated chickens. It is concluded that TRH at the dose used is not thyrotropic but has a somatotropic effect and is responsible for the peripheral conversion of T4 into T3.  相似文献   

12.
The aim of this study was to examine the in vivo effect of growth hormone (GH) on cell proliferation and apoptosis and on the gene expression of selected proteins in the chicken oviduct before sexual maturity (first oviposition). Ten-week-old Hy-Line Brown chickens were injected three times a week with 200 μg?·?kg-1 body weight of recombinant chicken GH (cGH) until 16 weeks of age. Control hens received 0.9 % NaCl with 0.05 % bovine serum albumin as a vehicle. Treatment with cGH increased (P?<?0.05) oviduct weight at 16 weeks of age, i.e. 1–2 weeks before onset of egg laying. The highest number of proliferating (determined by proliferating cell nuclear antigen [PCNA] immunocytochemistry) and apoptotic (determined by TUNEL assay) cells in the oviduct was found in the mucosal epithelium, and the lowest in the stroma. Administration of cGH did not increase (P?>?0.05) the number of PCNA-positive cells but it decreased (P?<?0.01) the number of TUNEL-positive cells, thus increasing the proliferating-to-apoptotic cell ratio in the oviduct. Gene expression (determined by real-time polymerase chain reaction) of apoptosis-related caspase-2 in the magnum and caspase-3 in the magnum and isthmus and their activity (determined by fluorometric assay) in the magnum were attenuated (P?<?0.05) in cGH-treated hens. The gene expression of the magnum-specific ovalbumin and the shell-gland-specific ovocalyxins 32 and 36 was increased (P?<?0.05) in cGH-treated chickens. In contrast, the expression of Bcl-2 and of caspases 8 and 9 was not affected by cGH in any of the oviductal segments. The results suggest that GH, via the orchestration of apoptosis and expression of some oviduct-specific proteins, participates in the development and activity of the chicken oviduct prior to the onset of egg laying.  相似文献   

13.
The purpose of this study was to determine the effects of programmed intravenous infusion of chicken growth hormone (cGH) on growth and metabolism of young broiler chickens (4–7 weeks of age). Four-week-old broiler cockerels, fitted with indwelling jugular catherters, were randomly assigned to three treatment groups (6 birds/group): pulsatile infusion of buffer (phosphate buffer, pH 7.4)[PB-P] at 3 hr intervals, pulsatile infusion of cGH (15 μg/kg at 3 hr intervals)[GH-P], or continuous infusion of cGH (120 μg/kg-day)[GH-C]. Birds were bled 5 min before (0-min) and 5 min post-infusion (relative to the pulses of PB and cGH) at 5, 6, and 7 weeks of age. Pulsatile infusion of cGH increased (P < 0.05) feed consumption by 24% and reduced (P < 0.05) feed efficiency by 14% without affecting body weight (BW) gain. The relative weights (%BW) of liver, abdominal fat, and bursa of Fabricius were not affected by the pattern of cGH infusion. However, the body fat content of cGH-infused chickens was increased (P < 0.05) by 13% (GH-C) and 17% (GH-P), while body protein and water contents were slightly reduced. Body ash content was not affected by pattern of cGH infusion. When compared with the PB-P controls, the GH-P treatment depressed (P < 0.05) hepatic GH-binding activity by 52% without affecting plasma insulin-like growth factor-I (IGF-I) levels. Continuous infusion of cGH increased (P < 0.05) plasma IGF-I by 16%, thyroxine (T4) by 31%, and glucagon levels by 55%, although plasma GH levels were only 47% higher than those of the PB-P group. However, the GH-P treatment was only half as effective as the GH-C pattern in elevating plasma levels of T4 and glucagon. This study shows that programmed intravenous infusion of cGH increases deposition of body fat in young rapidly-growing broiler chickens.  相似文献   

14.
鸭生长激素基因内含子2、3多态性分析   总被引:1,自引:0,他引:1  
根据鸭生长激素基因内含子2、3的序列设计5对引物,利用PCR-SSCP方法对北京鸭、西湖野鸭、金定鸭、山麻鸭、荆江鸭、绍兴鸭等6个鸭品种进行了单核苷酸多态性分析, 并检测其多态性。结果共发现8个突变位点, 其中内含子2有7个: 2593处C-T, 2770处G-A, 2813处T-A, 2829处C-A, 2894处C-T, 2896处T-C,3100处C-G; 内含子3有1个: 3270处A-G。统计结果显示, 这8个变异位点的基因型频率分布与品种有关, 在这些基因座的变异水平上, 北京鸭和绍兴鸭表现出了相当的品种保守性, 本研究所检测到的这些基因座可能与鸭的生产性能有关。  相似文献   

15.
Summary Two strains of meat-type chickens which had been derived from the same genetic base, but were selected for high or low abdominal fat content, respectively, were analyzed for polymorphisms in the growth hormone gene (GH). A total of four DNA polymorphisms were identified, one at a SacI restriction site and three at MspI restriction sites. Restriction mapping indicated that all polymorphisms were in exons and/or introns and not in flanking regions of the gene. The incidence of GH polymorphisms was determined in 20 chickens from each strain and significant differences were observed for two of the four polymorphisms. Analysis by DNA fingerprinting using (CAC)5 as a probe indicated that the inbreeding coefficient was 0.1 in both strains and that random genetic drift was minimal. Thus, the selection for abdominal fat appears to have affected the frequency of alleles of the growth hormone gene. Whether this is the direct consequence of an altered growth hormone gene on fat metabolism or reflects linkage to an allele of a neighbouring gene remains to be determined.  相似文献   

16.
The present study was undertaken to examine in vivo the effect of growth hormone (GH) on progesterone and estradiol levels and on cell proliferation and apoptosis in the chicken ovary during sexual maturation. Hy-Line chickens (10 weeks old) were injected three times a week with 200 μg recombinant chicken GH (cGH) per kilogram body weight until sexual maturity. GH treatment significantly increased ovarian weight at 16 weeks of age, i.e., ∼1 week before onset of egg laying. The progesterone content in the ovary just before and at the time of sexual maturity and the estradiol content before onset of egg laying were also elevated after cGH injections. The highest number of proliferating (positive for proliferating cell nuclear antigen) and apoptotic (positive for terminal-deoxynucleotidyl-transferase-mediated dUTP nick-end labeling) cells was found in the ovarian stroma and white follicles (>1-4 mm diameter), whereas the lowest number of these cells was detected in yellow (>8-30 mm) follicles. Administration of cGH significantly stimulated cell proliferation and inhibited cell apoptosis in the ovarian stroma and small ovarian follicles. The number of ovarian follicles and the weight of the ovary prior to the first oviposition were also higher in cGH-injected hens. Thus, prior to and after the onset of egg laying, GH participates in the growth, maturation and hormonal activity of ovarian follicles in the chicken, via the regulation of steroidogenesis, proliferation and apoptosis processes.  相似文献   

17.
18.
The effect of both active passive immunization against somatostatin on growth rate and growth hormone levels was studied in chickens. Passive immunization against somatostatin by administration of antiserum had no effect on rate of growth of chickens and no persistent effect on circulating growth hormone (GH) levels. In acute experiments, administration of anti-somatostatin serum caused a marked elevation of GH levels in chickens at both 4 and 8 weeks of age, but the relative stimulation was greater in the older birds. Active immunization against somatostatin significantly stimulated growth rate in chickens, but was not shown to have a clear effect on circulating GH levels. These data suggest that somatostatin control over GH secretion may not be fully developed in the chicken at 4 weeks of age, but that immuno-neutralization of somatostatin can produce an increase rate of growth in chickens similar to that seen in mammals.  相似文献   

19.
The influence of an intravenous injection of chicken growth hormone (cGH), a total chicken pars distalis (PD) extract, and a PD extract depleted of cGH by immunoadsorption was studied in the 18-d-old chick embryo. Plasma concentrations of triiodothyronine (T3), thyroxine (T4), and hepatic 5'-monodeiodination (5'-D) activity were measured. An injection of total PD extract raised plasma T3, T4, and 5'-D activity, whereas a PD extract depleted of GH only increased plasma T4. The amount of cGH present in the PD extracts, as measured by homologous cGH radioimmunoassay, increased T3 and raised liver 5'-D, but had no effect on plasma T4. The effect on liver 5'-D was more pronounced with cGH than with a total PD extract, whereas the effect on plasma T3 was somewhat less pronounced. It was concluded that cGH increased the peripheral conversion of T4 into T3 in the chick embryo, whereas a PD extract depleted of cGH was purely thyrotropic. The PD extract also seemed to have 5'-D-suppressing activity.  相似文献   

20.
While the growth hormone (GH) gene has been characterized in a broad range of vertebrates, surprisingly little is known about this gene in birds. In order to extend knowledge of the GH gene in avian species and non-domestic species, the pied flycatcher (Ficedula hypoleuca) GH gene has been sequenced in this study. The overall average pairwise sequence divergence level was 0.08 among all available avian sequences and 0.27 among other taxa. However, the overall genetic organization of the gene is quite conserved. The similarity of the GH gene sequence of pied flycatchers with those of chicken and duck suggests that the rapid bursts of molecular evolution observed in mammalian and fish GH have not occurred during the divergence of passerine and non-passerine birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号