首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D.L. Clough 《Life sciences》1984,35(19):1937-1946
Vanadate (VO4?3) produces a positive inotropic effect in rats and also promotes diuresis as well as natriuresis. Although the mechanism(s) of these effects is uncertain, in the kidney, VO4?3 may act through inhibition of (Na++K+)-ATPase activity, whereas in the heart, other or additional mechanisms are likely. Under the assay conditions used in the present study, microsomal (Na++K+)-ATPase activities from rat kidney cortex and medulla were inhibited to a greater extent than was left ventricular (Na++K+)-ATPase activity over a range of VO4?3 concentrations. The apparent dissociation constant for left ventricular (Na++K+)-ATPase (10.95 ± 1.26 × 10?7M VO4?3) was significantly greater than that of (Na++K+)-ATPase from the cortex (3.46±0.96×10?7 M VO4?3) or the medulla (3.32±0.7×10?7M VO4?3, N=6, P<.05) whereas there were no significant differences between the effects of VO4?3 on (Na++K+)-ATPase from the cortex and medulla. The greater inhibition by VO4, of (Na++K+)-ATPase from the cortex relative to that of the left ventricle, occurred over a range of Na+ and K+ concentrations, and K+ enhanced the inhibition by VO4?3 to a greater extent for (Na++K+)-ATPase from the cortex than the left ventricle. These results suggest that renal (Na++K+)-ATPase is more sensitive than left ventricular (Na++K+)-ATPase to inhibition by VO4?3 and would, therefore, be more likely to be modulated invivo.  相似文献   

2.
The kinetics of the light-driven Cl? uptake pump of Synechococcus R-2 (PCC 7942) were investigated. The kinetics of Cl? uptake were measured in BG-11 medium (pHo, 7·5; [K+]o, 0·35 mol m?3; [Na+]o, 18 mol m?3; [Cl?]o, 0·508 mol m?3) or modified media based on the above. Net36Cl? fluxes (?Cl?o,i) followed Michaelis-Menten kinetics and were stimulated by Na+ [18 mol m?3 Na+ BG-11 ?Cl?max= 3·29±0·60 (49) nmol m?2 s?1 versus Na+-free BG-11 ?Cl?max= 1·02±0·13 (54) nmol m?2 s?1] but the Km was not significantly different in the presence or absence of Na+ at pHo 10; the Km was lower, but not affected by the presence or absence of Na+ [Km = 22·3±3·54 (20) mmol m?3]. Na+ is a non-competitive activator of net ?Cl?o,i. High [K+]o (18 mol m?3) did not stimulate net ?Cl?o,i or change the Km in Na+-free medium. High [K+]o (18 mol m?3) added to Na+ BG-11 medium decreased net ?Cl?o,i [18 mol m?3K+ BG-11; ?Cl?max= 2·50±0·32 (20) nmol m?2 s?1 versus BG-11 medium; ?Cl?max= 3·35±0·56 (20) nmol m?2 s?1] but did not affect the Km 55·8±8·100 (40) mmol m?3]. Na+-stimulation of net ?Cl?o,i followed Michaelis-Menten kinetics up to 2–5 mol m?3 [Na+]o but higher concentrations were inhibitory. The Km for Na+-stimulation of net ?Cl?o,i [K1/2(Na+)] was different at 47 mmol m?3 [Cl?]o (K1/2[Na+] = 123±27 (37) mmol m?3]. Li+ was only about one-third as effective as Na+ in stimulating Cl? uptake but the activation constant was similar [K1/2(Li+) = 88±46 (16) mmol m?3]. Br? was a competitive inhibitor of Cl? uptake. The inhibition constant (Ki) was not significantly different in the presence and absence of Na+. The overall Ki was 297±23 (45) mmol m?3. The discrimination ratio of Cl? over Br? (δCl?/δBr?) was 6·38±0·92 (df = 147). Synechococcus has a single Na+-stimulated Cl? pump because the Km of the Cl? transporter and its discrimination between Cl? and Br? are not significantly different in the presence and absence of Na+. The Cl? pump is probably driven by ATP.  相似文献   

3.
The validity of 5′-nucleotidase as a plasma membrane marker enzyme in beef thyroid has been tested by comparing the subcellular distribution of its activity to that of (Na+K+)-activated ATPase and adenyl cyclase. The specific activity and total activity of (Na+K+)-ATPase and adenyl cyclase were greatest in the 1000 × g (“nuclear”) and 33 000 × g (“mitochondrial and lysosomal”) fractions. In contrast, 5′-nucleotidase activity was concentrated in the 165 000 × g (“microsomal”) pellet and supernatant. Partially purified plasma membranes were separated from the 1000 (N2), 30 000 (M2) and 165 000 × g (P2) pellets by discontinuous sucrose gradient centrifugation. Again a discordant distribution of these enzyme activities was observed. (Na+K+)-ATPase specific activity was increased approximately 30-fold over the homogenate in Fractions N2 and M2. Basal, thyroid-stimulating hormone-and fluoride-stimulated adenyl cyclase activities were concentrated in the same fractions. 5′-Nucleotidase activity was preferentially located in M2 and P2. These differences in distribution pattern suggest that 5′-nucleotidase activity is not uniquely located in the plasma membrane in the thyroid.  相似文献   

4.
The aim of this work was to investigate the influence of [PdCl4]2 ? , [PdCl(dien)]+ and [PdCl(Me4dien)]+ complexes on Na+/K+-ATPase activity. The dose-dependent inhibition curves were obtained in all cases. IC50 values determined by Hill analysis were 2.25 × 10? 5 M, 1.21 × 10? 4 M and 2.36 × 10? 4 M, respectively. Na+/K+-ATPase exhibited typical Michelis-Menten kinetics in the presence of Pd(II) complexes. Kinetic parameters (Vmax, Km) derived using Eadie–Hofstee transformation indicated a noncompetitive type of Na+/K+-ATPase inhibition. The inhibitor constants (Ki) were determined from Dixon plots. The order of complex affinity for binding with Na+/K+-ATPase, deducted from Ki values, was [PdCl4]2 ? >[PdCl(dien)]+>[PdCl(Me4dien)]+. The results indicated that the potency of Pd(II) complexes to inhibit Na+/K+-ATPase activity depended strongly on ligands of the related compound. Furthermore, the ability of SH-donor ligands, l-cysteine and glutathione, to prevent and recover the Pd(II) complexes-induced inhibition of Na+/K+-ATPase was examined. The addition of 1 mM l-cysteine or glutathione to the reaction mixture before exposure to Pd(II) complexes prevented the inhibition by increasing the IC50 values by one order of magnitude. Moreover, the inhibited enzymatic activity was recovered by addition of SH-donor ligands in a concentration-dependent manner.  相似文献   

5.
  • 1.1. The (Na+ + K+)- and Na+-ATPases, both present in kidney microsomes of Sparus auratus L., have different activities and optimal assay conditions as, in the first of the two stocks of fish used (A), the spec. act. of the former is 51.7 μmol Pi mg prot−1 hr−1 at pH 7.5, 100 mM Na+, 10 mM K+, 17.5 mM Mg2+, 7.5 mM ATP and that of the latter is 6.5 μmol Pi mg prot−1 hr−1 at pH 6.5, 40 mM Na+, 4.0 mM Mg2+, 2.5 mM ATP.
  • 2.2. Ouabain and vanadate specifically inhibit the (Na+ + K+)-ATPase but not the Na+-ATPase that is preferentially inhibited by ethacrynic acid.
  • 3.3. While the (Na+ + K+)-ATPase is strictly specific for ATP and Na+, Na+-ATPase can be activated by various monovalent cations and, apart from ATP, hydrolyses CTP, though less efficiently.
  • 4.4. The second stock B, subjected to higher salinity than A, shows an acidic shifted Na+-ATPase optimal pH, opposed to the stability of that of the (Na+ + K+)-ATPase, a decreased (Na+ + K+)-ATPase and a strikingly depressed Na+-ATPase.
  • 5.5. The results are compared with literature data and discussed on the basis of the presumptive different roles as well as functional prevalence in various salinities of the two ATPases.
  相似文献   

6.
The effect of d-aldosterone on human erythrocyte ghost (Na+ + K+)-Mg ATPase has been studied. Aldosterone at 3.225 × 10?10M caused a 450% activation of (Na+ + K+)-Mg ATPase activity whilst inhibiting (Na+ + Na+)-Mg ATPase activity. Aldosterone acts by reducing the affinity of the external K+ site of (Na+ + K+)Mg ATPase for Na+ thereby resulting in improved efficiency of Na+ ? K+ transfer. Aldosterone was additionally found to modify both the Na+ and K+ activation of (Na+ + K+)Mg ATPase incubated in the presence of commercial ATP containing orthovanadate. Aldosterone was found to reverse the inhibitory effects of orthovanadate at high Na+ and K+ concentrations. The physiological significance of orthovanadate and aldosterone are discussed.  相似文献   

7.
Epileptic foci are associated with locally reduced taurine (2-aminoethanesulfonic acid) concentration and Na+, K+-ATPase (EC 3.6.1.3) specific activity. Topically applied and intraperitoneally administered taurine can prevent the development and/or spread of foci in many animal models. Taurine has been implicated as a possible cytosolic modulator of monovalent ion distribution, cytosolic “free” calcium activity, and neuronal excitability. Taurine may act in part by modulating Na+, K+-ATPase activity of neuronal and glial cells. We characterized the requirements for in vitro modulation of Na+, K+-ATPase by taurine. Normal whole brain homogenate Na+, K+-ATPase activity is 5.1 ± 0.4 (4) μmol Pi± h?1± mg?1 Lowry protein. Partial purification of the plasma membrane fraction to remove cytosolic proteins and extrinsic proteins and to uncouple cholinergic receptors yields a membrane-bound Na+, K+-ATPase activity of 204.6 ± 5.8 (4) mol Pi± h?1± mg?1 Lowry protein. Taurine activates the Na+, K+-ATPase at all levels of purification. The concentration dependence of activation follows normal saturation kinetics (K1/2= 39 mM taurine, activation maximum =+87%). The activation exhibits chemical specificity among the taurine analogues and metabolites: taurine = isethionic acid > hypotaurine > no activation =β-alanine = methionine = choline = leucine. Taurine can act as an endogenous activator/modulator of Na+, K+-ATPase. Its action is mediated by a membrane-bound protein.  相似文献   

8.
The in vitro influence of potassium ion modulations, in the concentration range 2 mM–500 mM, on digoxin-induced inhibition of porcine cerebral cortex Na+/K+-ATPase activity was studied. The response of enzymatic activity in the presence of various K+ concentrations to digoxin was biphasic, thereby, indicating the existence of two Na+/K+-ATPase isoforms, differing in the affinity towards the tested drug. Both isoforms showed higher sensitivity to digoxin in the presence of K+ ions below 20 mM in the medium assay. The IC50 values for high/low isoforms 2.77 × 10? 6 M / 8.56 × 10? 5 M and 7.06 × 10? 7 M /1.87 × 10? 5 M were obtained in the presence of optimal (20 mM) and 2 mM K+, respectively. However, preincubation in the presence of elevated K+ concentration (50 – 500 mM) in the medium assay prior to Na+/K+-ATPase exposure to digoxin did not prevent the inhibition, i.e. IC50 values for both isoforms was the same as in the presence of the optimal K+ concentration. On the contrary, addition of 200 mM K+ into the medium assay after 10 minutes exposure of Na+/K+-ATPase to digoxin, showed a time-dependent recovery effect on the inhibited enzymatic activity. Kinetic analysis showed that digoxin inhibited Na+/K+-ATPase by reducing maximum enzymatic velocity (Vmax) and Km, implying an uncompetitive mode of interaction.  相似文献   

9.
1. Addition of 3.5 mM ATP to mouse neuroblastoma Neuro-2A cells results in a selective enhancement of the plasma membrane permeability for Na+ relative to K+, as measured by cation flux measurements and electro-physiological techniques. 2. Addition of 3.5 mM ATP to Neuro-2A cells results in a 70% stimulation of the rate of active K+ -uptake by these cells, partly because of the enhanced plasma membrane permeability for Na+. Under these conditions the pumping activity of the Neuro-2A (Na++K+)-ATPase is optimally stimulated with respect to its various substrate ions. 3. External ATP significantly enhances the affinity of the Neuro-2A (Na++K+)-ATPase for ouabain, as measured by direct [3H]ouabain-binding studies and by inhibition studies of active K+ uptake. In the presence of 3.5 mM ATP and the absence of external K+ both techniques indicate an apparent dissociation constant for ouabain of 2·10?6 M. Neuro-2A cells contain (3.5±0.7)·105 ouabain-binding sites per cell, giving rise to an optimal pumping activity of (1.7±0.4)·10?20 mol K+/min per copy of (Na++K+)-ATPase at room temperature.  相似文献   

10.
I/V relationships were performed by the voltage clamp technique in the sphaerical green alga Eremosphaera viridis de Bary. We focused on the course of the transient potential (TP) found in light-off experiments when specific potassium channels open. I/V measurements done during this period show a N-shaped curve. The shape depended on external potassium. TPs could be released by light-off and by addition of barium, strontium, or α-naphthyl phosphate. We calculated the number of specific potassium channels to be between 1750 and 34 825 channels per cell. Barium (1 mol × m?3) and tetraethylammonium (10 mol × m?3) inhibited TPs. I/V relationships demonstrated, when N-shaped, that potassium channels start to close at voltages more negative than ?195 mV (0.1 mol × m?3 K+), ?160 mV (1 mol × m?3 K+) and ?148 mV (10 mol × m?3 K+). In the region of ?300 mV conditions similar to those at rest are reached. External sodium suppressed the development of N-shaped I/V relationships and reduced the membrane conductance during a TP between 8 % and 29 %. This indicates an influence of external sodium on potassium channels.  相似文献   

11.
The activity of Na+K+-ATPase in the membranes of nerve endings isolated from rat cerebral cortex was inhibited by dopamine. On the contrary, when the soluble fraction from cortical homogenates was added, dopamine stimulated enzyme activity. By varying the concentration of the soluble fraction present in the incubation medium for Na+K+-ATPase assay, it was possible to establish that this fraction modulates those effects of dopamine on Na+K+-ATPase.The preincubation of the membranes with N-ethylmaleimide under conditions in which the Na+K+-ATPase activity was not inhibited (5 × 10?5 M for 10 min at 37°C), prevented both the inhibitory and the stimulatory effects of dopamine observed without or with the soluble fraction from brain respectively.These results suggest that dopamine probably acts on regions of the protein containing -SH groups, different from those sites responsible for the catalytic activity of the enzyme.  相似文献   

12.
Liver plasma membranes enriched in bile canaliculi were isolated from rat liver by a modification of the technique of Song et al. (J. Cell Biol. (1969) 41, 124–132) in order to study the possible role of ATPase in bile secretion. Optimum conditions for assaying (Na+ + K+)-activated ATPase in this membrane fraction were defined using male rats averaging 220 g in weight. (Na+ + K+)-activated ATPase activity was documented by demonstrating specific cation requirements for Na+ and K+, while the divalent cation, Ca2+, and the cardiac glycosides, ouabain and scillaren, were inhibitory. (Na+ + K+)-activated ATPase activity averaged 10.07 ± 2.80 μmol Pi/mg protei per h compared to 50.03 ± 11.41 for Mg2+-activated ATPase and 58.66 ± 10.07 for 5′-nucleotidase. Concentrations of ouabain and scillaren which previously inhibited canalicular bile secretion in the isolated perfused rat liver produced complete inhibition of (Na+ + K+)-activated ATPase without any effect on Mg2+-activated ATPase. Both (Na+ + K+)-activated ATPase and Mg2+-activated ATPase demonstrated temperature dependence but differed in temperature optima. Temperature induced changes in specific activity of (Na+ + K+)-activated ATPase directly paralleled previously demonstrated temperature optima for bile secretion. These studies indicate that (Na+ + K+)-activated ATPase is present in fractions of rat liver plasma membranes that are highly enriched in bile canaliculi and provide a model for further study of the effects of various physiological and chemical modifiers of bile secretion and cholestasis.  相似文献   

13.
Neuronal tissues from Manduca sexta, the tobacco hornworm, Hyalophora cecropia, the silkmoth and Danaus plexippus, the Monarch Butterfly, contain Na+K+-ATPase which is sensitive to cardiac glycoside (ouabain). The Km for K+ stimulation of Na+K+-ATPase in M. sexta and D. plexippus is 2.2 mM and for Na+ stimulation in D. plexippus, 6.0 mM. In vitro ouabain concentrations of 1.0 × 10?5 M and 5.0 × 10?5 M in the presence of 7.5 mM K+ inhibited Na+K+-ATPase activity in H. cecropia and M. sexta by 50% respectively. Na+K+-ATPase from D. plexippus was approximately 300 times less sensitive. High concentrations (10?3 M in haemolymph) of ouabain had no effect on M. sexta in vivo. This is largely explained by haemolymph K+ (>; 30 mM) antagonizing the binding of ouabain to Na+K+-ATPase. As demonstrated in vitro, 30 mM K+ totally protects Na+K+-ATPase from inhibition by 7.5 × 10?3 M ouabain in D. plexippus and protects the enzyme by 65% in M. sexta. At least part of the physiological burden incurred in utilization of cardiac glycoside ingestion and storage for protection from predation, however, is probably related to the toxic effects of cardiac glycosides on neuronal Na+K+-ATPase.  相似文献   

14.
Passive efflux of42K or86Rb from differentiated mouse neuroblastoma cells in culture was stimulated up to 8-fold by 10?4 M veratridine. The increased efflux could be blockedby low concentrations of tetrodotoxin (Ki = 4×10?9 g/ml), and did not occur with other cell types lacking an excitable membrane. The temperature sensitivity of the activated component was much higher than that of the normal passive outflow. It is suggested that the veratridine-dependent, tetrodotoxin-sensitive efflux represents passage of ions through the excitable Na+ channel. Replacement of extracellular Na+ by Tris+ abolished the activation by veratridine. Titration of the Na+ requirement resulted in a hyperbolic relationship between external Na+ concentration and efflux rate, with an apparent Km of 66.7 mM for Na+. This phenomenon may reflect an interaction between extracellular ions and a regulatory site on the Na+ channel.  相似文献   

15.
(Na+,K+)-ATPase is able to catalyze a continuous ATP?Pi exchange in the presence of Na+ and in the absence of a transmembrane ionic gradient. At pH 7.6 the Na+ concentration required for half-maximal activity is 85 mM and at pH 5.1 it is 340 mM. In the presence of optimal Na+ concentration, the rate of exchange is maximal at pH 6.0 and varies with ADP and Pi concentration in the assay medium. ATP?Pi exchange is inhibited by K+ and by ouabain.  相似文献   

16.
(H+ + K+)-ATPase-enriched membranes were prepared from hog gastric mucosa by sucrose gradient centrifugation. These membranes contained Mg2+-ATPase and p-nitrophenylphosphatase activities (68 ± 9 μmol Pi and 2.9 ± 0.6 μmol p-nitrophenol/mg protein per h) which were insensitive to ouabain and markedly stimulated by 20 mM KCl (respectively, 2.2- and 14.8-fold). Furthermore, the membranes autophosphorylated in the absence of K+ (up to 0.69 ± 0.09 nmol Pi incorporated/mg protein) and dephosphorylated by 85% in the presence of this ion. Membrane proteins were extracted by 1–2% (w/v) n-octylglucoside into a soluble form, i.e., which did not sediment in a 100 000 × g × 1 h centrifugation. This soluble form precipitated upon further dilution in detergent-free buffer. Extracted ATPase represented 32% (soluble form) and 68% (precipitated) of native enzyme and it displayed the same characteristic properties in terms of K+-stimulated ATPase and p-nitrophenylphosphatase activities and K+-sensitive phosphorylation: Mg2+-ATPase (μmol Pi/mg protein per h) 32 ± 9 (basal) and 86 ± 20 (K+-stimulated); Mg2+-p-nitrophenylphosphatase (μmol p-nitrophenol/mg protein per h) 2.6 ± 0.5 (basal) and 22.2 ± 3.2 (K+-stimulated); Mg2+-phosphorylation (nmol Pi/mg protein) 0.214 ± 0.041 (basal) and 0.057 ± 0.004 (in the presence of K+). In glycerol gradient centrifugation, extracted enzyme equilibrated as a single peak corresponding to an apparent 390 000 molecular weight. These findings provide the first evidence for the solubilization of (H+ + K+)-ATPase in a still active structure.  相似文献   

17.
It is not known whether ouabain injected into the kidney in vivo is bound exclusively to the (Na+ + K+)-ATPase and whether the reduction of sodium pumping capacity is large enough to account for the reduction in sodium reabsorption. In the present study on dogs the total amount of parenchymal ouabain was therefore estimated and the specific renal binding compared to the reduction in (Na+ + K+)-ATPase activity. Ouabain, 120 nmol/kg body weight, was injected into the renal artery in vivo reducing the (Na+ + K+)-ATPase activity by 3lmost 80%. After nephrectomy, tissue ouabain could be quantified by radioimmunoassay after heating the homogenate to 70°C for 30 min; negligible amounts were detectable without heating. No correlation between ouabain binding and tissue volume, protein content, DNA content or Mg2+-ATPase content could be found when comparing the following four fractions of the kidney: outer cortex, inner cortex, outer medulla and papilla. For the whole kidney, mean parenchymal tissue concentration of ouabain equalled 0.58 ± 0.03 μmol/100 g wet tissue. Only 21.3 ± 1.2% of the ouabain was confined to the outer medulla corresponding to 54 ± 4 nmol giving a tissue concentration of 1.08 ± 0.05 μmol/100 g wet tissue. The renal ouabain concentrations were highly correlated to the reduction in (Na+ + K+)-ATPase activity, giving a ratio between the reduction in hydrolysis rate and bound ouabain (turnover number) of 6105 min?1 which is close to the value of 7180 min?1 found by in vitro Scatchard analysis. No ouabain seems to be bound to other tissue components than the (Na+ + K+)-ATPase and the present method is therefore a simple way of measuring the number of inhibited (Na+ + K+)-ATPase molecules after in vivo injection of ouabain.  相似文献   

18.
Frozen aqueous suspensions of partially purified membrane-bound renal (Na+ + K+)-ATPase have been irradiated at –135°C with high-energy electrons. (Na+ + K+)-ATPase and K+-phosphatase activities are inactivated exponentially with apparent target sizes of 184 ± 4 kDa and 125 ± 3 kDa, respectively. These values are significantly lower then found previously from irradiation of lyophilized membranes. After reconstitution of irradiated (Na+ + K+)-ATPase into phospholipid vesicles the following transport functions have been measured and target sizes calculated from the exponential inactivation curves: ATP-dependent Na+?K+ exchange, 201 ± 4 kDa; (ATP + Pi)-activated Rb+?Rb+ exchange, 206 ± 7 kDa and ATP-independent Rb+?Rb+ exchange, 117 ± 4 kDa. The apparent size of the α-chain, judged by disappearance of Coomassie stain on SDS-gels, lies between 115 and 141 kDa. That for the β-glycoprotein, though clearly smaller, could not be estimated. We draw the following conclusions: (1) The simplest interpretation of the results is that the minimal functional unit for (Na+ + K+)-ATPase is αβ. (2) The inactivation target size for (Na+ + K+)-dependent ATP hydrolysis is the same as for ATP-dependent pumping of Na+ and K+. (3) The target sizes, for K+-phosphatase (125 kDa) and ATP-independent Rb+?Rb+ exchange (117 kDa) are indistinguishable from that of the α-chain itself, suggesting that cation binding sites and transport pathways, and the p-nitrophenyl phosphate binding site are located exclusively on the α-chain. (4) ATP-dependent activities appear to depend on the integrity of an αβ complex.  相似文献   

19.
Treatment of a purified (Na+ + K+)-ATPase preparation from dog kidney with digitonin reduced enzymatic activity, with the (Na+ + K+)-ATPase reaction inhibited more than the K+-phosphatase reaction that is also catalyzed by this enzyme. Under the usual assay conditions oligomycin inhibits the (Na+ + K+)-ATPase reaction but not the K+-phosphatase reaction; however, treatment with digitonin made the K+-phosphatase reaction almost as sensitive to oligomycin as the (Na+ + K+)-ATPase reaction. The non-ionic detergents, Triton X-100, Lubrol WX and Tween 20, also conferred sensitivity to oligomycin on the K+-phosphatase reaction (in the absence of oligomycin all these detergents, unlike digitonin, inhibited the K+-phosphatase reaction more than the (Na+ + K+)-ATPase reaction). Both digitonin and Triton markedly increased the K0.5 for K+ as activator of the K+-phosphatase reaction, with little effect on the K0.5 for K+ as activator of the (Na+ + K+)-ATPase reaction. In contrast, increasing the K0.5 for K+ in the K+-phosphatase reaction by treatment of the enzyme with acetic anhydride did not confer sensitivity to oligomycin. Both digitonin and Triton also increased the inhibition of the K+-phosphatase reaction by ATP and decreased the inhibition by inorganic phosphate and vanadate. These observations are interpreted as digitonin and Triton favoring the E1 conformational state of the enzyme (manifested by sensitivity to oligomycin and a greater affinity for ATP at the low-affinity substrate sites), as opposed to the E2 state (manifested by insensitivity to oligomycin, greater sensitivity to phosphate and vanadate, and a lower K0.5 for K+ in the K+-phosphatase reaction). In addition, digitonin blocked activation of the phosphatase reaction by Na+ plus CTP. This effect is consistent with digitonin dissociating the catalytic subunits of the enzyme, the interaction of which may be essential for activation by Na+ plus nucleotide.  相似文献   

20.
The (Na++K+)-activated, Mg2+-dependent ATPase from rabbit kidney outer medulla was prepared in a partially inactivated, soluble from depleted of endogenous phospholipids, using deoxycholate. This preparation was reactivated 10 to 50-fold by sonicated liposomes of phosphatidylserine, but not by non-sonicated phosphatidylserine liposomes or sonicated phosphatidylcholine liposomes. The reconstituted enzyme resembled native membrane preparations of (Na++K+)-ATPase in its pH optimum being around 7.0 showing optimal activity at Mg2+: ATP mol ratios of approximately 1 and a Km value for ATP of 0.4 mM.Arrhenius plots of this reactivated activity at a constant pH of 7.0 and an Mg2+: ATP mol ratio of 1:1 showed a discontinuity (sharp change of slope) at 17 °C, With activation energy (Ea) values of 13–15 kcal/mol above this temperature and 30–35 kcal below it. A further discontinuity was also found at 8.0 °C and the Ea below this was very high (> 100 kcal/mol).Incresed Mg2+ concentrations at Mg2+: ATP ratios in excess of 1:1 inhibited the (Na++K+)-ATPase activity and also abolished the discontinuities in the Arrhenius plots.The addition of cholesterol to phosphatidylserine at a 1:1 mol ratio partially inhibited (Na++K+)-ATPase reactivation. Arrhenius plots under these conditions showed a single discontinuity at 20°C and Ea values of 22 and 68kcal/mol above and below this temperature respectively. The ouabain-insensitive Mg2+-ATPase normally showed a linear Arrhenius plot with an Ea of 8 kcal/mol. The cholesterol-phosphatidylserine mixed liposomes stimulated the Mg2+-ATPase activity, which now also showed a discontinuity at 20 °C with, however, an increased value of 14 kcal/mol above this temperature and 6 kcal/mol below. Kinetic studies showed that cholesterol had no significant effect on the Km for ATP.Since both of cholesterol and Mg2+ are know to alter the effects of temperature on the fluidity of phospholipids the above result are discussed in this context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号