首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Oxytocin (OT) is a versatile neuropeptide that is involved in a variety of mammalian behaviors, and its role in reproductive function and behavior has been well established. The majority of pharmacological studies of the effects of OT on male sexual behavior have focused on the paraventricular nucleus (PVN), ventral tegmental area (VTA), hippocampus, and amygdala. Less attention has been given to the medial preoptic area (MPOA), a major integrative site for male sexual behavior. The present study investigated the effects of intra-MPOA administration of OT and (d(CH2)51, Tyr(Me)2, Thr4, Orn8, Tyr-NH29)-vasotocin, an OT antagonist (OTA), on copulation in the male rat. The relationship between OT receptor (OTR) binding levels in the MPOA and sexual efficiency was also explored. Microinjection of OT into the MPOA facilitated copulation in sexually experienced male rats, whereas similar injections of an OTA inhibited certain aspects of copulation but had no significant effect on locomotor activity in an open field. Contrary to expectation, sexually efficient males had lower levels of OTR binding in the rostral MPOA compared to inefficient animals. The present data suggest that OT activity in the MPOA is not necessary for the expression of male sexual behavior but is sufficient to facilitate copulatory behaviors and improve sexual efficiency in sexually experienced male rats. These data also suggest that OTR activity in the MPOA stimulates anogenital investigation, facilitates the initiation of copulation, and plays a role in the sensitization effect of the first ejaculation on subsequent ejaculations.  相似文献   

2.
Testosterone is the main circulating steroid hormone in males, and acts to facilitate sexual behavior via both reduction to dihydrotestosterone (DHT) and aromatization to estradiol. The mPOA is a key site involved in mediating actions of androgens and estrogens in the control of masculine sexual behavior, but the respective roles of these hormones is not fully understood. As males age they show impairments in sexual function, and a decreased facilitation of behavior by steroid hormones compared to younger animals. We hypothesized that an anatomical substrate for these behavioral changes is a decline in expression and/or activation of hormone receptor-sensitive cells in the mPOA. We tested this by quantifying and comparing numbers of AR- and ERα-containing cells, and Fos as a marker of activated neurons, in the mPOA of mature (4–5 months) and aged (12–13 months) male rats, assessed one hour after copulation to one ejaculation. Numbers of AR- and ERα cells did not change with age or after sex, but the percentage of AR- and ERα-cells that co-expressed Fos were significantly up-regulated by sex, independent of age. Age effects were found for the percentage of Fos cells that co-expressed ERα (up-regulated in the central mPOA) and the percentage of Fos cells co-expressing AR in the posterior mPOA. Interestingly, serum estradiol concentrations positively correlated with intromission latency in aged but not mature animals. These data show that the aging male brain continues to have high expression and activation of both AR and ERα in the mPOA with copulation, raising the possibility that differences in relationships between hormones, behavior, and neural activation may underlie some age-related impairments.  相似文献   

3.
4.
Male rats were subjected to bilateral electrolytic lesions in the medial preoptic area (mPOA). These lesions disrupted sexual behavior without affecting basal levels of luteinizing hormone (LH), prolactin (PRL), or testosterone (T). During exposure to an estrous female, intact and sham-operated rats mated; these rats showed elevations in LH, PRL, and T levels. Lesioned rats, which did not mate, showed elevations in LH but not PRL or T levels. These results demonstrate that the mPOA is not required for sexually stimulated LH release. The failure of lesioned rats to release PRL and T may be secondary to their failure to mate. Alternatively, the mPOA may participate in sexually stimulated PRL release, while T release may depend on prior elevations in both LH and PRL levels. LH release may be related to arousal, and PRL release to consummation, providing a hormonal analogy for the dual mechanism theory of sexual behavior.  相似文献   

5.
6.
Mating was studied in sexually experienced, gonadally intact male rats assigned to two surgical groups matched on the basis of mean mounting frequency during behavioral screening trials conducted prior to the study. Estradiol (E(2)) was delivered bilaterally into the medial preoptic area (MPO) of experimental males by means of hormone-coated implants, and fadrozole was given sc (0.25 mg/kg/day) via osmotic minipumps to block E(2) formation from testicular testosterone throughout the brain. Control males received blank bilateral implants in the MPO and sc fadrozole. After the completion of behavioral testing, immunocytochemical comparisons of the brains from experimental and control rats were made using the H222 antiestrogen receptor (ER) antibody, whose labeling is inhibited by the presence of E(2). The histology demonstrated that E(2) was confined exclusively to the MPO of experimental males but was absent throughout the brains of controls. In controls, mounting decreased significantly by the 7th day after surgery compared with presurgical levels and did not recover. In contrast, on all postsurgical days, the mounting frequency of the experimental group was significantly higher than that of controls. Although experimental males also showed an initial, significant postsurgical decline in mounting frequency, it recovered completely by the 28th postoperative day. Ejaculations declined significantly after surgery in both groups but, unlike in controls whose performance remained low, ejaculations in experimental males partially recovered and were significantly higher than in controls during the postoperative period. Results showed that ER-containing neurons in the MPO influence male rat copulatory behavior.  相似文献   

7.
The effects of septal or preoptic lesions on both masculine and feminine sexual behaviors were examined in castrated adult male rats. Three weeks after brain surgery, animals were implanted with Silastic tubes containing testosterone (T) and observations of masculine sexual behavior were carried out four times every 5 days. T tubes were removed immediately after the end of the masculine behavioral tests. Two weeks later, animals implanted with Silastic tubes containing estradiol-17 beta(E2) were subjected to three feminine sexual behavioral tests at 5-day intervals. The bilateral lateral septal lesion (LSL) and the medial preoptic lesion (MPOL) effectively suppressed the performance of mounts, intromissions, and ejaculations, whereas the medial septal lesion (MSL), the dorsolateral preoptic lesion (DPOL), and the sham operation did not show any significant suppression of these behaviors. In the feminine sexual behavioral tests, intact and sham-operated control males showed only a low lordotic activity. However, the performance of the lordosis reflex was markedly facilitated by LSL or DPOL, while the lordotic activity of MSL and MPOL males was not significantly different from that of control males. These results suggest that the lateral septum exerts not only a facilitatory influence on masculine sexual behavior but also an inhibitory influence on feminine sexual behavior in male rats. On the other hand, the medial preoptic area may play a critical role in regulating masculine sexual behavior in male rats.  相似文献   

8.
This research studied the role of the medial preoptic area and adjacent cell populations in androgen control of scent marking and sexual behavior in male gerbils (Meriones unguiculatus). Experiment 1 replicated previous research showing that implants of testosterone propionate in or near the medial preoptic area reinstate marking behavior in castrates. Implant sites near the diagonal band of Broca or in the posterior part of the medial preoptic area, near the anterior hypothalamus, are more effective than other sites. Experiment 2 showed that medial preoptic area lesions permanently impair sexual behavior despite testosterone stimulation. Experiments 2–4 showed that lesions in or near the medial preoptic area can also disrupt scent marking; however, this behavior gradually recovered in many lesioned males, especially if they received testosterone. The data suggest that both scent marking and sexual behavior are controlled by androgens acting on cells in or near the medial preoptic area, but the cell populations involved in these two behaviors are probably not the same.  相似文献   

9.
Male rat copulation is mediated by estrogen-sensitive neurons in the medial preoptic area (MPO) and medial amygdala (MEA); however, the mechanisms through which estradiol (E(2)) acts are not fully understood. We hypothesized that E(2) acts through estrogen receptor α (ERα) in the MPO and MEA to promote male mating behavior. Antisense oligodeoxynucleotides (AS-ODN) complementary to ERα mRNA were bilaterally infused via minipumps into either brain area to block the synthesis of ERα, which we predicted would reduce mating. Western blot analysis and immunocytochemistry revealed a knockdown of ERα expression in each brain region; however, compared to saline controls, males receiving AS-ODN to the MPO showed significant reductions in all components of mating, whereas males receiving AS-ODN to the MEA continued to mate normally. These results suggest that E(2) acts differently in these brain regions to promote the expression of male rat sexual behavior and that ERα in the MPO, but not in the MEA, promotes mating.  相似文献   

10.
In the medial preoptic area (MPO) and medial amygdala (MEA), estradiol (E(2)) aromatized from testosterone (T) may act via either estrogen receptor (ER) α or ERβ to mediate mating in male rats. We tested the hypothesis that, in the MPO, ERα exclusively mediates sexual responses to E(2) by monitoring mating in four groups of castrated male rats administered dihydrotestosterone (DHT) subcutaneously and MPO implants delivering either: cholesterol, E(2), propyl pyrazole triol (PPT, ERα-agonist) or diarylpropionitrile (DPN, ER β-agonist); a fifth group of intact males served as DPN toxicity control, receiving DPN MPO implants. In a follow-up study, either 1-methyl-4-phenyl pyridinium (MPP, ERα-antagonist) or blank MPO cannulae were implanted in castrated male rats receiving T subcutaneously, whereas intact MPP toxicity controls received MPP MEA implants. PPT or E(2) MPO implants maintained mating, but cholesterol or DPN MPO implants did not. Moreover, MPP MPO implants interfered with T reinstatement of mating suggesting that, in the MPO, ERα is necessary and sufficient for mating in androgen-maintained male rats and ERβ is not sufficient. Because it is unknown which ER subtype(s) mediate sexual responses of the MEA to E(2), we examined mating following MEA implants of cholesterol, E(2), PPT or DPN in four groups of castrated male rats administered DHT subcutaneously. E(2) MEA implants maintained mounting but mating was significantly decreased in groups receiving PPT, DPN or cholesterol MEA implants suggesting that, unlike the MPO where ERα alone is essential, sexual responses of the MEA to E(2) require simultaneous interactions among multiple ER subtypes.  相似文献   

11.
Mendelson WB 《Life sciences》2002,71(17):2067-2070
A wide variety of hypnotic compounds including triazolam, pentobarbital, ethanol and adenosine have been reported to enhance sleep when microinjected into the medial preoptic area (MPA) of the anterior hypothalamus of the rat. It is uncertain whether the pineal hormone melatonin, which may alter sleep/wake physiology in mammals, acts at this site. A previous report has indicated that a more widespread injection of melatonin into the hypothalamus of the cat induces sleep. In the present study we have examined the possibility that the MPA may mediate this effect. Nine adult rats were microinjected with melatonin 1 and 50 ug and vehicle into the MPA during the daytime in a repeated measures design study. It was found that melatonin increased total sleep time in a dose-dependent manner, primarily by increasing NREM sleep, and that wake time after sleep onset was significantly reduced. These data add melatonin to the growing list of compounds that increase total sleep after administration into the MPA, and suggest that the MPA may be a common site of action for such agents from a variety of pharmacologic classes. Based on previous studies, the possibility is raised that this sleep enhancement results from an alteration in function of the GABA(A)-benzodiazepine receptor complex.  相似文献   

12.
Gamma-aminobutyric acid (GABA)-mediated transmission in the medial preoptic area (MPOA) of the hypothalamus plays an important role in functions such as sex steroid hormone dynamics and control of body temperature. The action of allopregnanolone, the primary metabolite of progesterone, on GABAergic transmission was investigated by employing patch clamp whole cell recording on acutely dissociated rat MPOA neurons with the functional connection of presynaptic terminals. Allopregnanolone enhanced spontaneous GABA release on the MPOA neurons and induced prolonged decay of miniature GABAergic-inhibitory postsynaptic currents (mIPSCs). The facilitation of GABA release from the presynaptic terminals by allopregnanolone disappeared in Ca2+-free extracellular solution. The presynaptic action of this neurosteroid was also blocked by bumetanide, a blocker of cation-Cl- cotransporters, and by removal of extracellular Na+. The results suggest that allopregnanolone enhances GABAergic transmission at the MPOA neurons by pre- and postsynaptic mechanisms. The enhancement of GABA release by allopregnanolone might require a high Cl- concentration in the presynaptic terminal maintained by Na+-dependent, bumetanide-sensitive mechanisms (e.g., Na+-K+-Cl- cotransporter) and might be mediated by Ca2+ influx into presynaptic terminal.  相似文献   

13.
The hypnotic effect of propofol in the medial preoptic area of the rat   总被引:6,自引:0,他引:6  
Recent introduction of the intravenous anesthetic propofol as an ICU sedative has allowed a deeply sedated state to be maintained for extended periods in the ICU without delays in emergence. Although such sedation has been advocated to promote physiologic sleep, little evidence exists to support such a strategy. To explore propofol's effect on sleep regulation, we administered propofol directly into the medial preoptic area (MPA) of the rat, an anatomic site where administration of other sedatives (triazolam and phenobarbital) also induce sleep. We performed three two-hour sleep studies in the daytime with the lights on following the administration of propofol (8 ng or 40 ng) or vehicle (intralipid). The higher dose of propofol significantly reduced sleep latency and increased nonREM and total sleep times when compared to vehicle. REM sleep times, intermittent waking times and number of transitions were not altered. Mean nonREM sleep bout length was increased significantly at the higher dose. These findings suggest that propofol may enhance sleep by acting at a hypothalamic site.  相似文献   

14.
In the present study, both the precopulatory behaviour and the copulatory readiness of male rats following the bilateral medial preoptic area lesions was compared with their intact states. In behavioural testing, the intensity of female precopulatory behaviour was used as an experimental variable. The results showed that the natural threshold of copulatory readiness of males was increased in the lesioned state, the animals were more dependent on the soliciting patterns of the female. However, all the males exhibited conspicuous precopulatory behaviour towards the stimulus females used. Apparently, further brain structures participate in the regulation of sexual behaviour of males, above all, in activation or maintenance of precopulatory activity.  相似文献   

15.
Neural systems underlying important behaviors are usually highly conserved across species. The medial preoptic area (MPOA) has been demonstrated to play a crucial role in reward associated with affiliative, nonsexual, social communication in songbirds. However, the role of MPOA in affiliative, rewarding social behaviors (eg, social play behavior) in mammals remains largely unknown. Here we applied our insights from songbirds to rats to determine whether opioids in the MPOA govern social play behavior in rats. Using an immediate early gene (ie, Egr1, early growth response 1) expression approach, we identified increased numbers of Egr1‐labeled cells in the MPOA after social play in adolescent male rats. We also demonstrated that cells expressing mu opioid receptors (MORs, gene name Oprm1) in the MPOA displayed increased Egr1 expression when adolescent rats were engaged in social play using double immunofluorescence labeling of MOR and Egr1. Furthermore, using short hairpin RNA‐mediated gene silencing we revealed that knockdown of Oprm1 in the MPOA reduced the number of total play bouts and the frequency of pouncing. Last, RNA sequencing differential gene expression analysis identified genes involved in neuronal signaling with altered expression after Oprm1 knockdown, and identified Egr1 as potentially a key modulator for Oprm1 in the regulation of social play behavior. Altogether, these results show that the MPOA is involved in social play behavior in adolescent male rats and support the hypothesis that the MPOA is part of a conserved neural circuit across vertebrates in which opioids act to govern affiliative, intrinsically rewarded social behaviors.  相似文献   

16.
The ovarian steroid estradiol (E) has been found to increase both receptor affinity and release of the neuropeptide oxytocin (OT) in plasma membrane preparations. Therefore, we hypothesized that E conjugated to bovine serum albumin at position 6 (E-6-BSA) would increase behavioral responsiveness to OT. Preliminary results showed that 200 ng/microl of E-6-BSA increased sexual receptivity slightly, but not significantly. Therefore, this dose was used as a subthreshold dose to test whether it would increase sexual responsiveness when infused in combination with 100 ng/microl OT. After recovery from cannula implantation surgery animals were injected with 0.5 microg E benzoate daily for 3 days before testing. On the fourth day, after a baseline preinfusion test rats were infused bilaterally with E-6-BSA alone or with OT, OT with BSA, or conjugated progesterone, luteinizing hormone-releasing hormone equimolar to OT alone, or with E-6-BSA or conjugated progesterone alone. When infused into either the medial preoptic area-anterior hypothalamus or the medial basal hypothalamus the combination of OT and E-6-BSA significantly increased sexual receptivity over receptivity after artificial cerebrospinal fluid control infusions. Neither bilateral infusions of OT in combination with conjugated progesterone nor E-6-BSA in combination with luteinizing hormone-releasing hormone enhanced sexual receptivity. Results presented here strongly support the conclusion that some of the effects that E has in sensitizing brain systems to the facilitating effects of OT occur at the membrane level in the medial preoptic area-anterior hypothalamus and medial basal hypothalamus.  相似文献   

17.
The medial preoptic nucleus (MPN) plays an essential role in the coordination of behaviours and physiological responses necessary for reproduction. Since ageing is associated with a progressive deterioration of reproductive functions we have explored the possibility that changes in the structural organization of the MPN might be implicated in this process. Thus, we have estimated the volume of the MPN, and the total number and size of its neurons, using stereological methods, and quantitatively evaluated the dendritic trees of MPN neurons in Golgi-impregnated material. Male and female rats, aged 6, 24 and 30 months, were independently analysed. No cell loss was observed in aged rats of both sexes. However, the volume of the MPN and the somatic size of its neurons were remarkably enlarged in aged rats. No significant age-related changes in the size or shape of the dendritic trees or in dendritic spine density were found. To evaluate whether the changes observed in aged rats could be ascribed to an altered interaction between gonadal steroids and steroid-sensitive neurons, we have additionally estimated the to tal number of MPN neurons immunoreactive for the estrogen receptor-α. No significant age-related variations were detected. The age effects upon the MPN were more marked in females than in males and, consequently, the sexual dimorphisms in neuronal size and in the number of estrogen receptor-immunoreactive neurons were blunted in aged rats.  相似文献   

18.
The aromatization of testosterone (T) in the medial preoptic nucleus (POM) is known to regulate male courtship and sexual behaviors expressed prior to, and in anticipation of, copulation. Singing in male European starlings is used to attract mates prior to physical sexual contact, suggesting that the POM might be involved. The present study was performed to examine the effects of lesions targeting the POM on singing and courtship behavior in reproductively active male starlings. A significant decrease in song output and the gathering of green nest materials was observed in males with lesions to the POM compared to males with damage to brain areas outside of the POM. Lesions did not affect a male's tendency to remain near a female or to occupy a nestbox, suggesting that the effects of POM lesions were specific to courtship behaviors. Behavioral differences were not related to testis mass or volume, and GnRH immunoreactivity was observed within the hypothalamus and median eminence for each male, suggesting that the effects of POM lesions were related specifically to POM involvement in song expression rather than to a disruption of the GnRH axis. These results suggest a general role for the POM in the expression of behaviors related to sexual arousal or anticipation, including song.  相似文献   

19.
The central component of the medial preoptic nucleus (MPNc) of the rat has served as an excellent model of sexual differentiation. The MPNc is larger in adult males than in females, and its development is regulated by perinatal gonadal hormones. Although testosterone (T) and its metabolite estradiol (E) sexually differentiate this region, the exact mechanism by which they act during development is not known. There is a dramatic sex difference in the expression of progesterone receptors (PR) in the MPN during development; perinatal males express higher levels of PR than females. Additionally, PR expression during this time is dependent on exposure to T. Thus, PR induction may be one mechanism by which T sexually differentiates the MPN. The present study investigated the potential role of PR in the sexual differentiation of the MPNc. Anatomical examination of PR distribution within the MPN of neonatal males revealed the presence of PR immunoreactive cells within the MPNc, suggesting a direct route of action for PR in the development of the MPNc. Additionally, we measured the effects of neonatal RU486 treatment, a progesterone and glucocorticoid receptor antagonist, on subsequent MPNc volume in neonatally T-treated females and neonatally castrated males, given T. RU486 treatment reduced the MPNc volume of T-treated females while it increased the volume in T-treated, neonatally castrated males. These results, taken together with the expression of PR in the MPNc, suggest that PR may influence the sexual differentiation of the MPNc volume.  相似文献   

20.
The morphology of lateral preoptic (POL) and lateral hypothalamic (HLA) neurons was studied in 14- to 200-day-old rats with the chlorate-formaldehyde modification of the Golgi method. Drawings of 91 POL and HLA neurons revealed three distinct neuronal types within the MFB based on somatic size and shape and dendritic morphology. Class I neurons, which accounted for 75-80% of the neurons in the MFB, has fusiform or multipolar somata averaging 21 X 14 micron and 2-5 sparsely branched dendrites with a moderate number of sticklike spines. The extensive dendritic domains of Class I neurons ranged from 700 to 1,500 micron and were usually oriented perpendicular to the longitudinal fibers of the MFB. Both nonoriented and oriented Class I neurons were encountered. Nonoriented Class I neurons had expansive dendritic arbors which reached nearly all regions of the MFB in the coronal plane. Oriented Class I neurons had dendritic domains which were confined to specific regions (e.g., ventral-lateral) of the MFB. Class II neurons, which made up approximately 10% of the MFB neurons, had large multipolar somata averaging 30 X 17 micron and 2-5 stout dendrites which were densely covered with hairlike spines. Class II neurons also exhibited spines on their somata and proximal dendritic trunks and had dendritic domains of 700-1,000 micron. Class III neurons had small somata averaging 15 X 12 micron and restricted dendritic arbors of 500-700 micron in diameter. Class III neurons exhibited both spiny and spine-free dendrites and made up 10% of MFB neurons. Because of the parcellation of chemically coded fiber systems within the MFB, individual POL and HLA neurons may not be homogeneous in the type of afferents they receive from other brain areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号