首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To mimic large numbers of nicked DNA duplexes we used a technique that produces nicked duplex DNA substrates by hybridization of complementary oligonucleotides, adjacent to an initiating primer, which are ligated together by a thermostable DNA ligase. Sequential ligation of nonanucleotides to this primary duplex results in the formation of polymers that can be analyzed by gel electrophoresis. The extent of polymerization is a measure of the efficiency of ligation. We determined the efficiency of ligation of nonanucleotides, using various length initiating primers, with three thermostable DNA ligases: Thermus thermophilus (Tth), Thermus scotoductus (Ts), and Rhodothermus marinus (Rm). Analysis of the effect of temperature for each ligase, and for each directing primer length, revealed that at 37 and 41 degrees C there was variation between ligase efficiency in the order Rm > or = Ts > or = Tth. The higher temperature of 46 degrees C was optimal for polymerization with each of the ligases and Rm ligase was the most efficient. Analysis of directionality of the ligations reactions suggests that for each of the Thermus ligases we tested, there was a bias to polymerization of nonanucleotides in a 5'-3' direction.  相似文献   

2.
Thermophilic eubacteria were screened for thermostability of DNA ligases and DNA polymerases. A total of 103 and 248 strains were screened respectively. The strains belonged to four distantly related genera of Thermus, Bacillus, Rhodothermus and Hydrogenobacter. Thermostable DNA ligases were found in 22% of the strains and thermostable DNA polymerase were found in 15% of the strains. Thermus strains gave the highest frequency of both heat tolerant enzymes.  相似文献   

3.
DNA ligases, critical enzymes for in vivo genome maintenance and modern molecular biology, catalyze the joining of adjacent 3′-OH and 5′-phosphorylated ends in DNA. To determine whether DNA annealing equilibria or properties intrinsic to the DNA ligase enzyme impact end-joining ligation outcomes, we used a highly multiplexed, sequencing-based assay to profile mismatch discrimination and sequence bias for several ligases capable of efficient end-joining. Our data reveal a spectrum of fidelity and bias, influenced by both the strength of overhang annealing as well as sequence preferences and mismatch tolerances that vary both in degree and kind between ligases. For example, while T7 DNA ligase shows a strong preference for ligating high GC sequences, other ligases show little GC-dependent bias, with human DNA Ligase 3 showing almost none. Similarly, mismatch tolerance varies widely among ligases, and while all ligases tested were most permissive of G:T mismatches, some ligases also tolerated bulkier purine:purine mismatches. These comprehensive fidelity and bias profiles provide insight into the biology of end-joining reactions and highlight the importance of ligase choice in application design.  相似文献   

4.
DNA ligases, found in both prokaryotes and eukaryotes, covalently link the 3′-hydroxyl and 5′-phosphate ends of duplex DNA segments. This reaction represents a completion step for DNA replication, repair and recombination. It is well established that ligases are sensitive to mispairs present on the 3′ side of the ligase junction, but tolerant of mispairs on the 5′ side. While such discrimination would increase the overall accuracy of DNA replication and repair, the mechanisms by which this fidelity is accomplished are as yet unknown. In this paper, we present the results of experiments with Tth ligase from Thermus thermophilus HB8 and a series of nucleoside analogs in which the mechanism of discrimination has been probed. Using a series of purine analogs substituted in the 2 and 6 positions, we establish that the apparent base pair geometry is much more important than relative base pair stability and that major groove contacts are of little importance. This result is further confirmed using 5-fluorouracil (FU) mispaired with guanine. At neutral pH, the FU:G mispair on the 3′ side of a ligase junction is predominantly in a neutral wobble configuration and is poorly ligated. Increasing the solution pH increases the proportion of an ionized base pair approximating Watson–Crick geometry, substantially increasing the relative ligation efficiency. These results suggest that the ligase could distinguish Watson–Crick from mispaired geometry by probing the hydrogen bond acceptors present in the minor groove as has been proposed for DNA polymerases. The significance of minor groove hydrogen bonding interactions is confirmed with both Tth and T4 DNA ligases upon examination of base pairs containing the pyrimidine shape analog, difluorotoluene (DFT). Although DFT paired with adenine approximates Watson–Crick geometry, a minor groove hydrogen bond acceptor is lost. Consistent with this hypothesis, we observe that DFT-containing base pairs inhibit ligation when on the 3′ side of the ligase junction. The NAD+-dependent ligase, Tth, is more sensitive to the DFT analog on the unligated strand whereas the ATP-dependent T4 ligase is more sensitive to substitutions in the template strand. Electrophoretic gel mobility-shift assays demonstrate that the Tth ligase binds poorly to oligonucleotide substrates containing analogs with altered minor groove contacts.  相似文献   

5.
Structural and mechanistic conservation in DNA ligases   总被引:9,自引:5,他引:4       下载免费PDF全文
DNA ligases are enzymes required for the repair, replication and recombination of DNA. DNA ligases catalyse the formation of phosphodiester bonds at single-strand breaks in double-stranded DNA. Despite their occurrence in all organisms, DNA ligases show a wide diversity of amino acid sequences, molecular sizes and properties. The enzymes fall into two groups based on their cofactor specificity, those requiring NAD+ for activity and those requiring ATP. The eukaryotic, viral and archael bacteria encoded enzymes all require ATP. NAD+-requiring DNA ligases have only been found in prokaryotic organisms. Recently, the crystal structures of a number of DNA ligases have been reported. It is the purpose of this review to summarise the current knowledge of the structure and catalytic mechanism of DNA ligases.  相似文献   

6.
5′-Adenylated oligonucleotides (AppOligos) are widely used for single-stranded DNA/RNA ligation in next-generation sequencing (NGS) applications such as microRNA (miRNA) profiling. The ligation between an AppOligo adapter and target molecules (such as miRNA) no longer requires ATP, thereby minimizing potential self-ligations and simplifying library preparation procedures. AppOligos can be produced by chemical synthesis or enzymatic modification. However, adenylation via chemical synthesis is inefficient and expensive, while enzymatic modification requires pre-phosphorylated substrate and additional purification. Here we cloned and characterized the Pfu RNA ligase encoded by the PF0353 gene in the hyperthermophilic archaea Pyrococcus furiosus. We further engineered fusion enzymes containing both Pfu RNA ligase and T4 polynucleotide kinase. One fusion enzyme, 8H-AP, was thermostable and can directly catalyze 5′-OH-terminated DNA substrates to adenylated products. The newly discovered Pfu RNA ligase and the engineered fusion enzyme may be useful tools for applications using AppOligos.  相似文献   

7.
A new rapid assay method for DNA ligases has been developed, which allows direct quantification of enzyme activity without using the traditional polyacrylamide gel electrophoretic technique. In this method, the 5'-biotinylated nicked duplex was used as a substrate for the ligase reaction, in which the 5'-end of the first oligonucleotide (19-mer) on the nicked strand is biotinylated and the second oligonucleotide (20-mer) on the same strand is labeled with radioactive 32P at the 5'-end. After ligation of the biotinylated 19-mer oligonucleotide into the second oligonucleotide with the reaction of DNA ligases, the biotinylated 19-mer oligonucleotide is converted into the radioactive 39-mer oligonucleotide. The ligase reaction products were heat-denatured to release both ligated and unligated biotinylated oligonucleotides. The biotinylated oligonucleotides were then captured on a streptavidin-coated microtiter plate and counted. The results obtained using this method correlated very well with those from the standard assay method using electrophoresis. Using this assay method, we were able to screen a chemical library and identify new DNA ligase inhibitors structurally related to resorcinol, which has growth inhibitory effects on the human breast cancer cell, MCF-7. The method described here is anticipated to be very useful for screening DNA ligase inhibitors from chemical libraries.  相似文献   

8.
Zhu H  Shuman S 《Nucleic acids research》2007,35(11):3631-3645
Agrobacterium tumefaciens encodes a single NAD+-dependent DNA ligase and six putative ATP-dependent ligases. Two of the ligases are homologs of LigD, a bacterial enzyme that catalyzes end-healing and end-sealing steps during nonhomologous end joining (NHEJ). Agrobacterium LigD1 and AtuLigD2 are composed of a central ligase domain fused to a C-terminal polymerase-like (POL) domain and an N-terminal 3′-phosphoesterase (PE) module. Both LigD proteins seal DNA nicks, albeit inefficiently. The LigD2 POL domain adds ribonucleotides or deoxyribonucleotides to a DNA primer-template, with rNTPs being the preferred substrates. The LigD1 POL domain has no detectable polymerase activity. The PE domains catalyze metal-dependent phosphodiesterase and phosphomonoesterase reactions at a primer-template with a 3′-terminal diribonucleotide to yield a primer-template with a monoribonucleotide 3′-OH end. The PE domains also have a 3′-phosphatase activity on an all-DNA primer-template that yields a 3′-OH DNA end. Agrobacterium ligases C2 and C3 are composed of a minimal ligase core domain, analogous to Mycobacterium LigC (another NHEJ ligase), and they display feeble nick-sealing activity. Ligation at DNA double-strand breaks in vitro by LigD2, LigC2 and LigC3 is stimulated by bacterial Ku, consistent with their proposed function in NHEJ.  相似文献   

9.
In this study, we present the discovery and characterization of a highly thermostable endolysin from bacteriophage Ph2119 infecting Thermus strain MAT2119 isolated from geothermal areas in Iceland. Nucleotide sequence analysis of the 16S rRNA gene affiliated the strain with the species Thermus scotoductus. Bioinformatics analysis has allowed identification in the genome of phage 2119 of an open reading frame (468 bp in length) coding for a 155-amino-acid basic protein with an Mr of 17,555. Ph2119 endolysin does not resemble any known thermophilic phage lytic enzymes. Instead, it has conserved amino acid residues (His30, Tyr58, His132, and Cys140) that form a Zn2+ binding site characteristic of T3 and T7 lysozymes, as well as eukaryotic peptidoglycan recognition proteins, which directly bind to, but also may destroy, bacterial peptidoglycan. The purified enzyme shows high lytic activity toward thermophiles, i.e., T. scotoductus (100%), Thermus thermophilus (100%), and Thermus flavus (99%), and also, to a lesser extent, toward mesophilic Gram-negative bacteria, i.e., Escherichia coli (34%), Serratia marcescens (28%), Pseudomonas fluorescens (13%), and Salmonella enterica serovar Panama (10%). The enzyme has shown no activity against a number of Gram-positive bacteria analyzed, with the exception of Deinococcus radiodurans (25%) and Bacillus cereus (15%). Ph2119 endolysin was found to be highly thermostable: it retains approximately 87% of its lytic activity after 6 h of incubation at 95°C. The optimum temperature range for the enzyme activity is 50°C to 78°C. The enzyme exhibits lytic activity in the pH range of 6 to 10 (maximum at pH 7.5 to 8.0) and is also active in the presence of up to 500 mM NaCl.  相似文献   

10.
The genes encoding of DNA ligases from the thermophilic archaeon Pyrococcus abyssi (PabDNA ligase) and Methanobacterium thermoautotrophicum (MthDNA ligase) were cloned and expressed in Escherichia coli. The activity of purified enzymes was studied by ligation of two oligonucleotides, one of which had preformed hairpin structure. In the used system the maximal output of reaction products for both DNA ligases was observed near 70 degrees C that is explained by substrate thermostability. At stoichiometric ratio of enzymes and substrate the output of a product reaches of plateau at 70-75% of theoretical ones. Investigated DNA ligases showed different thermostability. The half-time life of PabDNA ligase was about 60 min at 90 degrees C. MthDNA ligase was completely inactivated at this temperature during 10 min. Recombinant DNA ligases from P. abyssi and M. thermoautotrophicum possessed high stability during a storage at 4 degrees C.  相似文献   

11.
The PCR is an extremely powerful method for detecting microorganisms. However, its full potential as a rapid detection method is limited by the inhibition of the thermostable DNA polymerase from Thermus aquaticus by many components found in complex biological samples. In this study, we have compared the effects of known PCR-inhibiting samples on nine thermostable DNA polymerases. Samples of blood, cheese, feces, and meat, as well as various ions, were added to PCR mixtures containing various thermostable DNA polymerases. The nucleic acid amplification capacity of the nine polymerases, under buffer conditions recommended by the manufacturers, was evaluated by using a PCR-based detection method for Listeria monocytogenes in the presence of purified template DNA and different concentrations of PCR inhibitors. The AmpliTaq Gold and the Taq DNA polymerases from Thermus aquaticus were totally inhibited in the presence of 0.004% (vol/vol) blood in the PCR mixture, while the HotTub, Pwo, rTth, and Tfl DNA polymerases were able to amplify DNA in the presence of 20% (vol/vol) blood without reduced amplification sensitivity. The DNA polymerase from Thermotoga maritima (Ultma) was found to be the most susceptible to PCR inhibitors present in cheese, feces, and meat samples. When the inhibitory effect of K and Na ions was tested on the nine polymerases, HotTub from Thermus flavus and rTth from Thermus thermophilus were the most resistant. Thus, the PCR-inhibiting effect of various components in biological samples can, to some extent, be eliminated by the use of the appropriate thermostable DNA polymerase.  相似文献   

12.
Microsatellite repeats consisting of dinucleotide sequences are ubiquitous in the human genome and have proven useful for linkage analysis, positional cloning and forensic identification purposes. In this study, the potential of utilizing the ligase detection reaction for the analysis of such microsatellite repeat sequences was investigated. Initially, the fidelity of thermostable DNA ligases was measured for model dinucleotide repeat sequences. Subsequently, the effect of modified oligonucleotides on ligation fidelity for dinucleotide repeats was determined using the nucleoside analogs nitroimidazole, inosine, 7-deazaguanosine and 2-pyrimidinone, as well as natural base mismatches. The measured error rates for a standard dinucleotide template indicated that the nitroimidazole nucleoside analogs could be used to increase the fidelity of ligation when compared to unmodified primers. Furthermore, use of formamide in the ligation buffer also increased ligation fidelity for dinucleotide repeat sequences. Using ligation-based assays to detect polymorphic alleles of microsatellite repeats in the human genome opens the possibility of using array-based typing of these loci for human identification, loss-of-heterozygosity studies and linkage analysis.  相似文献   

13.
Fatty acyl-AMP ligase (FAAL) is a new member of a family of adenylate-forming enzymes that were recently discovered in Mycobacterium tuberculosis. They are similar in sequence to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, while FACLs perform a two-step catalytic reaction, AMP ligation followed by CoA ligation using ATP and CoA as cofactors, FAALs produce only the acyl adenylate and are unable to perform the second step. We report X-ray crystal structures of full-length FAAL from Escherichia coli (EcFAAL) and FAAL from Legionella pneumophila (LpFAAL) bound to acyl adenylate, determined at resolution limits of 3.0 and 1.85 Å, respectively. The structures share a larger N-terminal domain and a smaller C-terminal domain, which together resemble the previously determined structures of FAAL and FACL proteins. Our two structures occur in quite different conformations. EcFAAL adopts the adenylate-forming conformation typical of FACLs, whereas LpFAAL exhibits a unique intermediate conformation. Both EcFAAL and LpFAAL have insertion motifs that distinguish them from the FACLs. Structures of EcFAAL and LpFAAL reveal detailed interactions between this insertion motif and the interdomain hinge region and with the C-terminal domain. We suggest that the insertion motifs support sufficient interdomain motions to allow substrate binding and product release during acyl adenylate formation, but they preclude CoA binding, thereby preventing CoA ligation.  相似文献   

14.
Double-strand DNA breaks (DSBs) are toxic to cells, and improper repair can cause chromosomal abnormalities that initiate and drive cancer progression. DNA ligases III and IV (LIG3, LIG4) have long been credited for repair of DSBs in mammals, but recent evidence suggests that DNA ligase I (LIG1) has intrinsic end-joining (EJ) activity that can compensate for their loss. To test this model, we employed in vitro biochemical assays to compare EJ by LIG1 and LIG3. The ligases join blunt-end and 3′-overhang-containing DNA substrates with similar catalytic efficiency, but LIG1 joins 5′-overhang-containing DNA substrates ∼20-fold less efficiently than LIG3 under optimal conditions. LIG1-catalyzed EJ is compromised at a physiological concentration of Mg2+, but its activity is restored by increased molecular crowding. In contrast to LIG1, LIG3 efficiently catalyzes EJ reactions at a physiological concentration of Mg2+ with or without molecular crowding. Under all tested conditions, LIG3 has greater affinity than LIG1 for DNA ends. Remarkably, LIG3 can ligate both strands of a DSB during a single binding encounter. The weaker DNA binding affinity of LIG1 causes significant abortive ligation that is sensitive to molecular crowding and DNA terminal structure. These results provide new insights into mechanisms of alternative nonhomologous EJ.  相似文献   

15.
Two hormone-sensitive lipase (HSL) family esterases (RmEstA and RmEstB) from the thermophilic fungus Rhizomucor miehei, exhibiting distinct substrate specificity, have been recently reported to show great potential in industrial applications. In this study, the crystal structures of RmEstA and RmEstB were determined at 2.15 Å and 2.43 Å resolutions, respectively. The structures of RmEstA and RmEstB showed two distinctive domains, a catalytic domain and a cap domain, with the classical α/β-hydrolase fold. Catalytic triads consisting of residues Ser161, Asp262, and His292 in RmEstA, and Ser164, Asp261, and His291 in RmEstB were found in the respective canonical positions. Structural comparison of RmEstA and RmEstB revealed that their distinct substrate specificity might be attributed to their different substrate-binding pockets. The aromatic amino acids Phe222 and Trp92, located in the center of the substrate-binding pocket of RmEstB, blocked this pocket, thus narrowing its catalytic range for substrates (C2–C8). Two mutants (F222A and W92F in RmEstB) showing higher catalytic activity toward long-chain substrates further confirmed the hypothesized interference. This is the first report of HSL family esterase structures from filamentous fungi.jlr The information on structure-function relationships could open important avenues of exploration for further industrial applications of esterases.  相似文献   

16.
RNA and DNA ligases catalyze the formation of a phosphodiester bond between the 5′-phosphate and 3′-hydroxyl ends of nucleic acids. In this work, we describe the ability of the thermophilic RNA ligase MthRnl from Methanobacterium thermoautotrophicum to recognize and modify the 3′-terminal phosphate of RNA and single-stranded DNA (ssDNA). This ligase can use an RNA 3′p substrate to generate an RNA 2′,3′-cyclic phosphate or convert DNA3′p to ssDNA3′pp5′A. An RNA ligase from the Thermus scotoductus bacteriophage TS2126 and a predicted T4 Rnl1-like protein from Thermovibrio ammonificans, TVa, were also able to adenylate ssDNA 3′p. These modifications of RNA and DNA 3′-phosphates are similar to the activities of RtcA, an RNA 3′-phosphate cyclase. The initial step involves adenylation of the enzyme by ATP, which is then transferred to either RNA 3′p or DNA 3′p to generate the adenylated intermediate. For RNA 3′pp5′A, the third step involves attack of the adjacent 2′ hydroxyl to generate the RNA 2′,3′-cyclic phosphate. These steps are analogous to those in classical 5′ phosphate ligation. MthRnl and TS2126 RNA ligases were not able to modify a 3′p in nicked double-stranded DNA. However, T4 DNA ligase and RtcA can use 3′-phosphorylated nicks in double-stranded DNA to produce a 3′-adenylated product. These 3′-terminal phosphate-adenylated intermediates are substrates for deadenylation by yeast 5′Deadenylase. Our findings that classic ligases can duplicate the adenylation and phosphate cyclization activity of RtcA suggests that they have an essential role in metabolism of nucleic acids with 3′-terminal phosphates.  相似文献   

17.
Pre-tRNA splicing is an essential process in all eukaryotes. It requires the concerted action of an endonuclease to remove the intron and a ligase for joining the resulting tRNA halves as studied best in the yeast Saccharomyces cerevisiae. Here, we report the first characterization of an RNA ligase protein and its gene from a higher eukaryotic organism that is an essential component of the pre-tRNA splicing process. Purification of tRNA ligase from wheat germ by successive column chromatographic steps has identified a protein of 125 kDa by its potentiality to covalently bind AMP, and by its ability to catalyse the ligation of tRNA halves and the circularization of linear introns. Peptide sequences obtained from the purified protein led to the elucidation of the corresponding proteins and their genes in Arabidopsis and Oryza databases. The plant tRNA ligases exhibit no overall sequence homologies to any known RNA ligases, however, they harbour a number of conserved motifs that indicate the presence of three intrinsic enzyme activities: an adenylyltransferase/ligase domain in the N-terminal region, a polynucleotide kinase in the centre and a cyclic phosphodiesterase domain at the C-terminal end. In vitro expression of the recombinant Arabidopsis tRNA ligase and functional analyses revealed all expected individual activities. Plant RNA ligases are active on a variety of substrates in vitro and are capable of inter- and intramolecular RNA joining. Hence, we conclude that their role in vivo might comprise yet unknown essential functions besides their involvement in pre-tRNA splicing.  相似文献   

18.
DNA ligases have broad application in molecular biology, from traditional cloning methods to modern synthetic biology and molecular diagnostics protocols. Ligation-based detection of polynucleotide sequences can be achieved by the ligation of probe oligonucleotides when annealed to a complementary target sequence. In order to achieve a high sensitivity and low background, the ligase must efficiently join correctly base-paired substrates, while discriminating against the ligation of substrates containing even one mismatched base pair. In the current study, we report the use of capillary electrophoresis to rapidly generate mismatch fidelity profiles that interrogate all 256 possible base-pair combinations at a ligation junction in a single experiment. Rapid screening of ligase fidelity in a 96-well plate format has allowed the study of ligase fidelity in unprecedented depth. As an example of this new method, herein we report the ligation fidelity of Thermus thermophilus DNA ligase at a range of temperatures, buffer pH and monovalent cation strength. This screen allows the selection of reaction conditions that maximize fidelity without sacrificing activity, while generating a profile of specific mismatches that ligate detectably under each set of conditions.  相似文献   

19.
Plant and fungal tRNA ligases are trifunctional enzymes that repair RNA breaks with 2′,3′-cyclic-PO4 and 5′-OH ends. They are composed of cyclic phosphodiesterase (CPDase) and polynucleotide kinase domains that heal the broken ends to generate the 3′-OH, 2′-PO4, and 5′-PO4 required for sealing by a ligase domain. Here, we use short HORNA>p substrates to determine, in a one-pot assay format under single-turnover conditions, the order and rates of the CPDase, kinase and ligase steps. The observed reaction sequence for the plant tRNA ligase AtRNL, independent of RNA length, is that the CPDase engages first, converting HORNA>p to HORNA2′p, which is then phosphorylated to pRNA2′p by the kinase. Whereas the rates of the AtRNL CPDase and kinase reactions are insensitive to RNA length, the rate of the ligase reaction is slowed by a factor of 16 in the transition from 10-mer RNA to 8-mer and further by eightfold in the transition from 8-mer RNA to 6-mer. We report that a single ribonucleoside-2′,3′-cyclic-PO4 moiety enables AtRNL to efficiently splice an otherwise all-DNA strand. Our characterization of a fungal tRNA ligase (KlaTrl1) highlights important functional distinctions vis à vis the plant homolog. We find that (1) the KlaTrl1 kinase is 300-fold faster than the AtRNL kinase; and (2) the KlaTrl1 kinase is highly specific for GTP or dGTP as the phosphate donor. Our findings recommend tRNA ligase as a tool to map ribonucleotides embedded in DNA and as a target for antifungal drug discovery.  相似文献   

20.
Mannan is one of the major constituent groups of hemicellulose, which is a renewable resource from higher plants. β-Mannanases are enzymes capable of degrading lignocellulosic biomass. Here, an endo-β-mannanase from Rhizopus microsporus (RmMan134A) was cloned and expressed. The recombinant RmMan134A showed maximal activity at pH?5.0 and 50?°C, and exhibited high specific activity towards locust bean gum (2337?U/mg). To gain insight into the substrate-binding mechanism of RmMan134A, four complex structures (RmMan134A–M3, RmMan134A-M4, RmMan134A-M5 and RmMan134A-M6) were further solved. These structures showed that there were at least seven subsites (?3 to +4) in the catalytic groove of RmMan134A. Mannose in the ?1 subsite hydrogen bonded with His113 and Tyr131, revealing a unique conformation. Lys48 and Val159 formed steric hindrance, which impedes to bond with galactose branches. In addition, the various binding modes of RmMan134A–M5 indicated that subsites ?2 to +2 are indispensable during the hydrolytic process. The structure of RmMan134A–M4 showed that mannotetrose only binds at subsites +1 to +4, and RmMan134A could therefore not hydrolyze mannan oligosaccharides with degree of polymerization ≤4. Through rational design, the specific activity and optimal conditions of RmMan134A were significantly improved. The purpose of this paper is to investigate the structure and function of fungal GH family 134 β-1,4-mannanases, and substrate-binding mechanism of GH family 134 members.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号