首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Daily measurement of gas exchanges during a complete growth cycle: photosynthesis, transpiration and night respiration in a soil culture of maize. During a complete growth cycle, photosynthesis (P), night-respiration (R) and transpiration (T) have been measured daily for maize (Zea mays L. cv. INRA F7 × F2) in a self-regulating growth chamber. P and T varied according to three different kinetics. During the growing period there was a fast and concomitant variation of both P and T, which could be filled to a power function of time. During the fructification period we observed a linear decrease of P and T. Finally, during the senescence period P decreased to zero, whereas T kept a value higher than the evaporation of the naked soil. In the first two periods, the P/T ratio decreased as leaves aged. From this we could deduce that a slow increase of stomatal resistance (RS) and mesophyll resistance (RM) took place. R increased until the panicle appeared; it remained constant during fructification and then it decreased with senescence. Each nitrogen supply induced a transient increase of R. Finally, a water stress led to a greater decrease of P than of R, but the after effect of water stress disappeared a day later. These results were compared with those obtained in hydroponic conditions.  相似文献   

2.
Daily Patterns under the Life Cycle of a Maize Crop   总被引:3,自引:0,他引:3  
Together with photosynthesis, transpiration and respiration, the daily uptake of NO3?, NH4+, H2PO4?, K+, Ca2+, Mg2+, SO42?, the root respiration, root volume increase and root excretions have been studied by daily measurements during the growth period of whole maize plants (Zea mays L. cv. INRA F7 × F2) raised until complete maturity on nutrient solution. The uptake patterns show a maximum absorption of NO3?, K+ and Ca2+ during the vegetative growth phase. The absorption of these ions declines during maturation while that of H2PO4? reaches a maximum. Root respiration and particularly the uptake of NO3? and K+ are well correlated with the rate of root growth. Root excretion is more notable in young plants than in the old. It represents less than 0.2% of the net assimilation of adult plants.  相似文献   

3.
Measurements of photosynthesis and respiration were made on leaves in summer in a Quercus rubra L. canopy at approximately hourly intervals throughout 5 days and nights. Leaves were selected in the upper canopy in fully sunlit conditions (upper) and in the lower canopy (lower). In addition, leaves in the upper canopy were shaded (upper shaded) to decrease photosynthesis rates. The data were used to test the hypothesis that total night‐time respiration is dependent on total photosynthesis during the previous day and that the response is mediated through changes in storage in carbohydrate pools. Measurements were made on clear sunny days with similar solar irradiance and air temperature, except for the last day when temperature, especially at night, was lower than that for the previous days. Maximum rates of photosynthesis in the upper leaves (18.7 μmol m?2 s?1) were approximately four times higher than those in the lower leaves (4.3 μmol m?2 s?1) and maximum photosynthesis rates in the upper shaded leaves (8.0 μmol m?2 s?1) were about half those in the upper leaves. There was a strong linear relationship between total night‐time respiration and total photosynthesis during the previous day when rates of respiration were normalized to a fixed temperature of 20°C, removing the effects of temperature from this relationship. Measurements of specific leaf area, nitrogen and chlorophyll concentration and calculations of the maximum rate of carboxylation activity, Vcmax, were not significantly different between upper and upper shaded leaves 5 days after the shading treatment was started. There were small, but significant decreases in the rate of apparent maximum electron transport at saturating irradiance, Jmax (P>0.05), and light use efficiency, ? (P<0.05), for upper shaded leaves compared with those for upper leaves. This suggests that the duration of shading in the experiment was sufficient to initiate changes in the electron transport, but not the carboxylation processes of photosynthesis. Support for the hypothesis was provided from analysis of soluble sugar and starch concentrations in leaves. Respiration rates in the upper shaded leaves were lower than those expected from a relationship between respiration and soluble sugar concentration for fully exposed upper and lower leaves. However, there was no similar difference in starch concentrations. This suggests that shading for the duration of several days did not affect sugar concentrations but reduced starch concentrations in leaves, leading to lower rates of respiration at night. A model was used to quantify the significance of the findings on estimated canopy CO2 exchange for the full growing season. Introducing respiration as a function of total photosynthesis on the previous day resulted in a decrease in growing season night‐time respiration by 23% compared with the value when respiration was held constant. This highlights the need for a process‐based approach linking respiration to photosynthesis when modelling long‐term carbon exchange in forest ecosystems.  相似文献   

4.
Boyer JS 《Plant physiology》1970,46(2):233-235
Rates of photosynthesis, dark respiration, and leaf enlargement were studied in soil-grown corn (Zea mays), soybean (Glycine max), and sunflower (Helianthus annuus) plants at various leaf water potentials. As leaf water potentials decreased, leaf enlargement was inhibited earlier and more severely than photosynthesis or respiration. Except for low rates of enlargement, inhibition of leaf enlargement was similar in all three species, and was large when leaf water potentials dropped to about −4 bars.  相似文献   

5.
Low root temperature effects on vegetative growth of soybean (Harosoy 63 × Rhizobium japonicum USDA 16) were examined in 35 day old plants exposed to temperatures of 15°C (shoots at 25°C) for an 11 day period. Duing this period various aspects of C and N assimilation and partitioning were monitored including shoot night and nodulated root respiration, C and N partitioning to six plant parts, C2H2 reduction, H2 evolution, leaf area, transpiration, net photosynthesis, and N2 fixation. The low temperature treatment resulted in a decrease in the net rate of N2 fixation but nitrogenase relative efficiency increased. In response, the plant retained N in the tissues of the nodulated root and decreased N partitioning to young shoot tissues, thereby inducing the remobilization of N from older leaves, and reducing leaf area development. The leaf area specific rate of net photosynthesis was not affected over the study period; however, shoot and nodulated root respiration declined. Consequently, C accumulated in mature leaves and stems, partly in the form of increased starch reserves. Three possibilities were considered for increasing low temperature tolerance in nodulated soybeans: (a) decrease in temperature optima for nitrogenase, (b) increased development of nodules and N2 fixation capacity at low temperature, and (c) alterations in the pattern of C and N partitioning in response to low temperature conditions.  相似文献   

6.
The knock‐out mutation of plastidial phosphoglucomutase (pgm) causes a starchless phenotype in Arabidopsis thaliana, and results in a severe growth reduction of plants cultivated under diurnal conditions. It has been speculated that high soluble sugar levels accumulating during the light phase in leaf mesophyll might cause a reduction of photosynthetic activity or that shortage of reduced carbon during the night is the reason for the slow biomass gain of pgm. Separate simultaneous measurements of leaf net photosynthesis and root respiration demonstrate that photosynthetic activity per unit fresh weight is not reduced in pgm, whereas root respiration is strongly elevated. Comparison with a mutant defective in the dominating vacuolar invertase (AtβFruct4) revealed that high sucrose concentration in the cytosol, but not in the vacuole, of leaf cells is responsible for elevated assimilate transport to the root. Increased sugar supply to the root, as observed in pgm mutants, forces substantial respiratory losses. Because root respiration accounts for 80% of total plant respiration under long‐day conditions, this gives rise to retarded biomass formation. In contrast, reduced vacuolar invertase activity leads to reduced net photosynthesis in the shoot and lowered root respiration, and affords an increased root/shoot ratio. The results demonstrate that roots have very limited capacity for carbon storage but exert rigid control of supply for their maintenance metabolism.  相似文献   

7.
The effect of four different NaCl concentrations (from 0 to 102 mM NaCl) on seedlings leaves of two corn (Zea mays L.) varieties (Aristo and Arper) was investigated through chlorophyll (Chl) a fluorescence parameters, photosynthesis, stomatal conductance, photosynthetic pigments concentration, tissue hydration and ionic accumulation. Salinity treatments showed a decrease in maximal efficiency of PSII photochemistry (Fv/Fm) in dark-adapted leaves. Moreover, the actual PSII efficiency (ϕPSII), photochemical quenching coefficient (qp), proportion of PSII centers effectively reoxidized, and the fraction of light used in PSII photochemistry (%P) were also dropped with increasing salinity in light-adapted leaves. Reductions in these parameters were greater in Aristo than in Arper. The tissue hydration decreased in salt-treated leaves as did the photosynthesis, stomatal conductance (g s) and photosynthetic pigments concentration essentially at 68 and 102 mM NaCl. In both varieties the reduction of photosynthesis was mainly due to stomatal closure and partially to PSII photoinhibition. The differences between the two varieties indicate that Aristo was more susceptible to salt-stress damage than Arper which revealed a moderate regulation of the leaf ionic accumulation.  相似文献   

8.
Elevated CO2 enhances carbon uptake of a plant stand, but the magnitude of the increase varies among growth stages. We studied the relative contribution of structural and physiological factors to the CO2 effect on the carbon balance during stand development. Stands of an annual herb Chenopodium album were established in open-top chambers at ambient and elevated CO2 concentrations (370 and 700 μmol mol−1). Plant biomass growth, canopy structural traits (leaf area, leaf nitrogen distribution, and light gradient in the canopy), and physiological characteristics (leaf photosynthesis and respiration of organs) were studied through the growing season. CO2 exchange of the stand was estimated with a canopy photosynthesis model. Rates of light-saturated photosynthesis and dark respiration of leaves as related with nitrogen content per unit leaf area and time-dependent reduction in specific respiration rates of stems and roots were incorporated into the model. Daily canopy carbon balance, calculated as an integration of leaf photosynthesis minus stem and root respiration, well explained biomass growth determined by harvests (r 2 = 0.98). The increase of canopy photosynthesis with elevated CO2 was 80% at an early stage and decreased to 55% at flowering. Sensitivity analyses suggested that an alteration in leaf photosynthetic traits enhanced canopy photosynthesis by 40–60% throughout the experiment period, whereas altered canopy structure contributed to the increase at the early stage only. Thus, both physiological and structural factors are involved in the increase of carbon balance and growth rate of C. album stands at elevated CO2. However, their contributions were not constant, but changed with stand development.  相似文献   

9.
Summary The time-response of the CO2-exchange of both leaf surfaces was measured separately. Leaves of Primula palinuri and Zea mays were used for the study. After short dark-periods (3 min) the stomata are not closed. Consequently CO2-uptake starts quickly after re-illumination and reaches the steady-state value very rapidly. The time-response of stripped leaves of Primula and of normal leaves after short dark-periods is identical. Accordingly, the conclusion seems to be evident that in both cases we are measuring the time-response of photosynthesis, which is not influenced by stomatal reactions. After long dark-periods (60 min) the stomata are closed. After re-illumination the CO2 released by respiration is immediately reassimilated. There is a distinct lag-phase in time-response which is more or less located in the CO2-compensation point. This lag-phase is of different length for both leaf surfaces, and is interpreted as being the lag-phase of stomatal opening reactions. The consequence of the observed different time response of photosynthesis and stomatal reactions is discussed: under non-steady-state conditions photosynthesis is limited by slow stomatal opening reactions.  相似文献   

10.
Interactions between photosynthetic substrate supply and temperature in determining the rate of three respiration components (leaf, belowground and ecosystem respiration) were investigated within three environmentally controlled, Populus deltoides forest bays at Biosphere 2, Arizona. Over 2 months, the atmospheric CO2 concentration and air temperature were manipulated to test the following hypotheses: (1) the responses of the three respiration components to changes in the rate of photosynthesis would differ both in speed and magnitude; (2) the temperature sensitivity of leaf and belowground respiration would increase in response to a rise in substrate availability; and, (3) at the ecosystem level, the ratio of respiration to photosynthesis would be conserved despite week‐to‐week changes in temperature. All three respiration rates responded to the CO2 concentration‐induced changes in photosynthesis. However, the proportional change in the rate of leaf respiration was more than twice that of belowground respiration and, when photosynthesis was reduced, was also more rapid. The results suggest that aboveground respiration plays a key role in the overall response of ecosystem respiration to short‐term changes in canopy photosynthesis. The short‐term temperature sensitivity of leaf respiration, measured within a single night, was found to be affected more by developmental conditions than photosynthetic substrate availability, as the Q10 was lower in leaves that developed at high CO2, irrespective of substrate availability. However, the temperature sensitivity of belowground respiration, calculated between periods of differing air temperature, appeared to be positively correlated with photosynthetic substrate availability. At the ecosystem level, respiration and photosynthesis were positively correlated but the relationship was affected by temperature; for a given rate of daytime photosynthesis, the rate of respiration the following night was greater at 25 than 20°C. This result suggests that net ecosystem exchange did not acclimate to temperature changes lasting up to 3 weeks. Overall, the results of this study demonstrate that the three respiration terms differ in their dependence on photosynthesis and that, short‐ and medium‐term changes in temperature may affect net carbon storage in terrestrial ecosystems.  相似文献   

11.
Leaf respiration and photosynthesis will respond differently to an increase in temperature during night, which can be more relevant in sensitive ecosystems such as Antarctica. We postulate that the plant species able to colonize the Antarctic Peninsula – Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. – are able to acclimate their foliar respiration and to maintain photosynthesis under nocturnal warming to sustain a positive foliar carbon balance. We conducted a laboratory experiment to evaluate the effect of time of day (day and night) and nocturnal warming on dark respiration. Short (E0 and Q10) and long‐term acclimation of respiration, leaf carbohydrates, photosynthesis (Asat) and foliar carbon balance (R/A) were evaluated. The results suggest that the two species have differential thermal acclimation respiration, where D. antarctica showed more thermosensitivity to short‐term changes in temperature than C. quitensis. Experimental nocturnal warming affected respiration at daytime differentially between the two species, with a significant increase of R10 and Asat in D. antarctica, while no changes on respiration were observed in C. quitensis. Long thermal treatments of the plants indicated that nocturnal but not diurnal respiration could acclimate in both species, and to a greater extent in C. quitensis. Non‐structural carbohydrates were related with respiration in C. quitensis but not in D. antarctica, suggesting that respiration in the former species is likely controlled by total soluble sugars and starch during day and night, respectively. Finally, foliar carbon balance was differentially improved under warming conditions in Antarctic plants by different mechanisms, with C. quitensis deploying respiratory acclimation, while D. antarctica increased its Asat.  相似文献   

12.
A comparison of the effects of a rapidly imposed water deficit with different leaf ages on chlorophyll a fluorescence and gas exchange was performed in maize (Zea mays L.) plants. The relationships between photosynthesis and leaf relative turgidity (RT) and ion leakage were further investigated. Leaf dehydration substantially decreased net photosynthetic rate (A) and stomatal conductance (G s), particularly for older leaves. With dehydration time, F v /F m maintained a relatively stable level for youngest leaves but significantly decreased for the older leaves. The electron transport rate (ETR) sharply decreased with intensifying dehydration and remained at lower levels during continuous dehydration. The photochemical quenching of variable chlorophyll fluorescence (q P) gradually decreased with dehydration intensity for the older leaves but increased for the youngest leaves, whereas dehydration did not affect the nonphotochemical chlorophyll fluorescence quenching (NPQ) for the youngest leaves but remarkably decreased it for the older leaves. The leaf RT was significantly and positively correlated with its F v /F m, ETR, and q P, and the leaf ion leakage was significantly and negatively correlated with F v /F m and NPQ. Our results suggest that the photosynthetic systems of young and old leaves decline at different rates when exposed to rapid dehydration.  相似文献   

13.
Effects of temperature on the gas exchange of leaves in the light and dark   总被引:3,自引:0,他引:3  
G. Hofstra  J. D. Hesketh 《Planta》1969,85(3):228-237
Summary Evolution of CO2 into CO2-free air was measured in the light and in the dark over a range of temperatures from 15 to 50°. Photosynthetic rates were measured in air and O2-free air over the same range of temperatures. Respiration in the light had a different sensitivity to temperature compared with respiration in the dark. At the lower temperatures the rate of respiration in the light was higher than respiration in the dark, whereas at temperatures above 40° the reverse was observed. For any one species the maximum rates of photosynthesis and photorespiration occur at about the same temperature. The maximum rate for dark respiration generally is found at a temperature about 10° higher. Zea mays and Atriplex nummularia showed no enhancement of photosynthesis in O2-free air nor any evolution of CO2 in CO2-free air at any of the temperatures.  相似文献   

14.
High temperature reduces crop production; however, little is known about the effects of high night temperature (HNT) on the development of male and female reproductive organs, pollination, kernel formation and grain yield in maize (Zea mays L.). Therefore, a temperature-controlled experiment was carried out using heat-sensitive maize hybrid and including three temperature treatments of 32/22°C (day/night; control), 32/26°C and 32/30°C during 14 consecutive days encompassing the flowering stage. When exposed to 30°C night temperature, grain yield and kernel number reduced by 23.8 and 25.1%, respectively, compared with the control. The decrease in grain yield was mainly because of the lower kernel number rather than change in kernel weight under HNT exposure around flowering. No significant differences in grain yield and kernel number were found between 22 and 26°C night temperatures. HNT had no significant effects on the onset of flowering time and anthesis-silking interval but significantly reduced time period of pollen shedding duration and pollen viability, and increased leaf night respiration. Different from high daytime temperature, HNT had no lasting effects on daytime leaf photosynthesis, biomass production and assimilate transportation. From the perspective of source–flow–sink relationship, the unchanged source and flow capacities during daytime are supposed to alleviate the adverse effects on sink strength caused by HNT compared with daytime heat stress. These new findings commendably filled the knowledge gaps concerning heat stress in maize.  相似文献   

15.
Robert Turgeon  J. A. Webb 《Planta》1975,123(1):53-62
Summary Net photosynthesis, dark respiration and growth for leaf 5 of Cucurbita pepo L. plants grown under controlled conditions were measured and the data used for an assessment of the changes in carbon balance during growth of the leaf through expansion to maturity. The blade is first capable of net CO2 fixation when ca. 8% expanded but the initial rapid growth during this period is sustained almost entirely through imported nutrients. When the growth rate starts to decline rapidly the net photosynthetic capacity of the blade begins to increase. This increase is accompanied by an expansion of the intercellular spaces and by decreasing dark respiration measured at night and in dark periods during the day. The blade becomes completely independent of phloem imported nutrients and begins to export excess photosynthate when the phase of rapid decrease in relative growth rate is almost complete at about 45% expansion. Maximum net photosynthesis of ca. 11 mg CO2 h-1 dm-2 is achieved at 70% expansion. The first detectable synthesis of the transport sugars stachyose and raffinose in the blade coincides with the beginning of intralaminar phloem transport from the tip to the base of the leaf. The synthesis of sucrose, the other major transport sugar, is detectable at all stages of leaf development.  相似文献   

16.
The rate of CO2 fixation (Fc) and 680 nm chlorophyll fluorescence emission (F680) were measured simultaneously during induction of photosynthesis in Zea mays L. leaves under varying experimental conditions in order to assess the validity of fluorescence as an indicator of in vivo photosynthetic carbon assimilation. Z. mays leaves showed typical Kautsky fluorescence induction curves consisting of a fast rise in emission (O to P) followed by a slow quenching via a major transient (S-M) to a steady-state (T). After an initial lag, net CO2 assimilation commenced at a point corresponding to the onset of the S-M transient on the F680 induction curve. Subsequently, Fc and F680 always arrived at a steady-state simultaneously. Decreasing the dark-adaption period increased the rate of induction of both parameters. Alteration of leaf temperature produced anti-parallel changes in induction characteristics of Fc and F680. Reducing the CO2 level to below that required for saturation of photosynthesis also produced anti-parallel changes during induction, however, at CO2 concentrations tenfold greater than the atmospheric level the rate of F680 quenching from P to T was appreciably reduced without a similar change in the induction of Fc. Removal of CO2 at steady-state produced only a small increase in F680 and a correspondingly small decrease in F680 occurred when CO2 was re-introduced. The complex relationship between chlorophyll fluorescence and carbon assimilation in vivo is discussed and the applicability of fluorescence as an indicator of carbon assimilation is considered.Abbreviations Fc rate of CO2 fixation - F680 fluorescence emission at 680 nm  相似文献   

17.
The aim of this work was to discover whether the respiration of wheat (Triticum aestivum L. cv. Huntsman) leaves, transferred to darkness after 7 h photosynthesis, showed an initial period of wasteful respiration. For young and old leaves, CO2 production and O2 uptake after 7 h photosynthesis were up to 56% higher than at the end of an 8-h night. The maximum catalytic activities of citrate synthase (EC 4.1.3.7), aconitase (EC 4.2.1.3), fumarase (EC 4.2.1.2) and cytochrome-c oxidase (EC 1.9.3.1) at the end of the day did not differ from those at the end of the night. Changes in the contents of glucose 6-phosphate, fructose-1,6-bisphosphate, dihydroxyacetone phosphate, and -ketoglutarate did not as a group parallel the changes in the rate of respiration. The detailed distribution of label from [U-14C] sucrose supplied to leaves in the dark was similar at the end of the day and the end of the night. No correlation was observed between the rates of leaf respiration and extension growth. It is argued that the higher rate of respiration at the beginning of the night cannot be attributed to wasteful respiration.Abbreviation RQ respiratory quotient We thank Dr H. Thomas and Professor C.J. Pollock, Institute for Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, UK for their generous help in measuring leaf extension. R.H.A. thanks the Science and Engineering Research Council for a studentship.  相似文献   

18.
In order to investigate the relative impacts of increases in day and night temperature on tree carbon relations, we measured night‐time respiration and daytime photosynthesis of leaves in canopies of 4‐m‐tall cottonwood (Populus deltoides Bartr. ex Marsh) trees experiencing three daytime temperatures (25, 28 or 31 °C) and either (i) a constant nocturnal temperature of 20 °C or (ii) increasing nocturnal temperatures (15, 20 or 25 °C). In the first (day warming only) experiment, rates of night‐time leaf dark respiration (Rdark) remained constant and leaves displayed a modest increase (11%) in light‐saturated photosynthetic capacity (Amax) during the day (1000–1300 h) over the 6 °C range. In the second (dual night and day warming) experiment, Rdark increased by 77% when nocturnal temperatures were increased from 15 °C (0·36 µmol m?2 s?1) to 25 °C (0·64 µmol m?2 s?1). Amax responded positively to the additional nocturnal warming, and increased by 38 and 64% in the 20/28 and 25/31 °C treatments, respectively, compared with the 15/25 °C treatment. These increases in photosynthetic capacity were associated with strong increases in the maximum carboxylation rate of rubisco (Vcmax) and ribulose‐1,5‐bisphosphate (RuBP) regeneration capacity mediated by maximum electron transport rate (Jmax). Leaf soluble sugar and starch concentration, measured at sunrise, declined significantly as nocturnal temperature increased. The nocturnal temperature manipulation resulted in a significant inverse relationship between Amax and pre‐dawn leaf carbohydrate status. Independent measurements of the temperature response of photosynthesis indicated that the optimum temperature (Topt) acclimated fully to the 6 °C range of temperature imposed in the daytime warming. Our findings are consistent with the hypothesis that elevated night‐time temperature increases photosynthetic capacity during the following light period through a respiratory‐driven reduction in leaf carbohydrate concentration. These responses indicate that predicted increases in night‐time minimum temperatures may have a significant influence on net plant carbon uptake.  相似文献   

19.
The effect of exogenous proline on the activity of the glycolate pathway in Nicotiana tabacum cv. Xanthi n.c. An exogenous proline supply in the light provokes an increase in free glycine concentration in apical tissues or in leaf disks of vegetative Nicotiana tabacum L. cv. Xanthi n.c. This does not occur in the equivalent tissues of tobacco plants after floral induction, these being naturally rich in proline. In vegetative tobacco, we have tried to determine this specific action of exogenous proline. With 14C glycine, 14CO2 experiments (Pulse-chase) and glycine decarboxylase activity determinations, we observed that glycine-serine transformation was inhibited by proline supply. Presently it is important to determine if endogenous proline acts on the same reaction.  相似文献   

20.
Effects of above-ground herbivory on short-term plant carbon allocation were studied using maize (Zea mays) and a generalist lubber grasshopper (Romalea guttata). We hypothesized that above-ground herbivory stimulates current net carbon assimilate allocation to below-ground components, such as roots, root exudation and root and soil respiration. Maize plants 24 days old were grazed (c. 25–50% leaf area removed) by caging grasshoppers around individual plants and 18 h later pulse-labelled with14CO2. During the next 8 h,14C assimilates were traced to shoots, roots, root plus soil respiration, root exudates, rhizosphere soil, and bulk soil using carbon-14 techniques. Significant positive relationships were observed between herbivory and carbon allocated to roots, root exudates, and root and soil respiration, and a significant negative relationship between herbivory and carbon allocated to shoots. No relationship was observed between herbivory and14C recovered from soil. While herbivory increased root and soil respiration, the peak time for14CO2 evolved as respiration was not altered, thereby suggesting that herbivory only increases the magnitude of respiration, not patterns of translocation through time. Although there was a trend for lower photosynthetic rates of grazed plants than photosynthetic rates of ungrazed plants, no significant differences were observed among grazed and ungrazed plants. We conclude that above-ground herbivory can increase plant carbon fluxes below ground (roots, root exudates, and rhizosphere respiration), thus increasing resources (e.g., root exudates) available to soil organisms, especially microbial populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号