首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudomonas aeruginosa LasA protease is a secreted metalloendopeptidase that can lyse Staphylococcus aureus cells by cleaving the pentaglycine bridges of their peptidoglycan. It can also degrade elastin and stimulate shedding of cell-surface proteoglycans, activities implicated in pathogenesis of P. aeruginosa infections. The activity of LasA protease can be assayed spectrophotometrically by following the reduction in turbidity of S. aureus cell suspensions. This assay, however, does not permit kinetic studies and its reproducibility is poor. Here we describe a two-stage enzymatic reaction for the continuous measurement of LasA protease activity using a defined substrate, succinyl-Gly-Gly-Phe-4-nitroanilide, supplemented with Streptomyces griseus aminopeptidase. Cleavage of the Gly-Phe bond by LasA protease is followed by hydrolysis of the product Phe-4-nitroanilide by the aminopeptidase and the rate of release of the chromophore (4-nitroaniline) is measured spectrophotometrically using a 96-well microplate reader. Activity of nanogram amounts of LasA protease could be determined within a few minutes. Furthermore, this assay permitted the determination of Km and kcat values for LasA protease, which were 0.46 mM and 11.8s(-1), respectively. Pseudomonas elastase was also active in the assay. However, it was less effective than LasA protease and its activity was inhibited by phosphoramidon. The assay is highly sensitive and reproducible, providing a convenient tool for further studies of LasA protease function(s) and mechanism of action.  相似文献   

2.
The LasA protease of Pseudomonas aeruginosa can degrade elastin and is an important contributor to the pathogenesis of this organism. LasA (20 kDa) is a member of the beta-lytic endopeptidase family of extracellular bacterial proteases, and it shows high-level staphylolytic activity. We sequenced the lasA gene from strain FRD1 and overexpressed it in Escherichia coli. The lasA gene encodes a precursor, known as pre-proLasA, of 45,582 Da. Amino-terminal sequence analysis allowed the identification of the signal peptidase cleavage site and revealed that the 31-amino-acid signal peptide was removed in E. coli. The remaining proLasA (42 kDa) did not undergo autoproteolytic processing and showed little staphylolytic activity. However, it was readily processed to a 20-kDa active staphylolytic protease by incubation with trypsin or with the culture filtrate of a P. aeruginosa lasAdelta mutant. Thus, removal of the propeptide (22 kDa) was required to convert proLasA into an active protease. Although LasA protease was critical for staphylolytic activity, other proteases like elastase were found to enhance staphylolysis. Under the control of an inducible trc promoter, lasA was overexpressed in P. aeruginosa and the processing intermediates were examined. Compared with wild-type cells, the overproducing cells accumulated more 42-kDa proLasA species, and the culture supernatants of the overproducing cells showed increased levels of active 20-kDa LasA protease. Small amounts of a 25-kDa extracellular LasA-related protein, which could represent a potential processing intermediate, were also observed. To better understand the structure-function relationships in LasA protease, we tested whether His-120-X-His-122 in the mature portion of LasA plays a role in activity. This motif and surrounding sequences are conserved in the related beta-lytic protease of Achromobacter lyticus. Oligonucleotide-directed mutagenesis was used to change His-120 to Ala-120, thus forming the lasA5 allele. The product of lasA5 expressed from the chromosome of P. aeruginosa was processed to a stable, secreted 20-kDa protein (designated LasA-H120A) which was devoid of staphylolytic activity. This suggests that His-120 is essential for LasA activity and favors the possibility that proLasA processing and secretion in P. aeruginosa can proceed via mechanisms which do not involve autoproteolysis.  相似文献   

3.
Pseudomonas aeruginosa is a common cause of corneal infections, particularly among users of soft contact lenses. Previous studies with chemically induced mutants deficient in alkaline protease (AP) or elastase (LasB) suggested that these proteases contributed to the rapid liquifactive stromal necrosis characteristic of P. aeruginosa corneal infections. Because these mutants might harbor other chromosomal changes that could affect virulence, the role of these proteases in the pathogenesis of corneal disease (as well as a second elastase, LasA protease) was reexamined by constructing isogenic mutants deficient only in these enzymes. Allelic exchange was used to construct mutants of P. aeruginosa PAO1-V deficient in AP (PAO1-V AP[ - ]), LasB and LasA protease (PDO801 LasB[ - ]), or all three proteases (PDO801 TM). These mutants were then evaluated for virulence using mouse scratch and rabbit intrastromal injection models of corneal disease. Loss of AP significantly increased disease scores in the rabbit (P < 0.030) but not the mouse (P > 0.060) model of infection. Loss of both elastases had no effect on ocular virulence in either animal model of corneal disease (P > 0.100). The loss of all three proteases significantly decreased disease scores in the rabbit (P < 0.035), but not in the mouse (P > 0.110). Taken together, these data suggest that AP, LasB, and LasA protease are not essential for initiating or maintaining a corneal infection. Furthermore, AP appears to be an important mediator of pathology depending on the location of the organism within the cornea and whether or not concomitant elastolytic activity is present.  相似文献   

4.
Pseudomonas aeruginosa is an opportunistic pathogen that causes severe infections in vulnerable hosts. It may produce various virulence factors including proteases. Among them, LasA possesses both elastolytic and staphylolytic (hydrolysis of pentaglycine cross-links in the cell wall peptidoglycan) activities. To understand if its elastolytic activity results from a preference for glycine-rich substrates, we studied its ability to hydrolyse the 65 pentapeptides of human tropoelastin containing at least three glycines. As demonstrated by capillary electrophoresis (CE), 22 of these peptides were hydrolysed by LasA, generally at a single peptide bond and the catalytic ratio kcat/KM was determined for most of them. The highest value was obtained for LGGGA, 59 +/- 9 min(-1) x mmol(-1) x L. The specificity of hydrolysis was elucidated by CE, liquid secondary ion mass spectrometry and, in some cases, collision activated dissociation-mass analysis of ion kinetic energy. The preferred cleavage sites are GG and GA peptide bonds, the sequence GG(cleavage site)A being especially sensitive to hydrolysis. Both positions P2 and P'2 must be occupied for hydrolysis and the presence of an amino acid in P3 (but not in P'3) significantly increases the catalytic ratio. Considering these results, about 30 GGX sequences (X: G, A or Y) of human tropoelastin could be susceptible to LasA elastolysis.  相似文献   

5.
SARS main protease is essential for life cycle of SARS coronavirus and may be a key target for developing anti-SARS drugs. Recently, the enzyme expressed in Escherichia coli was characterized using a HPLC assay to monitor the formation of products from 11 peptide substrates covering the cleavage sites found in the SARS viral genome. This protease easily dissociated into inactive monomer and the deduced Kd of the dimer was 100 microM. In order to detect enzyme activity, the assay needed to be performed at micromolar enzyme concentration. This makes finding the tight inhibitor (nanomolar range IC50) impossible. In this study, we prepared a peptide with fluorescence quenching pair (Dabcyl and Edans) at both ends of a peptide substrate and used this fluorogenic peptide substrate to characterize SARS main protease and screen inhibitors. The fluorogenic peptide gave extremely sensitive signal upon cleavage catalyzed by the protease. Using this substrate, the protease exhibits a significantly higher activity (kcat = 1.9 s(-1) and Km = 17 microM) compared to the previously reported parameters. Under our assay condition, the enzyme stays as an active dimer without dissociating into monomer and reveals a small Kd value (15 nM). This enzyme in conjunction with fluorogenic peptide substrate provides us a suitable tool for identifying potent inhibitors of SARS protease.  相似文献   

6.
The Pseudomonas aeruginosa -derived alkaline protease (AprA), elastase A (LasA), elastase B (LasB) and protease IV are considered to play an important role in pathogenesis of this organism. Although the sequence analysis of P. aeruginosa genome predicts the presence of several genes encoding other potential proteases in the genome, little has been known about the proteases involving in pathogenesis. Recently, Porphyromonas gingivalis gingipains and Serratia marcescens serralysin have been shown to activate protease-activated receptor 2 (PAR-2), thereby modulating host inflammatory and immune responses. Accordingly, we hypothesized that unknown protease(s) from P. aeruginosa would also modulate such responses through PARs. In this study, we found that P. aeruginosa produces a novel l arge e xo p rotease (LepA) distinct from known proteases such as AprA, LasA, LasB and protease IV. Sequence analysis of LepA showed a molecular feature of the proteins transported by the two-partner secretion pathway. Our results indicated that LepA activates NF-κB-driven promoter through human PAR-1, -2 or -4 and cleaves the peptides corresponding to the tethered ligand region of human PAR-1, -2 and -4 at a specific site with exposure of their tethered ligands. Considered together, these results suggest that LepA would require PARs to modulate various host responses against bacterial infection.  相似文献   

7.
Matsumoto K 《Biological chemistry》2004,385(11):1007-1016
Pseudomonas aeruginosa and Serratia marcescens can cause refractory keratitis resulting in corneal perforation and blindness. These bacteria produce various kinds of proteases. In addition to pseudomonal elastase (LasB) and alkaline protease, LasA protease and protease IV have recently been found to be more important virulence factors of P. aeruginosa . S. marcescens produces a cysteine protease in addition to metalloproteases. These bacterial proteases have a number of biological activities, such as degradation of tissue constituents and host defense-oriented proteins, as well as activation of zymogens (Hageman factor, prekallikrein and pro-matrix metalloproteinases) through limited proteolysis. In this article, the properties of these bacterial proteases are reviewed and the pathogenic roles of these proteases in pseudomonal keratitis are discussed.  相似文献   

8.
Further studies on Pseudomonas aeruginosa LasA: analysis of specificity   总被引:4,自引:0,他引:4  
Full elastolytic activity in Pseudomonas aeruginosa is a result of the combined activities of elastase, alkaline proteinase, and the lasA gene product, LasA. The results of this study demonstrate that an active fragment of the LasA protein which is isolated from the culture supernatant fraction is capable of degrading elastin in the absence of elastase, thus showing that LasA is a second elastase produced by this organism. In addition, it is shown that LasA-mediated enhancement of elastolysis results from the separate activities of LasA and elastase upon elastin. The LasA protein does not affect the secretion or activation of a proelastase as previously proposed in other studies. Furthermore, LasA has specific proteolytic capability, as demonstrated by its ability to cleave beta-casein. Preliminary analysis of beta-casein cleavage in the presence of various protease inhibitors suggests that LasA may be classified as a modified serine protease.  相似文献   

9.
We developed novel substrates for protease activity evaluation by fluorescence correlation spectroscopy (FCS). Substrates were labeled in a position-specific manner with a fluorophore near the N terminus and included a C-terminal, 30 kDa, highly soluble protein (elongation factor Ts [EF-Ts]). The C-terminal protein enhanced the substrate peptide solubility and increased the molecular weight, enabling sensitive detection by FCS. Using the labeled substrates, caspase-3 and matrix metalloproteinase-9 (MMP-9) activities were confirmed by FCS. To demonstrate the suitability of this FCS-based assay for high-throughput screening, we screened various chemical compounds for MMP-9 inhibitors. The screening results confirmed the inhibitory activity of one compound and also revealed another potential MMP-9 inhibitor. Thus, this combination of position-specific labeled protein substrates and FCS may serve as a useful tool for evaluating activities of various proteases and for protease inhibitor screening.  相似文献   

10.
Cathepsin B is a lysosomal cysteine protease exhibiting mainly dipeptidyl carboxypeptidase activity, which decreases dramatically above pH 5.5, when the enzyme starts acting as an endopeptidase. Since the common cathepsin B assays are performed at pH 6 and do not distinguish between these activities, we synthesized a series of peptide substrates specifically designed for the carboxydipeptidase activity of cathepsin B. The amino-acid sequences of the P(5)-P(1) part of these substrates were based on the binding fragments of cystatin C and cystatin SA, the natural reversible inhibitors of papain-like cysteine protease. The sequences of the P'(1)-P'(2) dipeptide fragments of the substrates were chosen on the basis of the specificity of the S'(1)-S'(2) sites of the cathepsin B catalytic cleft. The rates of hydrolysis by cathepsin B and papain, the archetypal cysteine protease, were monitored by a continuous fluorescence assay based on internal resonance energy transfer from an Edans to a Dabcyl group. The fluorescence energy donor and acceptor were attached to the C- and the N-terminal amino-acid residues, respectively. The kinetics of hydrolysis followed the Michaelis-Menten model. Out of all the examined peptides Dabcyl-R-L-V-G-F- E(Edans) turned out to be a very good substrate for both papain and cathepsin B at both pH 6 and pH 5. The replacement of Glu by Asp turned this peptide into an exclusive substrate for cathepsin B not hydrolyzed by papain. The substitution of Phe by Nal in the original substrate caused an increase of the specificity constant for cathepsin B at pH 5, and a significant decrease at pH 6. The results of kinetic studies also suggest that Arg in position P(4) is not important for the exopeptidase activity of cathepsin B, and that introducing Glu in place of Val in position P(2) causes an increase of the substrate preference towards this activity.  相似文献   

11.
Rapid, sensitive, and quantitative assays for proteases are important for drug development and in the diagnosis of disease. Here an assay for protease activity that uses inductively coupled plasma-mass spectrometry (ICP-MS) detection is described. Peptidic α-chymotrypsin substrates were synthesized containing a lanthanide ion chelate at the N terminus to provide a distinct elemental tag. A biotin label was appended to the C terminus of the peptide, allowing separation of uncleaved peptide from the enzymatic digestion. The enzyme activity was determined by quantifying the lanthanide ion signal of the peptide cleavage products by ICP-MS. Biotinylated substrates synthesized include Lu-DTPA-Asp-Leu-Leu-Val-Tyr∼Asp-Lys(biotin) and Lu-DTPA-βAla-βAla-βAla-βAla-Gly-Ser-Ala-Tyr∼Gly-Lys-Arg-Lys(biotin)-amide. Parallel assays with a commercially available fluorogenic substrate (Suc-AAPF-AMC) for α-chymotrypsin were performed for comparison. Using the ICP-MS assay, enzyme concentrations as low as 2 pM could be readily detected, superior to the detection limit of an assay using the α-chymotrypsin fluorogenic substrate (Suc-AAPF-AMC). Furthermore, we demonstrated the use of this approach to detect chymotrypsin activity in HeLa cell lysates.  相似文献   

12.
The ability of Pseudomonas aeruginosa to degrade elastin, a major component of connective tissue, likely contributes to its pathogenicity and multiplication in human tissues. Two extracellular enzymes are required for P. aeruginosa elastolytic activity: elastase and LasA. Elastase is a zinc metalloprotease, but little is known about the structure of LasA. When grown under metal ion-deficient conditions, P. aeruginosa culture supernatants were found to exhibit a low level of elastolytic activity, which coincided with production of low levels of the 51-kDa proelastase and no detectable LasA. By using this fact to identify factors that promote elastolytic activity, P. aeruginosa PAO1, FRD2, and DG1 were grown in metal ion-deficient medium supplemented with zinc (10(-4) M ZnCl2), calcium (2.5 x 10(-3) M CaCl2), or iron (10(-4) M FeCl3). High levels of proteolytic and elastolytic activity were exhibited by all strains when cultured in the presence of both zinc and calcium, and this was associated with the production of mature 33-kDa elastase and 21-kDa LasA. Supplementing DG1 and PAO1 cultures with zinc alone stimulated the production of 33-kDa elastase, which, because of the calcium-deficient conditions, exhibited low proteolytic and elastolytic activities. Zinc also stimulated the production of a 41-kDa form of LasA in DG1 and PAO1 culture supernatants. Elastase production by FRD2 cultured in the presence of zinc alone differed from that by the other two strains in that supernatants contained 33-kDa elastase, a 21-kDa form of LasA, and exhibited high proteolytic and elastolytic activities. Such strain-associated differences in LasA processing and elastase activity can be explained by differences in metal ion-scavenging mechanisms adapted by the strains. Supplementing cultures with calcium stimulated the production of elastase but had no effect on LasA production. The elastase produced exhibited variable sizes, possibly resulting from aberrant processing reactions, and showed little proteolytic activity. Proteolytic activity could be recovered from 33-kDa elastase produced in the presence of calcium by inclusion of zinc in the enzymatic assay. Although iron was previously found to exert a repressive effect on P. aeruginosa elastolytic activity, iron exerted little effect on elastolytic activity when added to cultures containing both zinc and calcium. These studies support the conclusion that elastase production and processing are promoted by both zinc and calcium. LasA production, in comparison, is stimulated by zinc, with both zinc and calcium facilitating its processing. The association of 41-kDa LasA with a low level of elastolytic activity and of 21-kDa LasA with a high level of activity supports the conclusion that lasA encodes a larger, precursor protein which is processed to an active 21-kDa form during secretion.  相似文献   

13.
Bacteria produce a range of proteolytic enzymes. In an attempt to detect and identify bacteria on the basis of their protease activity, a panel of protease substrates was investigated. Peptides conjugated to the fluorophore 7-amino-4-methylcoumarin (AMC) are well-established substrates for measuring protease activity. Although peptide-AMC substrates are generally not specific for a single protease, a unique pattern can be achieved for both highly specific enzymes and those with a broader substrate range by comparing different peptide substrates. The panel of 7 peptide-AMC substrates chosen exhibited a unique pattern for nine microbial proteases. The selected peptides were used to determine protease activity in cultured strains of Pseudomonas aeruginosa and Staphylococcus aureus. A signal pattern obtained with peptides with arginine, lysine, and tyrosine in the P1 position characterized the bacterial protease activities in these samples. The kinetic parameters for the three best substrates for the P. aeruginosa sample were calculated. Further information about substrate specificity was gained by the selective use of protease inhibitors. The results presented show that peptide-AMC substrates provide a simple and sensitive tool to characterize protease activity in microbiological samples and that they have the potential to identify and distinguish different bacterial species.  相似文献   

14.
The paper describes the characterization of proteases in the whole body homogenate of Moina macrocopa, which can possibly be inhibited by the extracts of Microcystis aeruginosa PCC7806. With the use of oligopeptide substrates and specific inhibitors, we detected the activities of trypsin, chymotrypsin, elastase and cysteine protease. Cysteine protease, the predominant enzyme behind proteolysis of a natural substrate, casein, was partially purified by gel filtration. The substrate SDS-polyacrylamide gel electrophoresis of body homogenate revealed the presence of nine bands of proteases (17-72 kDa). The apparent molecular mass of an exclusive cysteine protease was 60 kDa, whereas of trypsin, it was 17-24 kDa. An extract of M. aeruginosa PCC7806 significantly inhibited the activities of trypsin, chymotrypsin and cysteine protease in M. macrocopa body homogenate at estimated IC(50) of 6- to 79-microg dry mass mL(-1). Upon fractionation by C-18 solid-phase extraction, 60% methanolic elute contained all the protease inhibitors, and these metabolites could be further separated by reverse-phase liquid chromatography. The metabolites inhibitory to M. macrocopa proteases also inhibited the corresponding class of proteases of mammalian/plant origin. The study suggests that protease inhibition may contribute to chemical interaction of cyanobacteria and crustacean zooplankton.  相似文献   

15.
LasA protease is a 20-kDa elastolytic and staphylolytic enzyme secreted by Pseudomonas aeruginosa. LasA is synthesized as a preproenzyme that undergoes proteolysis to remove a 22-kDa amino-terminal propeptide. Like the propeptides of other bacterial proteases, the LasA propeptide may act as an intramolecular chaperone that correctly folds the mature domain into an active protease. To locate regions of functional importance within proLasA, linker-scanning insertional mutagenesis was employed using a plasmid containing lasA as the target. Among the 5 missense insertions found in the mature domain of proLasA, all abolished enzymatic activity but not secretion. In general, the propeptide domain was more tolerant to insertions. However, insertions within a 9-amino-acid region in the propeptide caused dramatic reductions in LasA enzymatic activity. All mutant proLasA proteins were still secreted, but extracellular stability was low due to clustered insertions within the propeptide. The codons of 16 residues within and surrounding the identified 9-amino-acid region were subjected to site-directed mutagenesis. Among the alanine substitutions in the propeptide that had a major effect on extracellular LasA activity, two (L92A and W95A) resulted in highly unstable proteins that were susceptible to proteolytic degradation and three (H94A, I101A, and N102A) were moderately unstable and allowed the production of a LasA protein with low enzymatic activity. These data suggest that these clustered residues in the propeptide may play an important role in promoting the correct protein conformation of the mature LasA protease domain.  相似文献   

16.
Pseudomonas aeruginosa secretes multiple proteases that have been implicated as virulence factors and the detection of each specific enzyme can be difficult to determine. Unlike the three Pseudomonas enzymes that have been well characterized (elastase A, elastase B, and alkaline protease), the activity of protease IV in multiple assays has yet to be described. This study defines new assays for Pseudomonas proteases and compares protease IV activity to the activities of elastase A, elastase B, and alkaline protease. Six in vitro assays were studied: zymography, elastin congo red assay, staphylolytic assay, colorimetric peptide assay, solid-phase colorimetric peptide assay, and poly-l-lysine degradation. Casein zymography distinguished protease IV from elastase B and alkaline protease, and gelatin zymography differentiated all four proteases. The elastin congo red assay detected mainly elastase B while the staphylolytic assay was specific for elastase A. Protease IV activity was assayed specifically by the colorimetric assay and two new assays, the solid-phase colorimetric assay and degradation of poly-L-lysine in the presence of EDTA. Alkaline protease could be specifically assayed by poly-L-lysine degradation in the presence of N-alpha-p-tosyl-L-lysine chloromethyl ketone. The results identified three specific assays for protease IV, a new assay specific for alkaline protease, and showed that protease IV has a distinct enzymatic specificity relative to the three other Pseudomonas proteases.  相似文献   

17.
Inductively coupled plasma–mass spectrometry (ICP–MS)-based assays lend themselves to multiplexing due to the high resolution between mass channels, the sensitivity, and the reliability of the technique. Here the potential of ICP–MS-based protease assays is demonstrated with a quadruplex assay of cysteine proteases and metalloproteases. Four orthogonal peptide substrates were synthesized for the proteases calpain-1, caspase-3, matrix metalloprotease-9 (MMP-9), and a disintegrin and metalloprotease-10 (ADAM10). Each substrate carries a biotin tag at the C terminus and a diethylenetriaminepentaacetic acid (DTPA)-based lanthanide complex at the N terminus. The results demonstrate that this is a simple and reproducible analysis technique with excellent correlation between the single and multiplex assay formats.  相似文献   

18.
A 22-kilodalton protein purified from the culture supernatant fraction of Pseudomonas aeruginosa (strains PA220 and PAO1) was found to enhance the elastolytic activity of purified P. aeruginosa elastase. N-terminal sequence analysis identified the protein as a fragment of the lasA gene product (P.A. Schad and B.H. Iglewski, J. Bacteriol. 170:2784-2789, 1988). However, comparative analysis with the reported LasA sequence indicated that the purified LasA fragment is longer than the deduced sequence reported. The purified LasA fragment had minimal elastolytic and proteolytic activity and did not enhance the proteolytic activity of purified elastase, yet enhanced the elastolytic activity more than 25-fold. The LasA fragment was found to also enhance the elastolytic activities of thermolysin, human neutrophil elastase, and proteinase K. The results presented here suggest that the LasA protein interacts with the elastin substrate rather than modifying elastase.  相似文献   

19.
A bioluminescent general protease assay was developed using a combination of five luminogenic peptide substrates. The peptide-conjugated luciferin substrates were combined with luciferase to form a homogeneous, coupled-enzyme assay. This single-reagent format minimized backgrounds, gave stable signals, and reached peak sensitivity within 30 min. The bioluminescent assay was used to detect multiple proteases representing serine, cysteine, and metalloproteinase classes. The range of proteases detected was broader and the sensitivity greater, when compared with a standard fluorescent assay based on cleavage of the whole protein substrate casein. Fifteen of twenty proteases tested had signal-to-background ratios >10 with the bioluminescent method, compared with only seven proteases with the fluorescent approach. The bioluminescent assay also achieved lower detection limits (≤100 pg) than fluorescent methods. During protein purification processes, especially for therapeutic proteins, even trace levels of contamination can impact the protein's stability and activity. This sensitive, bioluminescent, protease assay should be useful for applications in which contaminating proteases are detrimental and protein purity is essential.  相似文献   

20.
Proteolytic activities in extracts from three nematodes, the plant parasites Heterodera glycines and Meloidogyne incognita, and the free-living Panagrellus redivivus, were surveyed for substrate preferences using a battery of seven FRET-modified peptide substrates, all derived from members of the large FMRF-amide like peptide (FLP) family in nematodes. Overall protease activity in P. redivivus was four- to fivefold greater than in either of the parasites, a result that might reflect developmental differences. Digestion of the M. incognita FLP KHEFVRFa (substrate Abz-KHEFVRF-Y(3-NO2)a) by M. incognita extract was sevenfold greater than with H. glycines extract and twofold greater than P. redivivus, suggesting species-specific preferences. Additional species differences were revealed upon screening 12 different protease inhibitors. Two substrates were used in the screen, Abz-KHEFVRF-Y(3-NO2)a and Abz-KPSFVRF-Y(3-NO2)a), which was digested equally by all three species. The effects of various inhibitor, substrate and extract source combinations on substrate digestion suggest that M. incognita differs significantly from P. redivivus and H. glycines in its complement of cysteine proteases, particularly cathepsin L-type protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号