首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the initial stages of intraperiplasmic growth of Bdellovibrio bacteriovorus on Escherichia coli, the peptidoglycan of the E. coli becomes acylated with long-chain fatty acids, primarily palmitic acid (60%) and oleic acid (20%). The attachment of the fatty acids to the peptidoglycan involves a carboxylic-ester bond, i.e., they were removed by treatment with alkaline hydroxylamine. Their linkage to the peptidoglycan does not involve a protein molecule. When the bdelloplast peptidoglycan was digested with lysozyme, the fatty acid-containing split products behaved as lipopeptidoglycan, i.e., they were extracted into the organic phase of 1-butanol:acetic acid:water (4:15) two-phase system; all of the lysozyme split products generated from normal E. coli peptidoglycan were extracted into the water phase. It is suggested that the function of the acylation reaction is to help stabilize the bdelloplast outer membrane against osmotic forces. In addition, a model is presented to explain how a bdellovibrio penetrates, stabilizes, and lyses a substrate cell.  相似文献   

2.
During penetration of Bdellovibrio bacteriovorus into Escherchia coli, two enzymatic activities, a glycanase and a peptidase, rapidly solubilized some 10 to 15% of the E. coli peptidoglycan. The glycanase activity, which solubilizes peptidoglycan amino sugars, came to a sharp halt with completion of the penetration process. Peptidase activity, which cleaves diaminopimelic acid residues from the peptidoglycan, continued, but at a decreasing rate. By 90 min after bdellovibrio attack, some 30% of the initial E. coli diaminopimelic acid residues were solubilized and present in the culture fluid as free diaminopimelic acid. During bdellovibrio penetration some 25% of the lipopolysaccharide glucosamine was also solubilized by an as yet undefined enzymatic activity that yielded products having molecular weights below 2,000. The solubilization of E. coli lipopolysaccharide glucosamine also terminated at completion of bdellovibrio penetration. At the end of bdellovibrio growth, a second period of rapid solubilization of bdelloplast peptidoglycan began which resulted in lysis of the bdelloplast and complete solubilization of the peptidoglycan amino sugars and diaminopimelic acid. The final lytic enzyme(s) was synthesized just before the time of lysis.  相似文献   

3.
Y Araki  E G Ruby 《Biochemistry》1988,27(7):2624-2629
An enzyme activity, responsible for the attachment of diaminopimelic acid (DAP) to bdelloplast wall peptidoglycan, was studied in an in vitro, cell-free system. Most of the activity was found in the high-speed (20000g) supernatant fraction of homogenates of bdelloplasts prepared from a culture of the intracellular bacterium Bdellovibrio bacteriovorus 109J, growing synchronously within cells of Escherichia coli. Peptidoglycan preparations obtained either from E. coli ML35 or from the walls of bdelloplasts synchronously cultured for 40 or 90 min served as the acceptors in this reaction, whereas cell wall or peptidoglycan preparations obtained from Gram-positive bacteria could not function as acceptors of DAP. The attachment activity had an apparent Km value for DAP of 10 microM; for bdelloplast peptidoglycan, it was approximately 0.43 mg/mL, which is 13 microM with respect to peptidoglycan disaccharide peptide units. DAP attachment was partially inhibited by the structural analogues lanthionine, L-ornithine, beta-aminobutyric acid, and D-serine, as well as the cell wall synthesis inhibitors penicillin G, ampicillin, and cephalexin. This enzyme activity is present only during the intracellular stage of the bdellovibrio's developmental growth cycle and may serve a stage-specific function of biochemically modifying the cell in which it grows.  相似文献   

4.
Within minutes of Bdellovibrio bacteriovorus attack on prey cells, such as Escherichia coli, the cytoplasmic membrane of the prey is altered. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified invaded prey cell (bdelloplast) membranes revealed the appearance of a noncytoplasmic membrane protein. This protein is not observed in preparations of noninvaded E. coli membranes and migrates in a manner similar to that of E. coli OmpF. Isoelectric focusing and two-dimensional gel electrophoresis of bdelloplast cytoplasmic membrane preparations also revealed the presence of a protein with electrophoretic properties similar to those of OmpF and the major Bdellovibrio outer membrane proteins. The protein appears in cytoplasmic membrane preparations within minutes of attack and persists throughout most of the intraperiplasmic developmental cycle. The appearance of this protein is consistent with our hypothesis that bdellovibrios translocate a pore protein into the bdelloplast cytoplasmic membrane to kill their prey and to gain access to the cytoplasmic contents for growth.  相似文献   

5.
Incubation of whole envelopes prepared from sonically oscillated Escherichia coli K-12 cultures with lysozyme in vitro resulted in the appearance of a protein species with an apparent molecular weight double that of outer membrane protein I. Similar dimers were also detected in purified outer membranes and whole envelopes from lysozyme-induced spheroplasts of E. coli K-12. This was confirmed by two-dimensional electrophoresis in which the dimers were resolved in the second dimension to run as single polypeptides of protein I. Formation of dimers was correlated with peptidoglycan degradation, but the ability of protein I molecules to associate may vary between strains of E. coli, since dimers were found only in outer membranes from E. coli W7. We suggest that extensive degradation of peptidoglycan leads to nonspecific formation of protein I aggregates, but that these aggregates do not occur in vivo.  相似文献   

6.
A new model for the penetration of prey cells by bdellovibrios.   总被引:13,自引:3,他引:10       下载免费PDF全文
Bdellovibrio bacteriovorus 109J and most other bdellovibrios cause prey cells to round following penetration. Bdellovibrio sp. strain W does not cause rounding of the prey. Analysis of enzyme activities during the early stages of bdellovibrio attack indicated that strain W differs from most other bdellovibrios in that there is no glycanase activity produced during penetration. Likewise, heat-killed prey were penetrated normally by strain 109J, but the resulting bdelloplast did not become round and no glycanase was detected, indicating that glycanase is not essential for penetration. Peptidoglycan from prey cells penetrated by strain W was sensitive to lysozyme, but these cells were not susceptible to attack and penetration by strain 109J, indicating that peptidoglycan deacetylation is not the primary exclusion mechanism. We propose a model in which it is the peptidase activity of the bdellovibrios which allows them to breach the peptidoglycan of their prey and in which the glycanase activity exhibited by strain 109J and other bdellovibrios is responsible for the rounding of the bdelloplast.  相似文献   

7.
Bdellovibrio sp. strain W bdellocysts were produced inEscherichia coli using three sources of3H-diaminopimelic acid (DAP) for incorporation into the cyst wall peptidoglycan: (a) labeledE. coli peptidoglycan, (b) labeledBdellovibrio peptidoglycan, and (c) exogenous3H-DAP in the encystment medium. After cysts were produced, they were either sonicated to remove the prey cell wall, or germinated to solubilize the cyst wall. The results show that label was incorporated into the cyst wall preferentially from the exogenous DAP in the medium, and not from the bdellovibrio or bdelloplast peptidoglycan. The encysting bdellovibrio does not therefore incorporate existing peptidoglycan units from the bdelloplast for synthesis of the cyst wall.  相似文献   

8.
An early event in the predatory lifestyle of Bdellovibrio bacteriovorus 109J is the attachment of diaminopimelic acid (DAP) to the peptidoglycan of its prey. Attachment occurs over the first 60 min of the growth cycle and is mediated by an extracellular activity(s) produced by the bdellovibrio. Some 40,000 DAP residues are incorporated into the Escherichia coli bdelloplast wall, amounting to ca. 2 to 3% of the total initial DAP content of its prey cells. Incorporation of DAP occurs when E. coli, Pseudomonas putida, or Spirillum serpens are the prey organisms. The structurally similar compounds lysine, ornithine, citrulline, and 2,4-diaminobutyric acid are not attached. The attachment process is not affected by heat-killing the prey nor by the addition of inhibitors of either energy generation (cyanide, azide, or arsenate), protein or RNA synthesis (chloramphenicol and rifamycin), or de novo synthesis of cell wall (penicillin or vancomycin). Approximately one-third of the incorporated DAP is exchangeable with exogenously added unlabeled DAP, whereas the remaining incorporated DPA is solubilized only during the lysis of the bdelloplast wall. Examination of DAP incorporation at low prey cell densities suggests that bdellovibrios closely couple the incorporation to an independent, enzymatic solubilization of DAP by a peptidase. The data indicate that DAP incorporation is a novel process, representing the second example of the ability of the bdellovibrio to biosynthetically modify the wall of its prey.  相似文献   

9.
Lysozymes are ancient and important components of the innate immune system of animals that hydrolyze peptidoglycan, the major bacterial cell wall polymer. Bacteria engaging in commensal or pathogenic interactions with an animal host have evolved various strategies to evade this bactericidal enzyme, one recently proposed strategy being the production of lysozyme inhibitors. We here report the discovery of a novel family of bacterial lysozyme inhibitors with widespread homologs in gram-negative bacteria. First, a lysozyme inhibitor was isolated by affinity chromatography from a periplasmic extract of Salmonella Enteritidis, identified by mass spectrometry and correspondingly designated as PliC (periplasmic lysozyme inhibitor of c-type lysozyme). A pliC knock-out mutant no longer produced lysozyme inhibitory activity and showed increased lysozyme sensitivity in the presence of the outer membrane permeabilizing protein lactoferrin. PliC lacks similarity with the previously described Escherichia coli lysozyme inhibitor Ivy, but is related to a group of proteins with a common conserved COG3895 domain, some of them predicted to be lipoproteins. No function has yet been assigned to these proteins, although they are widely spread among the Proteobacteria. We demonstrate that at least two representatives of this group, MliC (membrane bound lysozyme inhibitor of c-type lysozyme) of E. coli and Pseudomonas aeruginosa, also possess lysozyme inhibitory activity and confer increased lysozyme tolerance upon expression in E. coli. Interestingly, mliC of Salmonella Typhi was picked up earlier in a screen for genes induced during residence in macrophages, and knockout of mliC was shown to reduce macrophage survival of S. Typhi. Based on these observations, we suggest that the COG3895 domain is a common feature of a novel and widespread family of bacterial lysozyme inhibitors in gram-negative bacteria that may function as colonization or virulence factors in bacteria interacting with an animal host.  相似文献   

10.
11.
The digestion of single peptidoglycan chains of the recently proposed conformation (Formanek et al., 1974) can be described with the same enzymatic mechanism as proposed by Phillips for a hexasaccharide consisting of alternating N-acetylglucosamine, N-acetylmuramic acid residues (Phillips, 1966). It is shown by model building, that in a peptidoglycan lysozyme complex the peptide chains do not exhibit any sterical hindrance. The digestion of the peptidoglycan sacculus by lysozyme may occur at latice defects of its paracrystalline structure. A slit of about 30 A length and 10--15 A width between peptidoglycan micells may be sufficient for the attachment of lysozyme.  相似文献   

12.
Measurements of the sucrose-permeable and -impermeable volumes during Bdellovibrio bacteriovorus attack on Escherichia coli or Pseudomonas putida showed that the volume of the bdelloplast increased over that of the substrate cell. Although the pattern of the increase differed with the two organisms, the volumes reached maximum at about 60 min into the bdellovibrio growth cycle. By this time, the cytoplasmic membranes of the attacked cells were completely permeable to sucrose. The kinetics of increase in sucrosepermeable volumes were similar to the kinetics of attachment and penetration (Varon and Shilo, J. Bacteriol. 95:744-753, 1968). These data show that the original cytoplasmic and periplasmic compartmentalization of the substrate cell ceases to exist with respect to small hydrophilic molecules during bdellovibrio attack. In contrast, the effective pore size of the outer membrane of the substrate cell to small oligosaccharides remains unaltered during bdelloplast formation as was shown by direct measurements of its exclusion limits. The major porin protein of E. coli, OmpF, was recoverable from the bdelloplast outer membrane fraction until the onset of lysis. The Braun lipoprotein was removed from the bdelloplast wall early, and OmpA was lost in the terminal part of the bdellovibrio growth cycle.  相似文献   

13.
The digestion of single peptidoglycan chains of the recently proposed conformation (Formanek et al., 1974) can be described with the same enzymatic mechanism as proposed by Phillips for a hexasaccharide consisting of alternating N-acetylglucosamine, N-acetylmuramic acid residues (Phillips, 1966). It is shown by model building, that in a peptidoglycan lysozyme complex the peptide chains do not exhibit any sterical hindrance.The digestion of the peptidoglycan sacculus by lysozyme may occur at lattice defects of its paracrystalline structure. A slit of about 30 å lenght and 10–15 å width between peptidoglycan micells may be sufficient for the attachment of lysozyme.  相似文献   

14.
Lysozyme is a key component of the innate immune response in humans that provides a first line of defense against microbes. The bactericidal effect of lysozyme relies both on the cell wall lytic activity of this enzyme and on a cationic antimicrobial peptide activity that leads to membrane permeabilization. Among Gram-positive bacteria, the opportunistic pathogen Enterococcus faecalis has been shown to be extremely resistant to lysozyme. This unusual resistance is explained partly by peptidoglycan O-acetylation, which inhibits the enzymatic activity of lysozyme, and partly by d-alanylation of teichoic acids, which is likely to inhibit binding of lysozyme to the bacterial cell wall. Surprisingly, combined mutations abolishing both peptidoglycan O-acetylation and teichoic acid alanylation are not sufficient to confer lysozyme susceptibility. In this work, we identify another mechanism involved in E. faecalis lysozyme resistance. We show that exposure to lysozyme triggers the expression of EF1843, a protein that is not detected under normal growth conditions. Analysis of peptidoglycan structure from strains with EF1843 loss- and gain-of-function mutations, together with in vitro assays using recombinant protein, showed that EF1843 is a peptidoglycan N-acetylglucosamine deacetylase. EF1843-mediated peptidoglycan deacetylation was shown to contribute to lysozyme resistance by inhibiting both lysozyme enzymatic activity and, to a lesser extent, lysozyme cationic antimicrobial activity. Finally, EF1843 mutation was shown to reduce the ability of E. faecalis to cause lethality in the Galleria mellonella infection model. Taken together, our results reveal that peptidoglycan deacetylation is a component of the arsenal that enables E. faecalis to thrive inside mammalian hosts, as both a commensal and a pathogen.  相似文献   

15.
Polycationic polymers have been noted for their effects in promoting cell adhesion to various surfaces, but previous studies have failed to describe a mechanism dealing with this type of adhesion. In the present study, three polycationic polymers (chitosan, poly-L-lysine, and lysozyme) were tested for their effects on microbial hydrophobicity, as determined by adhesion to hydrocarbon and polystyrene. Test strains (Escherichia coli, Candida albicans, and a nonhydrophobic mutant, MR-481, derived from Acinetobacter calcoaceticus RAG-1) were vortexed with hexadecane in the presence of the various polycations, and the extent of adhesion was measured turbidimetrically. Adhesion of all three test strains rose from near zero values to over 90% in the presence of low concentrations of chitosan (125 to 250 micrograms/ml). Adhesion occurred by adsorption of chitosan directly to the cell surface, since E. coli cells preincubated in the presence of the polymer were highly adherent, whereas hexadecane droplets pretreated with chitosan were subsequently unable to bind untreated cells. Inorganic cations (Na+, Mg2+) inhibited the chitosan-mediated adhesion of E. coli to hexadecane, presumably by interfering with the electrostatic interactions responsible for adsorption of the polymer to the bacterial surface. Chitosan similarly promoted E. coli adhesion to polystyrene at concentrations slightly higher than those which mediated adhesion to hexadecane. Poly-L-lysine also promoted microbial adhesion to hexadecane, although at concentrations somewhat higher than those observed for chitosan. In order to study the effect of the cationic protein lysozyme, adhesion was studied at 0 degree C (to prevent enzymatic activity), using n-octane as the test hydrocarbon. Adhesion of E. coli increased by 70% in the presence of 80 micrograms of lysozyme per ml. When the negatively charged carboxylate residues on the E. coli cell surface were substituted for positively charged ammonium groups, the resulting cells became highly hydrophobic, even in the absence of polycations. The observed "hydrophobicity" of the microbial cells in the presence of polycations is thus probably due to a loss of surface electronegativity. The data suggest that enhancement of hydrophobicity by polycationic polymers is a general phenomenon.  相似文献   

16.
The molten globule state of equine lysozyme is more stable than that of alpha-lactalbumin and is stabilized by non-specific hydrophobic interactions and native-like hydrophobic interactions. We constructed a chimeric protein which is produced by replacing the flexible loop (residues 105-110) in human alpha-lactalbumin with the helix D (residues 109-114) in equine lysozyme to investigate the possible role of the helix D for the high stability and native-like packing interaction in the molten globule state of equine lysozyme. The stability of the molten globule state formed by the chimeric protein to guanidine hydrochloride-induced unfolding is the same as that of equine lysozyme and is substantially greater than that of human alpha-lactalbumin, although only six residues come from equine lysozyme. Our results also suggest that the non-native interaction in the molten globule state of alpha-lactalbumin changes to the native-like packing interaction due to helix substitution. The solvent-accessibility of the Trp residues in the molten globule state of the chimeric protein is similar to that in the molten globule state of equine lysozyme in which packing interaction around the Trp residues in the native state is partially preserved. Therefore, the helix D in equine lysozyme is one of the contributing factors to the high stability and native-like packing interaction in the molten globule state of equine lysozyme. Our results indicate that the native-like packing interaction can stabilize the rudimentary intermediate which is stabilized by the non-specific hydrophobic interactions.  相似文献   

17.
We have investigated the specificity of six different lysozymes for peptidoglycan substrates obtained by extraction of a number of gram-negative bacteria and Micrococcus lysodeikticus with chloroform/Tris-HCl buffer (chloroform/buffer). The lysozymes included two that are commercially available (hen egg white lysozyme or HEWL, and mutanolysin from Streptomyces globisporus or M1L), and four that were chromatographically purified (bacteriophage lambda lysozyme or LaL, bacteriophage T4 lysozyme or T4L, goose egg white lysozyme or GEWL, and cauliflower lysozyme or CFL). HEWL was much more effective on M. lysodeikticus than on any of the gram-negative cell walls, while the opposite was found for LaL. Also the gram-negative cell walls showed remarkable differences in susceptibility to the different lysozymes, even for closely related species like Escherichia coli and Salmonella Typhimurium. These differences could not be due to the presence of lysozyme inhibitors such as Ivy from E. coli in the cell wall substrates because we showed that chloroform extraction effectively removed this inhibitor. Interestingly, we found strong inhibitory activity to HEWL in the chloroform/buffer extracts of Salmonella Typhimurium, and to LaL in the extracts of Pseudomonas aeruginosa, suggesting that other lysozyme inhibitors than Ivy exist and are probably widespread in gram-negative bacteria.  相似文献   

18.
Preliminary studies from our laboratory have suggested the existence of a novel set of fatty acyltransferases in extracts of Escherichia coli that attach two R-3-hydroxymyristoyl moieties to UDP-GlcNAc (Anderson, M.S., Bulawa, C.E., and Raetz, C.R.H. (1985) J. Biol. Chem. 260, 15536-15541). The resulting "glucosamine-derived" phospholipids appear to be crucial precursors for the biosynthesis of the lipid A component of lipopolysaccharide. We now describe an assay and a 1000-fold purification of the first enzyme in this pathway, which catalyzes the reaction: UDP-GlcNAc + R-3-hydroxymyristoyl-acyl carrier protein----UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc + acyl carrier protein. The covalent structure of the monoacylated UDP-GlcNAc product was established by fast atom bombardment mass spectrometry and 1H-NMR spectroscopy. The UDP-GlcNAc acyltransferase has a strict requirement for R-3-hydroxymyristoyl-acyl carrier protein, since R-3-hydroxymyristoyl coenzyme A and myristoyl-acyl carrier protein are not substrates. Of various NDP-GlcNAc preparations examined, only the uridine and thymidine derivatives were utilized to a significant extent. When the product of the reaction (UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc) was isolated and reincubated with crude E. coli extracts, it was rapidly converted to more hydrophobic products in the presence of R-3-hydroxymyristoyl-acyl carrier protein. We propose that the addition of an R-3-hydroxymyristoyl residue to the 3 position of the GlcNAc moiety of UDP-GlcNAc is the first committed step in lipid A biosynthesis and that UDP-GlcNAc is situated at a biosynthetic branchpoint in E. coli leading either to lipid A or to peptidoglycan.  相似文献   

19.
Glu35 in chicken lysozyme has an abnormally high pKa (6.1) partly due to the hydrophobic environment provided by Trp108. The relationship between protein stability and abnormal pKa was investigated in detail by using mutant lysozymes in which Glu35 was replaced by undissociable residues and an oppositely ionizable residue. It was found that lysozyme was stabilized at alkaline pH range by the replacement of Glu35 with an undissociable residue, Gln (E35Q lysozyme) or Al (E35A lysozyme). On the other hand, when Glu35 was replaced by His (E35H lysozyme), which could have an opposite charge to Glu by ionization, the introduced His35 was found to have an abnormally low pKa (3.6), leading to the destabilization of lysozyme at acidic pH. These observations are completely consistent with the situation that the environment around Glu35 is highly hydrophobic and therefore the placement of either a positive or negative charge in such an environment leads to destabilization of lysozyme. These observations also indicate that the replacement of an acidic residue having abnormally high pKa or a basic residue having abnormally low pKa by an undissociable residue is a very efficient and general method for stabilization of a protein.  相似文献   

20.
噬菌体一般通过表达内溶素来降解宿主菌细胞壁上的肽聚糖 . 用 PCR 技术从结核杆菌 D29 噬菌体基因组中克隆了 gene10 ,并使其在大肠杆菌中得到了高效表达,蛋白质 C 端带有 6×His. 用镍柱亲和纯化了大肠杆菌表达的 gp10 蛋白可溶性部分 . 活性测定表明, gp10 不但具有几丁质酶活性,还具有溶菌酶活性,是一种双功能的酶 . 耻垢杆菌经 gp10 作用后,其生长受到抑制,扫描电镜观察发现部分耻垢杆菌被降解 . 说明与其他种类噬菌体降解细胞壁的方式不同, D29 噬菌体可能利用 gp10 的溶菌酶活性使结核杆菌细胞壁降解 . 这有助于揭示结核杆菌噬菌体与其宿主的相互作用机制,是关于噬菌体几丁质酶的首次报道 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号