首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The authors tested the ability of scattered tumor cells to re-form a tumor in vivo. Disseminated tumor cells are morphologically visible stained with May-Grünwald Giemsa in the lung, liver, kidney, and spleen of Yoshida ascites tumor bearing rats. Free tumor cells can easily be fine needle aspirated from those organs and injected in syngeneic Wistar rats. All the host rats show ascites tumor take after intraperitoneal transplantation of each aspirated sample. This biological model might be useful to study in vivo a wide range of properties of neoplastic and non-neoplastic host cells.  相似文献   

2.
Summary DBA/2 mice were immunized i.p. against syngeneic SL2 lymphosarcoma cells. At various days after the last immunization peritoneal and spleen lymphocytes were collected. The lymphocyte suspensions were enriched for T-cells by nylon wool filtration.The peritoneal T-cells from immunized mice (a) expressed direct specific antitumor cytotoxicity in vitro, (b) induced macrophage cytotoxicity in vitro, and (c) exerted tumor neutralization measured in a Winn-type assay. Spleen T-cells from these immunized mice (a) expressed no direct specific antitumor cytotoxicity in vitro, (b) only induced moderate macrophage cytotoxicity in vitro, but (c) exerted tumor neutralization in a Winn assay.For effective tumor neutralization in vivo effector target cell ratios of 1000:1 were required. When the effector/target ratio of 1000:1 was maintained but the absolute numbers of effector and target cells were lowered from 106 to 105 lymphocytes and 103 to 102 target cells respectively, no tumor neutralization was obtained.The major effect of the sensitized-transferred T-lymphocytes seemed to be the induction of cytotoxic macrophages in the (naive) recipient mice, as the peritoneal macrophages collected from the recipient mice 7 days after i.p. injection of a mixture of sensitized T-cells and tumor cells were cytotoxic. Purified peritoneal T-lymphocytes collected from these recipient mice were able to induce macrophage cytotoxicity in vitro but expressed no cytotoxic T-cell activity.In conclusion, our results show that in the tumor system used, tumor neutralization after transfer of sensitized lymphocytes is not dependent on the presence of cytotoxic T-lymphocytes. Lymphocytes with the strongest potency to render macrophages cytotoxic (in vitro and in vivo) also induce the best tumor neutralization in vivo, suggesting an important role for host macrophages as antitumor effector cells.  相似文献   

3.
Adoptive transfer of tumor-specific effector T cells induces regression of advanced tumors and induces a long term memory response; however, the origin of this response has not been clearly defined. In this study Thy1.2+ mice bearing advanced MCA-205 tumors were treated with sublethal total body irradiation, followed by adoptive transfer of congenic Thy1.1+ T cells that had been sensitized to tumor in vivo and then activated ex vivo with anti-CD3, IL-2, and IL-7. Splenocytes were recovered >140 days after the initial therapy, and the L-selectinlow memory cell subset was separated into host Thy1.2+ and transferred Thy1.1+ cells and restimulated ex vivo. Both adoptively transferred Thy1.1+ cells as well as reconstituted host Thy1.2+ cells could specifically eliminate MCA-205 pulmonary metastases. Interestingly, hosts with partial responses followed by tumor recurrence nevertheless harbored memory cells that could be isolated and numerically amplified ex vivo to regenerate potent effector function. Memory cells were recovered after adoptive transfer into lymphodepleted nontumor-bearing hosts, indicating that they were not dependent on continued Ag exposure. These experiments establish that rapid ex vivo expansion of tumor Ag-primed T cells does not abrogate their capacity to become long-lived memory cells. Moreover, immune-mediated tumor regression coincident with lymphoid reconstitution produces another wave of host memory cells. These data suggest an approach to rescuing antitumor immune function even in hosts with long-standing progressive tumor through restorative ex vivo activation.  相似文献   

4.
Mice with advanced disseminated syngeneic tumor can be successfully treated with a combination of chemotherapy and adoptively transferred syngeneic immune cells. We have previously demonstrated that in vivo primed cells secondarily sensitized in vitro became more effective in tumor therapy, whereas primed cells cultured for 5 days without tumor stimulation became less effective than an equal number of uncultured fresh primed cells. Therefore, we examined stimulated and unstimulated cultures of tumor-primed cells for the presence of culture-induced suppressor cells, and determined whether in vivo tumor therapy with immune cells could be inhibited by concurrent inoculation of immune effector cells and cultured normal spleen cells, which contain culture-induced suppressor cells but are devoid of additional effector cells. The in vitro primary allogeneic response was suppressed by cultured normal spleen cells, or tumor-primed spleen cells previously cultured for 5 days with or without tumor stimulation. In vitro secondary sensitization to syngeneic tumor was suppressed by normal or tumor-primed cells that had previously been cultured for 5 days without stimulation. The majority of this suppression was mediated by T cells in the cultured populations. The efficacy of fresh tumor-primed cells, as well as primed cells secondarily sensitized in vitro, in adoptive chemoimmunotherapy of advanced tumor was diminished by concurrent inoculation of cultured normal cells. The cells mediating suppression of in vivo therapy required previous in vitro culture for induction, and were radiation sensitive.  相似文献   

5.
CD8(+) effector T cells recognize malignant cells by monitoring their surface for the presence of tumor-derived peptides bound to MHC class I molecules. In addition, tumor-derived Ags can be cross-presented to CD8(+) effector T cells by APCs. IFN-gamma production by CD8(+) T cells is often critical for tumor rejection. However, it remained unclear whether 1) CD8(+) T cells secrete IFN-gamma in response to Ag recognition on tumor cells or APCs and 2) whether IFN-gamma mediates its antitumor effect by acting on host or tumor cells. We show in this study that CD8(+) effector T cells can reject tumors in bone marrow-chimeric mice incapable of cross-presenting Ag by bone marrow-derived APCs and that tumor rejection required host cells to express IFN-gammaR. Together, CD8(+) effector T cells recognize Ag directly on tumor cells, and this recognition is sufficient to reject tumors by IFN-gamma acting on host cells.  相似文献   

6.
Bispecific Abs (bsAb) are promising immunological tools for the elimination of tumor cells in minimal residual disease situations. In principle, they target an Ag on tumor cells and recruit one class of effector cell. Because immune reactions in vivo are more complex and are mediated by different classes of effector cell, we argue that conventional bsAb might not yield optimal immune responses at the tumor site. We therefore constructed a bsAb that combines the two potent effector subclasses mouse IgG2a and rat IgG2b. This bispecific molecule not only recruits T cells via its one binding arm, but simultaneously activates FcgammaR+ accessory cells via its Fc region. We demonstrate here that the activation of both T lymphocytes and accessory cells leads to production of immunomodulating cytokines like IL-1beta, IL-2, IL-6, IL-12, and DC-CK1. Thus this new class of bsAb elicits excellent antitumor activity in vitro even without the addition of exogenous IL-2, and therefore represents a totally self-supporting system.  相似文献   

7.
We previously reported that cytokine gene transfer into weakly immunogenic tumor cells could enhance the generation of precursor cells of tumor-reactive T cells and subsequently augment antitumor efficacy of adoptive immunotherapy. We investigated whether such potent antitumor effector T cells could be generated from mice bearing poorly immunogenic tumors. In contrast to similarly modified weakly immunogenic tumors, MCA102 cells, which are chemically induced poorly immunogenic fibrosarcoma cells transfected with cDNA for IL-2, IL-4, IL-6, IFN-gamma, failed to augment the host immune reaction. Because priming of antitumor effector T cells in vivo requires two important signals provided by tumor-associated Ags and costimulatory molecules, these tumor cells were cotransfected with a B7-1 cDNA. Transfection of both IFN-gamma and B7-1 (MCA102/B7-1/IFN-gamma) resulted in regression of s.c. tumors, while tumor transfected with other combinations of cytokine and B7-1 showed progressive growth. Cotransfection of IFN-gamma and B7-1 into other poorly immunogenic tumor B16 and LLC cells also resulted in the regression of s.c. tumors. Cells derived from lymph nodes draining MCA102/B7-1/IFN-gamma tumors showed potent antitumor efficacy, eradicating established pulmonary metastases, but this effect was not seen with parental tumors. This mechanism of enhanced antitumor efficacy was further investigated, and T cells with down-regulated L-selectin expression, which constituted all the in vivo antitumor reactivity, were significantly increased in lymph nodes draining MCA102/B7-1/IFN-gamma tumors. These T cells developed into potent antitumor effector cells after in vitro activation with anti-CD3/IL-2. The strategy presented here may provide a basis for developing potent immunotherapy for human cancers.  相似文献   

8.
The systemic adoptive transfer of tumor-sensitized T cells, activated ex vivo, can eliminate established intracranial tumors. Regression of MHC class II negative MCA 205 fibrosarcomas occurs optimally following adoptive transfer of both CD4 and CD8 tumor-sensitized T cells, indicating an important function for tumor-infiltrating APC. Here, we demonstrate that during an effector response, indirect presentation of tumor Ags to transferred T cells is sufficient to mediate intracranial tumor regression. BALB/c --> CB6F1 (H-2bxd) bone marrow chimeras were challenged with the MCA 205 fibrosarcoma (H-2b). The tumor grew progressively in the H-2b-tolerant chimeras and stimulated an immune response in tumor-draining lymph nodes. Tumor-sensitized lymph node T cells were activated ex vivo with anti-CD3 and IL-2, then adoptively transferred to sublethally irradiated BALB/c or C57BL/6 recipients bearing established intracranial MCA 205 tumors. The transferred T cells eradicated MCA 205 tumors in BALB/c recipients and demonstrated tumor specificity, but had no therapeutic efficacy in the C57BL/6 recipients. These data establish that tumor-associated host cell constituents provide sufficient Ag presentation to drive effector T cell function in the complete absence of direct tumor recognition. This effector mechanism has an evident capacity to remain operative in circumstances of immune escape, where the tumor does not express the relevant MHC molecules, and may have importance even at times when direct CTL recognition also remains operative.  相似文献   

9.
10.
The CD11c(int)B220(+)NK1.1(+)CD49(+) subset of cells has recently been described as IFN-producing killer dendritic cells (IKDC), which share phenotypic and functional properties of dendritic cells and NK cells. Herein we show that bone marrow-derived murine dendritic cell preparations contain abundant CD11c(int)B220(+)NK1.1(+)CD49(+) cells, the removal of which results in loss of tumoricidal activity of unpulsed dendritic cells in vivo. Moreover, following s.c. injection, as few as 5 x 10(3) highly pure bone marrow-derived IKDC cells are capable of shrinking small contralateral syngeneic tumors in C57BL/6 mice, but not in immunodeficient mice, implying the obligate involvement of host effector cells in tumor rejection. Our data suggest that bone marrow-derived IKDC represent a population that has powerful tumoricidal activity in vivo.  相似文献   

11.
Antibodies directed against tumor-associated antigens are emerging as effective treatments for a number of cancers, although the mechanism(s) of action for some are unclear and still under investigation. We have previously examined a chimeric IgE antibody (MOv18 IgE), against the ovarian tumor-specific antigen, folate binding protein (FBP), and showed that it can direct human PBMC to kill ovarian cancer cells. We have developed a three-color flow cytometric assay to investigate the mechanism by which IgE receptors on U937 monocytes target and kill ovarian tumor cells. U937 monocytes express three IgE receptors, the high-affinity receptor, FcεRI, the low-affinity receptor, CD23, and galectin-3, and mediate tumor cell killing in vitro by two mechanisms, cytotoxicity, and phagocytosis. Our results suggest that CD23 mediates phagocytosis, which is enhanced by upregulation of CD23 on U937 cells with IL-4, whereas FcεRI mediates cytotoxicity. We show that effector : tumor cell bridging is associated with both activities. Galectin-3 does not appear to be involved in tumor cell killing. U937 cells and IgE exerted ovarian tumor cell killing in vivo in our xenograft model in nude mice. Harnessing IgE receptors to target tumor cells suggests the potential of tumor-specific IgE antibodies to activate effector cells in immunotherapy of ovarian cancer. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
We investigated whether secretion of multiple cytokines by CD8+ T cells is associated with improved protection against tumor challenge. We show that antitumor immunity induced by immunization with dendritic cells and a MHC class I-binding tumor peptide are dependent on secretion of IFN-gamma but not IL-4 or IL-5 by host cells. To further address the role of IL-4 and IL-5 in antitumor immunity, tumor-specific TCR-transgenic CD8+ T cells were activated in vitro to generate cytotoxic T (Tc) 1 cells that secrete high IFN-gamma and no IL-4 or IL-5 or Tc2 cells that secrete IL-4, IL-5, and some IFN-gamma. Both cell types killed target cells in vitro. Tc1 and Tc2 cells were adoptively transferred into syngeneic hosts, and their ability to protect against tumor challenge was compared. Tc1 cells were able to significantly delay tumor growth, whereas Tc2 cells or Tc2 cells from IFN-gamma(-/-) donors had no effect. This was due to neither the inability of Tc2 cells to survive in vivo or to migrate to the tumor site nor their inability to secrete IL-4 and/or IL-5 in the presence of limiting amounts of anti-CD3. However, IFN-gamma secretion by Tc2 cells was triggered inefficiently by restimulation with Ag compared with anti-CD3. We conclude that the ability to secrete "type 2" cytokines, and cytotoxic ability, have a limited role in antitumor immune responses mediated by CD8+ T cells, whereas the capacity to secrete high amounts of IFN-gamma remains the most critical antitumor effector mechanism in vivo.  相似文献   

13.
The requirement for CD4(+) Th cells in the cross-priming of antitumor CTL is well accepted in tumor immunology. Here we report that the requirement for T cell help can be replaced by local production of GM-CSF at the vaccine site. Experiments using mice in which CD4(+) T cells were eliminated, either by Ab depletion or by gene knockout of the MHC class II beta-chain (MHC II KO), revealed that priming of therapeutic CD8(+) effector T cells following vaccination with a GM-CSF-transduced B16BL6-D5 tumor cell line occurred independently of CD4(+) T cell help. The adoptive transfer of CD8(+) effector T cells, but not CD4(+) effector T cells, led to complete regression of pulmonary metastases. Regression of pulmonary metastases did not require either host T cells or NK cells. Transfer of CD8(+) effector T cells alone could cure wild-type animals of systemic tumor; the majority of tumor-bearing mice survived long term after treatment (>100 days). In contrast, adoptive transfer of CD8(+) T cells to tumor-bearing MHC II KO mice improved survival, but eventually all MHC II KO mice succumbed to metastatic disease. WT mice cured by adoptive transfer of CD8(+) T cells were resistant to tumor challenge. Resistance was mediated by CD8(+) T cells in mice at 50 days, while both CD4(+) and CD8(+) T cells were important for protection in mice challenged 150 days following adoptive transfer. Thus, in this tumor model CD4(+) Th cells are not required for the priming phase of CD8(+) effector T cells; however, they are critical for both the complete elimination of tumor and the maintenance of a long term protective antitumor memory response in vivo.  相似文献   

14.
Infiltration of immune effector cells in tumors is critical for antitumor immune responses. However, what regulates immune cell infiltration of tumors remains to be identified. Stat3 is constitutively activated with high frequency in diverse cancers, promoting tumor cell growth and survival. Blocking Stat3 signaling in tumors in vivo results in tumor growth inhibition that involves killing of nontransfected tumor cells and infiltration of immune effector cells, suggesting that Stat3 activity in tumor cells might affect immune cell recruitment. However, dying tumor cells can also attract immune cells. In this study, we show in isogenic murine melanomas that natural Stat3 activity is associated with tumor growth and reduction of T cell infiltration. Blocking Stat3 signaling in the melanoma cells containing high Stat3 activity results in expression of multiple chemoattractants, leading to increased migration of lymphocytes, NK cells, neutrophils, and macrophages. In addition, blocking Stat3 triggers tumor cells to produce soluble factors capable of activating macrophage production of NO in vitro and in vivo. TNF-alpha and IFN-beta, which are secreted by Stat3-inhibited tumor cells, are able to activate macrophage NO production, whereas neutralizing TNF-alpha in the tumor supernatant from Stat3-blocked tumor cells abrogates nitrite production. Moreover, interrupting Stat3 signaling in tumor cells leads to macrophage-mediated, nitrite-dependent cytostatic activity against nontransduced tumor cells. These results suggest that tumor Stat3 activity affects recruitment of diverse immune effectors and it can be manipulated to activate the effector phase of innate immune responses.  相似文献   

15.
The present study was performed to further evaluate the possible in vivo involvement of natural killer (NK) cells in host resistance against tumors. Selective depression of NK activity in Wistar Furth rats was induced by i.p. or i.v. injection of rabbit anti-asialo GM1. This antiserum has previously been shown to produce a decrease in NK activity and a parallel increase in tumor growth in mice. In the present study, rats treated with this antibody showed a parallel decrease in NK activity and in the frequency of large granular lymphocytes (LGL) in the spleen and peripheral blood, indicating that the antiserum-induced depression of NK activity in these sites was probably caused by an elimination of most effector cells. To further determine the possible role of rat LGL in tumor rejection in vivo, we studied LGL involvement in the rapid clearance of radiolabeled tumor cells from the lungs, an assay previously shown to correlate well with in vitro NK activity. Animals treated with anti-asialo GM1 antiserum were found to have a substantial decrease in the in vivo rate of clearance of tumor cells from the lungs. Furthermore, the adoptive transfer of a highly enriched population of LGL into NK-depressed animals 2 hr before tumor challenge, partially restored their cytotoxic activity against established cell lines in vitro and their ability to eliminate radiolabeled cells from the lungs. These results provide direct support for the hypothesis that NK cells are involved in in vivo resistance to tumors, particularly in the elimination of potentially metastatic tumor cells from the circulation and capillary beds.  相似文献   

16.
The NKG2D receptor on NK cells can recognize a variety of ligands on the tumor cell surface. Using a mouse renal cancer (Renca), we show that NKG2D recognition by NK cells was crucial for their ability to limit tumor metastases in vivo in both liver and lungs using perforin-dependent effector mechanisms. However, for the R331 cell line established from Renca, NKG2D recognition and perforin-dependent lysis played no role in controlling liver metastases. R331 cells were also more resistant to perforin-dependent lysis by NK cells in vitro. We therefore used these phenotypic differences between Renca and R331 to further investigate the crucial receptor:ligand interactions required for triggering lytic effector functions of NK cells. Reconstitution of R331 cells with ICAM-1, but not Rae-1gamma, restored NKG2D-mediated, perforin-dependent lysis. Interestingly, R331 cells were efficiently lysed by NK cells using death ligand-mediated apoptosis. This death ligand-mediated killing did not depend on NKG2D recognition of its ligands on tumor cells. This result suggests that the intracellular signaling in NK cells required for perforin and death ligand-mediated lysis of tumor target cell are quite distinct, and activation of both of these antitumor lytic effector functions of NK cells could improve therapeutic benefits for certain tumors.  相似文献   

17.
Two non-overlapping populations of alloimmune cytotoxic T cells with specificity for tumor-associated antigens (TAA) and for histocompatibility antigens (H-2) were characterized by two independent methods. The heterogeneity of cytotoxic cells was demonstrated in spleen cells derived from BALB/c (H-2d) mice sensitized to EL-4 (H-2b) tumor and from C57BL/6 (H-2b) mice sensitized to G-35 (H-2d) tumor cells. Adsorption of immune lymphocytes on monolayers prepared with cells bearing the sensitizing H-2 antigens abrogated the in vitro cell-mediated cytotoxicity (CMC) directed against 51Cr-labeled normal target cells (spleen cells or ConA-activated spleen blasts), whereas significant cytolytic activity to the corresponding 51Cr-tumor cells was still retained. Likewise, in competitive inhibition assays, CMC to 51 Cr-tumor target cells was only partially inhibited by unlabeled normal cells, whereas CMC to 51Cr-normal target cells was completely abrogated. These results suggested that alloimmune cytotoxic lymphocytes are heterogeneous and can be subdivided into two independent populations of restricted specificity. Several experiments suggested that the effector cell population directed against TAA can no longer elicit a graft-vs-host (GVH) reaction in vivo. This was demonstrated by adoptive transfer into lethally-irradiated allogeneic recipients of cytotoxic or primed spleen cells fractionated on host target cell monolayers. Furthermore, these results demonstrated that both effector cells and memory cells possess high affinity binding receptors to corresponding H-2 antigens. The potential use of fractionated immune lymphocytes sensitized to tumor allografts in adoptive immunotherapy is discussed.  相似文献   

18.
A newly induced syngeneic transplantable sarcoma, MCA 105, was used for studies of the biologic characteristics of fresh noncultured and secondarily in vitro sensitized (IVS) cells with antitumor reactivity. Fresh spleen cells harvested from mice immunized to the MCA 105 tumor by a mixture of viable tumor cells and Corynebacterium parvum exhibited no detectable cytotoxic activity to MCA 105 tumor targets in a 4-hr chromium-release assay, and adoptive transfer of these cells mediated the specific regression of established MCA 105 tumors. Phenotypic analysis of fresh, noncultured immune cells revealed that the therapeutically effective cells expressed both the Lyt-1 and the Lyt-2 T cell differentiation antigens. The therapeutic efficacy of fresh noncultured immune cells was not augmented by the concomitant administration of exogeneous interleukin 2 (IL 2). Secondary IVS of fresh immune cells with irradiated MCA 105 tumor stimulator cells resulted in the generation of tumor-specific cytotoxic effector cells. The generation of cytotoxic effector cells required Lyt-1+, 2+ cytotoxic precursor cells. Effective adoptive immunotherapy with these IVS immune cells, unlike fresh noncultured immune cells, depended on the concomitant administration of IL 2. Furthermore, the generation of therapeutically effective cells did not require the specific stimulation by MCA 105 tumor cells, because cultures of MCA 105 immune spleen cells with FBL-3 lymphoma cells in vitro also contained in vivo functional immune effector cells. These cells, however, possessed no detectable MCA 105 cytotoxic activity in vitro. Although this observation suggests that a noncytotoxic cell population is sufficient to initiate tumor regression in vivo, it does not exclude the possibility that cytolytic cells are generated in vivo after adoptive transfer of these cells. As a whole, our results indicate that secondary IVS functional immune effector cells are characteristically distinct from freshly harvested immune cells.  相似文献   

19.
Glucocorticoid-induced TNF receptor family related protein (GITR) is a member of the TNFR superfamily. Previous studies have shown that in vivo administration of a GITR agonistic Ab (DTA-1) is able to overcome tolerance and induce tumor rejection in several murine syngeneic tumor models. However, little is known about the in vivo targets and the mechanisms of how this tolerance is overcome in a tumor-bearing host, nor is much known about how the immune network is regulated to achieve this antitumor response. In this study, we demonstrate that the in vivo ligation of GITR on CD4(+) effector T cells renders them refractory to suppression by regulatory T (T(reg)) cells in the CT26 tumor-bearing mouse. GITR engagement on T(reg) cells does not appear to directly abrogate their suppressive function; rather, it increases the expansion of T(reg) cells and promotes IL-10 production, a cytokine important for their suppressive function. Moreover, CD4(+) effector T cells play a crucial role in mediating DTA-1-induced immune activation and expansion of CD8(+), NK, and B cells in the tumor-draining lymph nodes. This includes increased CD69 expression on all of these subsets. In addition, NK and tumor-specific CD8(+) T cells are generated that are cytolytic, which show increased intracellular IFN-gamma production and CD107a mobilization, the latter a hallmark of cytolytic activities that lead to tumor killing.  相似文献   

20.
Human peripheral blood T cells were tested for the ability to prevent tumor growth in nude mice when targeted with anti-T3 cross-linked to antitumor antibodies. LS174T human colon adenocarcinoma cells were mixed with human PBL coated either with anti-T3 (Fab) cross-linked to 315F6 (Fab) (an antitumor monoclonal antibody) or with no antibody, and were injected subcutaneously into nude mice. Tumor growth was totally inhibited at effector to target (E:T) ratios of 7.0:1 and 2.1:1, and was partially inhibited at 0.7:1 with antibody-coated PBL, but was not inhibited by uncoated PBL. T cell-mediated protection against tumor growth occurred when an antitumor was physically cross-linked to anti-T3. Neither a mixture of unlinked anti-T3 and antitumor antibodies nor anti-human MHC class I cross-linked to antitumor antibody prevented tumor growth. Whereas in vitro cytotoxicity was mediated exclusively by T8+ cells and was augmented by brief exposure of effector cells to IL 2, tumor neutralization in vivo was mediated by both T4+ and T8+ cells and was not significantly stimulated by prior exposure of the cells to IL 2. We conclude that human T cells, when targeted with appropriate antibody heteroaggregates, can specifically inhibit tumor growth at low E:T ratios, and that cells mediating tumor neutralization in vivo may differ from those mediating cytotoxicity in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号