首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
蛋用鹌鹑伴性羽色基因互作与连锁的关系   总被引:15,自引:1,他引:14  
本研究首次发现了鹌鹑伴性羽基因的基因互作关系并进行了遗传验证.试验证明,鹌鹑的栗羽、黄羽和白羽是Z染色体上两个有连锁关系的基因座B/b和Y/y相互作用的结果.B和b为一对等位基因,不控制任何性状,只与色素的合成有关,B为有色基因,b为白化基因,B对b为显性;Y和y为另一对等位基因,分别控制栗羽和黄羽,Y对y为显性.栗羽和黄羽的表现取决于有色基因B的存在,B与Y相互作用产生栗羽,B与y相互作用产生黄羽,白羽是白化基因b对Y和y上位作用的结果.B/b和Y/y两基因座在雄性表现出一定的互换率,在雌性为完全连锁.这一研究补充和发展了以前人们对鹌鹑羽色伴性遗传的研究,为人们利用鹌鹑羽色进行自别雌雄配套系生产提供了重要的遗传学基础。 Abstract:The interaction of sex-linked gene for plumage color in quails was first discovered and identified by genetictest.It was proved that the phenotypic expressions of the maroon feather,the yellow feather and the white feather result from the interaction between B/b and Y/y loci in the Z-chromosome.The allele B and b have something to do with the composition of pigment in plumage and nothing to do with any relative characters,the coloured gene B is dominant to its albino allele b.The maroon and yellow feather constituted a pair of relative characters determined by a couple of alleles Y and y,the maroon feather was caused by a dominant allele Y,and the yellow feather caused by a recessive allele y.But the phenotypic expression of maroon and yellow was decided by the present of the coloured gene B in Z-chromosome,the maroon feather was the result of interaction between gene B and Y,the yellow feather was result of interaction between gene B and y.The white was caused by a recessive albino gene b which epistasis to gene Y and y.The incomplete linkage was present between B/b and Y/y in Z-chromosome in male and complete linkage in female.This research enriches and delelops the earlier studies of the sex-linked inheritance of plumage color.It provides an important genetic basis for the quail autosexing system production by means of plumage color.  相似文献   

2.
Bird plumage is often very colorful and can communicate the quality of the bearer to conspecifics. These plumage-based signals of quality are composed of multiple pigments (e.g., melanin and carote no ids). Therefore, sex and age classes, which often show marked differe nces in plumage coloration, may have different dietary needs for the different plumage components and this might promote pref ere nces for differe nt dietary niches at different molting stages. However, no study has addressed the role that changes in niche use play in the expression of multiple component plumage signals in birds. We used stable isotope analysis to test the hypothesis that niche use is related to age and sex and to differently cultured plumage patches, yellow carotenoid-based and black melanin-based, in great tits Parus major. We recorded high niche overlap between plumage patches, although δ15N was higher in black than yellow plumage. Niche overlap was relatively low for age classes and relatively high for sex classes, and age classes showed a contrasting pattern of niche overlap between carotenoid- and melanin-based plumages. Moreover,δ13C, but not δ15N, had a significant negative relationship with carotenoid-based plumage, which was only apparent in juveniles. Take n together, our results demonstrate that n iche use had a moderate in fluence on plumage coloration characteristics of great tit individuals, mostly associated with δ13C rather than with δ15N and with age rather than with sex. Therefore, our study is significant because it confirms the releva nee of n iche use duri ng orn ame nt production in free-livi ng birds.  相似文献   

3.
How animals visually perceive the environment is key to understanding important ecological behaviors, such as predation, foraging, and mating. This study focuses on the visual system properties and visual perception of color in the largemouth bass Micropterus salmoides. This study (1) documents the number and spectral sensitivity of photoreceptors,(2) uses these parameters to model visual perception, and (3) tests the model of color perception using a behavioral assay. Bass possess single cone cells maximally sensitive at 535 nm, twin cone cells maximally sensitive at 614 nm, and rod cells maximally sensitive at 528 nm. A simple model of visual perception predicted that bass should not be able to discern between chartreuse yellow and white nor between green and blue. In contrast, bass should be able to discern red from all achromatic (i.e., gray scale) stimuli. These predictions were partially upheld in behavioral trials. In behavioral trials, bass were first trained to recognize a target color to receive a food reward, and then tested on their ability to differentiate between their target color and a color similar in brightness. Bass trained to red and green could easily discern their training color from all other colors for target colors that were similar in brightness (white and black, respectively). This study shows that bass possess dichromatic vision and do use chromatic (i.e., color) cues in making visual-based decisions.  相似文献   

4.
The yellow color of the cocoon of the silkworm Bombyx mori is controlled by three genes, Y (Yellow haemolymph), 1 (Yellow inhibitor) and C ( Outer-layer yellow cocoon), which are located on linkage groups 2, 9 and 12, respectively. Taking advantage of a lack of crossing over in females, reciprocal backcrossed F1 (BC1) progeny were used for linkage analysis and mapping of the C gene using silkworm strains C 108 and KY, which spin white and yellow cocoons, respectively. DNA was extracted from individual pupae and analyzed for simple sequence repeat (SSR) markers. The C gene was found to be linked to seven SSR markers. All the yellow cocoon individuals from a female heterozygous backcross (BC1F) showed a heterozygous profile for SSR markers on linkage group 12, whereas individuals with light yellow cocoons showed the homozygous profile of the strain C108. Using a reciprocal heterozygous male backcross (BC1M), we constructed a linkage map of 36.4 cM with the C gene located at the distal end, and the closest SSR marker at a distance of 13.9 cM.  相似文献   

5.
Plant height is an important agronomic trait. Dramatic increase in wheat yield during the "green revolution" is mainly due to the widespread utilization of the Reduced height (Rht)-1gene. We analyzed the natural allelic variations of three homoeologous loci Rht-A1, Rht-B1, and Rht-D1 in Chinese wheat (Triticum aestivum L.) micro-core collections and the Rht-B1/D1 genotypes in over 1,500 bred cultivars and germplasms using a modified EcoTILLING. We identified six new Rht-A1 allelic variations (Rht-Alb-g), eight new Rht-B1 allelic variations (Rht-Blh-o), and six new Rht-D1 allelic variations (Rht-Dle-j). These allelic variations contain single nucleotide polymorphisms (SNPs) or small insertions and deletions in the coding or uncoding regions, involving two frame-shift mutations and 15 missenses. Of which, Rht-Dle and Rht-Dlh resulted in the loss of interactions of GID1-DELLA-GID2, Rht-Blicould increase plant height. We found that the Rht-Blh contains the same SNPs and 197 bp fragment insertion as reported in Rht-Blc. Further detection of Rht-Blh in Tibet wheat germplasms and wheat relatives indicated that Rht-Blc may originate from Rht-Blh. These results suggest rich genetic diversity at the Rht-1 loci and provide new resources for wheat breeding.  相似文献   

6.
Coral snakes and their mimics often have brightly colored banded patterns, generally associated with warning colora- tion or mimicry. However, such color patterns have also been hypothesized to aid snakes in escaping predators through a "flicker-fusion" effect. According to this hypothesis, banded color patterns confuse potential predators when a snake transitions from resting to moving because its bands blur together to form a different color. To produce this motion blur, a moving snake's bands must transition faster than the critical flicker-fusion rate at which a predator's photoreceptors can refresh. It is unknown if coral snakes or their mimics meet this requirement. We tested this hypothesis by measuring the movement speed and color pat- terns of two coral snake mimics, Lampropeltis triangulum campbelli and L. elapsoides, and comparing the frequency of color transitions to the photoreceptor activity of the avian eye. We found that snakes often produced a motion blur, but moving snakes created a blurring effect more often in darker conditions, such as sunrise, sunset, and nighttime when these snakes are often active. Thus, at least two species of coral snake mimics are capable of achieving flicker-fusion, indicating that their color patterns may confer an additional defense aside from mimicry  相似文献   

7.
The characteristics of serial cross-sections of hairs collected from an adult male Japanese monkey were investigated. Cross-sections were made of five to eight pieces per hair. The shapes of the cross-sections were elliptical or rounded on the whole. The fibre indices of the sections ranged from 83 to 100. In particular, those of proximal (basal) sections were close to 100. The hair diameter was 86.4 μ at maximum and 27.2 μ at minimum. A tendency was observed for the longer hairs to have thicker diameters. The changes in thickness along the fibre shaft were slightly different in relation to hair length. The thickest point was at around the middle of the fibre in the intermediate hair, somewhat towards the top of the central part in the long hair, and somewhat towards the base in the short hair. The hair of the Japanese monkey, however, was considered to be scanty in changes along the fibre shaft in comparison with many other animals. Medullae could scarcely be seen in the short hair and in the terminal and proximal sections of all hairs. Their shapes in cross-section were not uniform and rough at the margins. The fibre-medulla indices were generally less than 30 and smaller than those of many other mammals. Pigmentary granules were observed in all sections examined. The granules were black-grey in sections of the black-grey coloured part and yellow in the yellowish sections. They were dense in distal sections and scarce in sections close to the base. The cross-sectional appearance of the thickest part of the long hair was considered to be useful for hair identification, since it was good in pigmentation and medullation and relatively small fibre index.  相似文献   

8.
Plant leaves play a significant role in photosynthesis. Normal chloroplast development is critical for plant growth and yield performance. Defect of the chlorophyll in chloroplasts may cause abnormal leaf colors, such as yellow, white, or stripe. Chloroplasts have their own genomes encoding for about 100 genes that are essential for plastid protein synthesis and photosynthesis (Kanno and Hirai, 1993; Sato et al., 1999). Moreover, over 3000 proteins encoded by plant nuclear genomes target to the chloroplasts and participate in the chloroplast development and/or photosynthesis. Hitherto, a number of plant genes, which encode for enzymes involved in chlorophyll biosynthetic pathways,  相似文献   

9.
饲养东北虎的微卫星变异研究   总被引:6,自引:0,他引:6  
东北虎是世界上濒危动物之一,具有极其重要的研究价值和保护意义。该研究利用10个在东北虎基因组中表现多态性的微卫星基因座(Fca005, Fca075, Fca094, Fca152, Fca161, Fca294, Pti002, Pti003, Pti007和Pti010)对113只饲养东北虎进行了遗传多样性检测。用非变性聚丙烯酰胺凝胶电泳检测微卫星的PCR扩增产物,计算了10个微卫星基因座的等位基因频率、基因杂合度、多态信息含量和有效等位基因数。在113只东北虎样品中,10个基因座的等位基因数为3~6个,其中Fca152最多;等位基因频率处于0.009~0.767之间。基因杂合度值在0.385~0.707间,平均为0.616,多态信息含量值在0.353~0.658间,平均为0.558,有效等位基因数处于1.629~3.409之间,平均为2.784,表明所选用的10个微卫星基因座在研究样品中均为中高度多态性基因座,具有比较明显的遗传变异。113只样品中包括75只毛发样品,23只血液样品和15只组织样品,不同样品的结果比较表明,毛发、血液和组织样品均可以得到清晰的扩增结果。所以,微卫星基因座与非损伤性DNA分析方法可以成功地应用于濒危珍稀动物的遗传多样性研究。 Abstract:. The tiger is one of the most threatened wildlife species since the abundance and distribution of tiger have decreased dramatically in the last century. The wild Amur tiger (Panthera tigris altaica) only distributed in northeast China, the far east area of Russia and the north Korea and its size of wild population is about 450 in the world and 20 in China. Several hundred captive populations of Amur tigers are the main source to protect gene library of tiger and the source of recovering the wild populations. The Breeding Center for Felidae at Hengdaohezi and Ha’erbin Tiger Park in Heilongjiang Province is the biggest captive breeding base in China. How to make clear the genetic pedigree and establish reasonable breeding system is the urgent issues. So we use the microsatellite DNA markers and non-invasive technology to research on the genetic diversity of captive Amur tiger in this study. Ten microsatellite loci (Fca005, Fca075, Fca094, Fca152, Fca161, Fca294, Pti002, Pti003, Pti007 and Pti010), highly variable nuclear markers, were studied their genetic diversity in 113 captive Amur tigers. The PCR amplified products of microsatellite loci were detected by non-denatured polyacry lamide gel electrophoresis. Allele numbers, allelic frequency, gene heterozygosity(He), polymorphism information content(PIC) and effective number of allele(Ne) were calculated. 41 alleles were found and their size were ranged from 110bp to 250bp in ten microsatellite loci, Fca152 had 6 alleles, Fca075, Fca094 and Fca294 had 5 alleles, Fca005 and Pti002 had 4 alleles and the others had 3 alleles in all tiger samples, respectively. The allelic frequencies were from 0.009 to 0.767; The He ranged from 0.385 to 0.707, and Fca294 and Pti010 locus had the highest and lowest value; the PIC were from 0.353 to 0.658, Fca294 and Pti010 locus had the highest and lowest value; and Ne were from 1.626 to 3.409, Fca294 and Pti010 locus had the highest and lowest value, which showed the ten microsatellie loci had high or medium polymorphism in these Amur tigers and had high genetic diversity. At the same time, we only found even bases variability which showed the even bases repeat sequence (CA/GT) maybe the basic unit for length variability of microsatellite in all loci. In this study, the samples were made up of 75 hair specimens, 23 blood specimens and 15 tissue specimens, we obtained the genome DNA from hairs using the non-invasive DNA technology and demonstrated that DNA derived from hair samples is as good as that obtained from blood samples for the analaysis of microsatellite polymorphism. These results imply that microsatellite DNA markers and non-invasive DNA technology can help study the genetic diversity of Amur tiger. This method could be used in the captive management of other endangered species.  相似文献   

10.
In haplodiploid Hymenoptera, unfertilized eggs produce haploid males while fertilized eggs lead to diploid females under most circumstances. Diploid males can also be produced from fertilization under a system of sex determination known as complementary sex determination (CSD). Under single-locus CSD, sex is determined by multiple alleles at a single sex locus. Individuals heterozygous at the sex locus are female while hemizygous and homozygous individuals develop as haploid and diploid males, respectively. In multiple-locus CSD, two or more loci, each with two or more alleles, determine sex. Diploid individuals are female if one or more sex loci are het-erozygous, while a diploid is male only if homozygous at all sex loci. Diploid males are known to occur in 43 hym-enopteran species and single-locus CSD has been demonstrated in 22 of these species. Diploid males are either developmentally inviable or sterile, so their production constitutes a genetic load. Because diploid male production is more likely under inbreeding, CSD is a form of inbreeding depression. It is crucial to preserve the diversity of sex alleles and reduce the loss of genetic variation in biological control. In the parasitoid species with single-locus CSD, certain precautionary procedures can prevent negative effects of single-locus CSD on biological control.  相似文献   

11.
Bh (black at hatch) is a mutation of Japanese quails which causes darkening or lightening of the plumage in heterozygotes or homozygotes, respectively. We chemically analyzed melanin pigments in feather germs of Bh mutant embryos and in feathers of adult animals. Dark brown dorsal feathers of wild-type adult animals had white barrings, but heterozygous ones lacked clear barrings. The feathers of wild-type and heterozygote animals contained both eumelanins and pheomelanins, the latter being more pheomelanic. On the dorsal skin of 10-day old wild-type embryos, longitudinal stripes from black and yellow rows of feather germs developed; two or three longitudinal rows of black feather germs and then two or three rows of yellow feather germs next to the short central feather germs. Heterozygous embryos appeared black in plumage pigmentation, due to the presence of 'gray' feather germs in rows of dorsal feather germs that corresponded to yellow rows in wild-type embryos. Homozygous dorsal feather germs did not develop the black and yellow longitudinal stripes, but were brown. Chemical analysis showed that embryos of each genotype contained both eumelanins and pheomelanins in the feather germs; however, the eumelanin content in homozygous feather germs was very low. These results suggest that the Bh mutation causes pheomelanic changes in feathers of quails.  相似文献   

12.
Bh (black at hatch) is a mutation of Japanese quails which causes darkening or lightening of the plumage in heterozygotes or homozygotes, respectively. We chemically analyzed melanin pigments in feather germs of Bh mutant embryos and in feathers of adult animals. Dark brown dorsal feathers of wild-type adult animals had white barrings, but heterozygous ones lacked clear barrings. The feathers of wild-type and heterozygote animals contained both eumelanins and pheomelanins, the latter being more pheomelanic. On the dorsal skin of 10-day old wild-type embryos, longitudinal stripes from black and yellow rows of feather germs developed; two or three longitudinal rows of black feather germs and then two or three rows of yellow feather germs next to the short central feather germs. Heterozygous embryos appeared black in plumage pigmentation, due to the presence of‘gray’feather germs in rows of dorsal feather germs that corresponded to yellow rows in wild-type embryos. Homozygous dorsal feather germs did not develop the black and yellow longitudinal stripes, but were brown. Chemical analysis showed that embryos of each genotype contained both eumelanins and pheomelanins in the feather germs; however, the eumelanin content in ho-mozygous feather germs was very low. These results suggest that the Bh mutation causes pheomelanic changes in feathers of quails.  相似文献   

13.
在国内首次利用光纤光谱仪对鸟类的羽色进行量化和分析.对黄喉鹀Emberiza elegans雌、雄鸟羽色的差异以及雄鸟羽色与雄鸟质量的相关性分析结果表明,黄喉鹀雌、雄鸟在人眼看来相同的黄色羽和白色羽部分,在紫外光色度上却存在显著差异,雄鸟紫外光色度高于雌鸟;雄鸟的质量与脸部黑色羽的亮度、可见光色度和色调呈显著正相关,雌...  相似文献   

14.
Homology for two plumage color loci was studied by hybridization between chickens and Japanese quail. First, chicken-quail hybrids were produced from homozygous "lavender" chicken cocks and "bleu" Japanese quail, and all 30 hybrids had the same parental slate blue plumage color. On the other hand, no hybrids with this plumage were obtained out of 18 progeny from the same cocks and wild-type quail. These results show that the slate blue plumage color is determined by homologous loci in Japanese quail and chickens. Second, all (n = 25) chicken-quail hybrids hatched from homozygous "recessive white" cocks and "recessive white" (n = 8) or "wild-type" (n = 17) quail had the same pattern of plumage color, with white feathers on the ventral face and colored feathers elsewhere. These results indicate that the recessive white mutations are not homologous in Japanese quail and chickens.  相似文献   

15.
Genetic variation in the melanocortin‐1 receptor (MC1R) locus is responsible for color variation, particularly melanism, in many groups of vertebrates. Fairy‐wrens, Maluridae, are a family of Australian and New Guinean passerines with several instances of dramatic shifts in plumage coloration, both intra‐ and inter‐specifically. A number of these color changes are from bright blue to black plumage. In this study, we examined sequence variation at the MC1R locus in most genera and species of fairy‐wrens. Our primary focus was subspecies of the white‐winged fairy‐wren Malurus leucopterus in which two subspecies, each endemic to islands off the western Australian coast, are black while the mainland subspecies is blue. We found fourteen variable amino acid residues within M. leucopterus, but at only one position were alleles perfectly correlated with plumage color. Comparison with other fairy‐wren species showed that the blue mainland subspecies, not the black island subspecies, had a unique genotype. Examination of MC1R protein sequence variation across our sample of fairy‐wrens revealed no correlation between plumage color and sequence in this group. We thus conclude that amino acid changes in the MC1R locus are not directly responsible for the black plumage of the island subspecies of M. leucopterus. Our examination of the nanostructure of feathers from both black and blue subspecies of M. leucopterus and other black and blue fairy‐wren species clarifies the evolution of black plumage in this family. Our data indicate that the black white‐winged fairy‐wrens evolved from blue ancestors because vestiges of the nanostructure required for the production of blue coloration exist within their black feathers. Based on our phylogeographic analysis of M. leucopterus, in which the two black subspecies do not appear to be each other's closest relatives, we infer that there have been two independent evolutionary transitions from blue to black plumage. A third potential transition from blue to black appears to have occurred in a sister clade.  相似文献   

16.
The objective of this work was to map classical markers (plumage colours and blood proteins) on the microsatellite linkage map of the Japanese quail (Coturnix japonica). The segregation data on two plumage colours and three blood proteins were obtained from 25 three-generation families (193 F2 birds). Linkage analysis was carried out for these five classical markers and 80 microsatellite markers. A total of 15 linkage groups that included the five classical loci and 69 of the 80 microsatellite markers were constructed. Using the BLAST homology search against the chicken genome sequence, three quail linkage groups, QL8, QL10 and QL13, were suggested to be homologous to chicken chromosomes GGA9, GGA20 and GGA24, respectively. Two plumage colour loci, black at hatch (Bh) and yellow (Y), and the three blood protein loci, transferrin (Tf), haemoglobin (Hb-1) and prealbumin-1 (Pa-1), were assigned to CJA01, QL10, QL8, CJA14 and QL13, respectively.  相似文献   

17.
Li S  Wang C  Yu W  Zhao S  Gong Y 《PloS one》2012,7(5):e36592
To elucidate the genes involved in the formation of white and black plumage in ducks, RNA from white and black feather bulbs of an F(2) population were analyzed using RNA-Seq. A total of 2,642 expressed sequence tags showed significant differential expression between white and black feather bulbs. Among these tags, 186 matched 133 annotated genes that grouped into 94 pathways. A number of genes controlling melanogenesis showed differential expression between the two types of feather bulbs. This differential expression was confirmed by qPCR analysis and demonstrated that Tyr (Tyrosinase) and Tyrp1 (Tyrosinase-related protein-1) were expressed not in W-W (white feather bulb from white dorsal plumage) and W-WB (white feather bulb from white-black dorsal plumage) but in B-B (black feather bulb from black dorsal plumage) and B-WB (black feather bulb from white-black dorsal plumage) feather bulbs. Tyrp2 (Tyrosinase-related protein-2) gene did not show expression in the four types of feather bulbs but expressed in retina. C-kit (The tyrosine kinase receptor) expressed in all of the samples but the relative mRNA expression in B-B or B-WB was approximately 10 fold higher than that in W-W or W-WB. Additionally, only one of the two Mitf isoforms was associated with plumage color determination. Downregulation of c-Kit and Mitf in feather bulbs may be the cause of white plumage in the duck.  相似文献   

18.
Dominant white, Dun, and Smoky are alleles at the Dominant white locus, which is one of the major loci affecting plumage color in the domestic chicken. Both Dominant white and Dun inhibit the expression of black eumelanin. Smoky arose in a White Leghorn homozygous for Dominant white and partially restores pigmentation. PMEL17 encodes a melanocyte-specific protein and was identified as a positional candidate gene due to its role in the development of eumelanosomes. Linkage analysis of PMEL17 and Dominant white using a red jungle fowl/White Leghorn intercross revealed no recombination between these loci. Sequence analysis showed that the Dominant white allele was exclusively associated with a 9-bp insertion in exon 10, leading to an insertion of three amino acids in the PMEL17 transmembrane region. Similarly, a deletion of five amino acids in the transmembrane region occurs in the protein encoded by Dun. The Smoky allele shared the 9-bp insertion in exon 10 with Dominant white, as expected from its origin, but also had a deletion of 12 nucleotides in exon 6, eliminating four amino acids from the mature protein. These mutations are, together with the recessive silver mutation in the mouse, the only PMEL17 mutations with phenotypic effects that have been described so far in any species.  相似文献   

19.
Genetic variation at the melanocortin-1 receptor (MC1R) gene is correlated with melanin color variation in a few reported vertebrates. In Gyrfalcon (Falco rusticolus), plumage color variation exists throughout their arctic and subarctic circumpolar distribution, from white to gray and almost black. Multiple color variants do exist within the majority of populations; however, a few areas (e.g., northern Greenland and Iceland) possess a single color variant. Here, we show that the white/melanic color pattern observed in Gyrfalcons is explained by allelic variation at MC1R. Six nucleotide substitutions in MC1R resulted in 9 alleles that differed in geographic frequency with at least 2 MC1R alleles observed in almost all sampled populations in Greenland, Iceland, Canada, and Alaska. In north Greenland, where white Gyrfalcons predominate, a single MC1R allele was observed at high frequency (>98%), whereas in Iceland, where only gray Gyrfalcons are known to breed, 7 alleles were observed. Of the 6 nucleotide substitutions, 3 resulted in amino acid substitutions, one of which (Val(128)Ile) was perfectly associated with the white/melanic polymorphism. Furthermore, the degree of melanism was correlated with number of MC1R variant alleles, with silver Gyrfalcons all heterozygous and the majority of dark gray individuals homozygous (Ile(128)). These results provide strong support that MC1R is associated with plumage color in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号