首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
There is evidence that analogues of atrial natriuretic peptide (ANP) and angiotensin II (ANG II) occur in birds. The present experiments studied the adrenergic and osmoregulatory responses to synthetic ANP and ANG II in salt-loaded ducks (Anas platyrhynchos). Excretion of water and salt through the nasal salt glands was abolished by ANG II. This extrarenal, salt-retaining effect of ANG II was not altered by ANP. However, ANP did augment the diuretic response to ANG II. ANP also potentiated the stimulatory effect of ANG II on plasma norepinephrine. The data are consistent with physiological roles for native analogues of ANP and ANG II in adrenergic and osmotic regulation in the duck.  相似文献   

2.
1. The vasorelaxant effect of synthetic atrial natriuretic peptide (ANP) on the vascular response to angiotensin II (A II) and norepinephrine (NE) in aortic rings from Bufo arenarum toad was studied. 2. Pretreatment with ANP partially inhibited the vascular response to A II and NE. 3. Angiotensin converting enzyme inhibitor (ACEI) treatment partially inhibited the contractile response of angiotensin I (A I) and did not affect the A II response. 4. The inhibitory effect of ANP on vascular response to A II and NE were potentiated by pretreatment with ACEI. 5. Results suggest that the angiotensin converting enzyme present in the vascular wall from Bufo arenarum toad may be involved in the metabolism of ANP.  相似文献   

3.
The effects of atrial natriuretic peptide (ANP), angiotensin II (ANG II) and angiotensin III (ANG III) on norepinephrine (NE) uptake were studied in the adrenal medulla of the rat. One microM ANG II and 10 microM ANG III decreased NE uptake while 10 nM and 100 nM ANP increased it. Subthreshold concentrations of ANP (1 nM) blunted the inhibitory effect of 1 microM ANG II but did not modify the inhibitory effect of 10 microM ANG III. The increasing effects of 100 nM ANP on NE uptake were partially reversed by subthreshold concentrations of ANG II (1 nM) and blunted by 1 nM ANG III. The interaction between ANP and the renin-angiotensin system could contribute to modulate the sympathetic function in the adrenal medulla.  相似文献   

4.
We studied the interaction between synthetic atrial natriuretic peptide (ANP) and various vasoactive substances, which included isoproterenol (ISO), aminophylline (AMI), and dibutyryl cyclic AMP (dBcAMP) as vasodilators, and angiotensin II (AII) and norepinephrine (NE) as vasoconstrictors, and prazosin as an alpha-blocker in isolated perfused rat kidneys (IPK). When 10(-9) mol of ANP was administered in 75 ml of a perfusate, the renal vascular resistance (RVR) was transiently decreased for 5 min, and increased thereafter. Simultaneously, ANP increased the glomerular filtration rate (GFR), urine flow (UV), absolute Na excretion (UNaV) and absolute K excretion (UKV). All of the above mentioned effects of ANP were significantly inhibited by administering ISO, AMI or dBcAMP. On the other hand, the administration of AII and NE significantly enhanced the increases in UV and UNaV and the fractional excretion of Na induced by ANP, although AII and NE had no influence on the changes in RVR and GFR induced by ANP. Prazosin did not modify the renal effects of ANP. These results suggest that the natriuretic effect of ANP is inhibited by agents that increase cyclic AMP in vascular smooth muscle cells. It is also suggested that the natriuretic effects of ANP can be explained by an increase in GFR and changes in intrarenal hemodynamics, rather than by the direct effect of ANP on renal tubules.  相似文献   

5.
Previous studies have shown that atrial natriuretic peptide (ANP) inhibits the secretion of aldosterone by isolated adrenal glomerulosa cells stimulated by angiotensin II, ACTH and potassium in vitro and by angiotensin II in conscious unrestrained rats. In this study we investigated further the effects of synthetic ANP on the dose-response curve of aldosterone secretion stimulated by ACTH in vitro. ANP displaced the dose-response curve of aldosterone to ACTH to the right with a significant change in EC50. A similar effect of ANP was reproduced in vivo in conscious unrestrained rats. There was no significant effect of ANP on the corticosterone response to ACTH in vivo. ANP is a potent regulator of aldosterone secretion which may modulate the effects of ACTH on the adrenal in vitro and in vivo.  相似文献   

6.
We examined the effect of rat atrial natriuretic peptide (ANP) on ACTH, dibutyryl cAMP, angiotensin II and potassium-stimulated aldosterone secretion by dispersed rat adrenal glomerulosa cells. ANP inhibited ACTH, angiotensin II and potassium-stimulated aldosterone secretion with IC50's between 0.15-0.20 nM. Inhibition by 10 nM ANP could not be overcome with higher concentrations of these stimuli. ANP shifted the dibutyryl cAMP dose-response curve slightly to the right but did not blunt the maximal aldosterone secretory response. The sites of ANP inhibition in the aldosterone biosynthetic pathway for these stimuli were also examined. ANP inhibited activation of the cholesterol desmolase (CD) enzyme complex by ACTH, angiotensin II and potassium. Activation of the corticosterone methyl oxidase (CMO) enzyme complex by potassium was inhibited by ANP, however, activation by ACTH was not blocked. We concluded that: 1) ANP is a potent inhibitor of ACTH, angiotensin II and potassium-stimulated aldosterone secretion; 2) inhibition of ACTH stimulation is primarily due to lower cAMP levels and; 3) inhibition of angiotensin II and potassium stimulation reflects a block in the activating mechanism of the CMO and/or CD enzyme complexes, whereas CD but not CMO activation by ACTH is inhibited by ANP.  相似文献   

7.
1. Ten micromoles angiotensin III decreased total 3H-norepinephrine uptake in medulla oblongata of the rat and 100 nM atrial natriuretic peptide increased it. These were the threshold concentrations for the peptides to modify the uptake of the amine. 2. A threshold concentrations (1 nM) of atrial natriuretic peptide reversed the effects produced by 10 microM angiotensin III on total 3H-norepinephrine uptake, but subthreshold angiotensin III concentrations failed to alter the effects produced by 100 nM atrial natriuretic peptide. 3. Angiotensin III, as well as atrial natriuretic peptide, modified only neuronal norepinephrine uptake and did not alter non-neuronal norepinephrine uptake. 4. Angiotensin III and atrial natriuretic peptide did not modify the intracellular distribution of norepinephrine in medulla oblongata.  相似文献   

8.
田德润  张殿明 《生理学报》1992,44(2):186-191
Atrial natriuretic peptide (ANP) present in the brain has been reported to have profound effects on water and salt metabolism. This study was designed to observe the effect of intracerebroventricular (ICV) injection of ANP on drinking behavior of rats, induced by centrally administered angiotensin II (Ang II) and 24-hours water deprivation, by using a T-maze to measure the speed they ran in a runway for water rewards. In 24-hours water deprived rats ICV injection of ANP resulted in a significant decrease of either running speed or water intake. Drinking behavior induced by ICV injection of Ang II in normally hydrated rats was also significantly inhibited by a prior injection of ANP. These findings suggest that ANP in the brain plays an important role in the central control of drinking behavior.  相似文献   

9.
We have examined the effect of atrial natriuretic peptide (ANP) and its guanylyl cyclase/natriuretic peptide receptor-A (NPRA) on mitogen-activated protein kinase/extracellular signal-regulated kinase 2 (MAPK/ERK2) activity in rat mesangial cells overexpressing NPRA. Agonist hormones such as platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), angiotensin II (ANG II), and endothelin-1 (ET-1) stimulated 2.5- to 3.5-fold immunoreactive MAPK/ERK2 activity in these cells. ANP inhibited agonist-stimulated activity of MAPK/ERK2 by 65-75% in cells overexpressing NPRA, whereas in vector-transfected cells, its inhibitory effect was only 18-20%. NPRA antagonist A71915 and KT5823, a specific inhibitor of cGMP-dependent protein kinase (PKG) completely reversed the inhibitory effect of ANP on MAPK/ERK2 activity. ANP also inhibited the PDGF-stimulated [(3)H]thymidine uptake by almost 70% in cells overexpressing NPRA, as compared with only 20-25% inhibition in vector-transfected cells. These results demonstrate that ANP/NPRA system negatively regulates MAPK/ERK2 activity and proliferation of mesangial cells in a PKG-dependent manner.  相似文献   

10.
Atrial natriuretic peptide inhibits water and sodium intake in rabbits   总被引:2,自引:0,他引:2  
The effect of atrial natriuretic peptide (ANP) on water and sodium intake was investigated in wild rabbits, a species which does not drink water following i.c.v. or i.v. administration of angiotensin II but develops sodium appetite following i.c.v. infusion of angiotensin II. ANP was given during or after depletion of extracellular fluid volume: hemorrhage, fluid deprivation and administration of furosemide. Systemically administered ANP reduced the water, but not the sodium intake of wild rabbits. I.c.v. administration of ANP inhibited both water and sodium intake. The suppression of thirst following both i.v. and i.c.v. administration of ANP indicates that inhibition of the effect of angiotensin II is not the exclusive mechanism and the circumventricular organs are probably not the exclusive sites of action for ANP. The inhibition of sodium appetite in wild rabbits was consistent with earlier proposals that ANP acts through the inhibition of the effects of angiotensin II. Reduction of food intake coincident with administration of ANP was also noted, but dose-dependent decrease was not observed.  相似文献   

11.
Atrial natriuretic peptides exert actions on many key organs involved in blood pressure and water and electrolyte balance. Many of these actions result in a physiological antagonism of angiotensin. To investigate the morphological basis of this interaction, we have mapped the distribution of receptors for atrial natriuretic peptide and angiotensin II in a number of target organs, using 125I-labelled rat atrial natriuretic peptide (99-126) and 125I-labelled [Sar1,Ile8]angiotensin II. In the kidney both atrial natriuretic peptide and angiotensin II receptors were observed overlying glomeruli, vasa recta bundles (high densities), and the outer cortex (moderate density). In the other tissues studied, atrial natriuretic peptide and angiotensin II receptors were codistributed in the adrenal zona glomerulosa, cerebral circumventricular organs including the subfornical organ, organum vasculosum of the lamina terminalis and area postrema, and the external plexiform layer of the olfactory bulb. The concurrent distribution of specific receptors for both peptides at these sites provides the basis for atrial natriuretic peptide to exert a functional antagonism of the actions of angiotensin II on blood pressure and water and electrolyte homeostasis at multiple sites.  相似文献   

12.
Previous studies have described a protective effect of atrial natriuretic peptide (ANP) against agonist-induced permeability in endothelial cells derived from various vascular beds. In the current study, we assessed the effects of the three natriuretic peptides on thrombin-induced barrier dysfunction in rat lung microvascular endothelial cells (LMVEC). Both ANP and brain natriuretic peptide (BNP) attenuated the effect of thrombin on increased endothelial monolayer permeability and significantly enhanced the rate of barrier restoration. C-type natriuretic peptide (CNP) had no effect on the degree of thrombin-induced monolayer permeability, but did enhance the restoration of the endothelial barrier, similar to ANP and BNP. In contrast, the non-guanylyl cyclase-linked natriuretic peptide receptor specific ligand, cyclic-atrial natriuretic factor (c-ANF), delayed the rate of barrier restoration following exposure to thrombin. All three natriuretic peptides promoted cGMP production in the endothelial cells; however, 8-bromo-cGMP alone did not significantly affect thrombin modulation of endothelial barrier function. ANP and BNP, but not CNP or c-ANF, blunted thrombin-induced RhoA GTPase activation. We conclude that ANP and BNP protect against thrombin-induced barrier dysfunction in the pulmonary microcirculation by a cGMP-independent mechanism, possibly by attenuation of RhoA activation.  相似文献   

13.
Dumont Y  Chabot JG  Quirion R 《Peptides》2004,25(3):365-391
Over the past 20 years, receptor autoradiography has proven most useful to provide clues as to the role of various families of peptides expressed in the brain. Early on, we used this method to investigate the possible roles of various brain peptides. Natriuretic peptide (NP), neuropeptide Y (NPY) and calcitonin (CT) peptide families are widely distributed in the peripheral and central nervous system and induced multiple biological effects by activating plasma membrane receptor proteins. The NP family includes atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP). The NPY family is composed of at least three peptides NPY, peptide YY (PYY) and the pancreatic polypeptides (PPs). The CT family includes CT, calcitonin gene-related peptide (CGRP), amylin (AMY), adrenomedullin (AM) and two newly isolated peptides, intermedin and calcitonin receptor-stimulating peptide (CRSP). Using quantitative receptor autoradiography as well as selective agonists and antagonists for each peptide family, in vivo and in vitro assays revealed complex pharmacological responses and radioligand binding profile. The existence of heterogeneous populations of NP, NPY and CT/CGRP receptors has been confirmed by cloning. Three NP receptors have been cloned. One is a single-transmembrane clearance receptor (NPR-C) while the other two known as CG-A (or NPR-A) and CG-B (or NPR-B) are coupled to guanylate cyclase. Five NPY receptors have been cloned designated as Y(1), Y(2), Y(4), Y(5) and y(6). All NPY receptors belong to the seven-transmembrane G-protein coupled receptors family (GPCRs; subfamily type I). CGRP, AMY and AM receptors are complexes which include a GPCR (the CT receptor or CTR and calcitonin receptor-like receptor or CRLR) and a single-transmembrane domain protein known as receptor-activity-modifying-proteins (RAMPs) as well as an intracellular protein named receptor-component-protein (RCP). We review here tools that are currently available in order to target each NP, NPY and CT/CGRP receptor subtype and establish their respective pathophysiological relevance.  相似文献   

14.
Lee MC  Hu HC  Huang SC 《Regulatory peptides》2005,129(1-3):31-36
Atrial natriuretic peptide (ANP) binding sites have been demonstrated in the guinea-pig gallbladder muscle with unclear function. To investigate effects of natriuretic peptides in the gallbladder, we measured relaxation of isolated human and guinea-pig gallbladder strips caused by natriuretic peptides, including C-type natriuretic peptide (CNP), brain natriuretic peptide (BNP) and ANP, as well as des[Gln18, Ser19, Gly20, Leu21, Gly22]ANP(4-23) amide (cANP(4-23)), a selective natriuretic peptide receptor-C (NPR-C) agonist. Results in the human gallbladder were similar to those in the guinea-pig gallbladder. CNP, BNP, ANP and cANP(4-23) alone did not cause contraction or relaxation in resting gallbladder strips. However, in carbachol or endothelin-1-contracted strips, CNP caused moderate, sustained and concentration-dependent relaxation. The relaxation was not affected by tetrodotoxin or atropine in endothelin-1-contracted gallbladder strips and not by tetrodotoxin in carbachol-contracted strips. These indicate a direct effect of CNP on the gallbladder muscle. The relative potencies for natriuretic peptides to cause relaxation were CNP>BNP> or = ANP. cANP(4-23) did not cause relaxation. These indicate the existence of the natriuretic peptide receptor-B (NPR-B) mediating the relaxation. Taken together, these results demonstrate that natriuretic peptides cause relaxation of human and guinea-pig gallbladder muscle through interaction with the natriuretic peptide receptor-B.  相似文献   

15.
Chang BS  Huang SC 《Regulatory peptides》2008,146(1-3):224-229
Natriuretic peptides have been demonstrated to cause relaxation of the human gallbladder muscle through interaction with natriuretic peptide receptor-B (NPR-B/NPR2). Effects of natriuretic peptides in the human esophageal muscle were unknown. To investigate the effects of natriuretic peptides in the human esophagus, we measured relaxation of muscularis mucosae strips isolated from the human esophagus caused by C-type natriuretic peptide (CNP), brain natriuretic peptide (BNP), atrial natriuretic peptide (ANP) and des[Gln(18), Ser(19), Gly(20), Leu(21), Gly(22)]ANP(4-23) amide (cANP(4-23)), a selective natriuretic peptide receptor-C (NPR-C) agonist. In endothelin-1 or carbachol-contracted mucosal muscle strips, CNP caused moderate, sustained and concentration-dependent relaxation. BNP caused a very mild relaxation whereas ANP and cANP(4-23) did not cause any relaxation. CNP was much more potent than BNP and ANP in causing relaxation. These suggest the existence of NPR-B mediating relaxation. The CNP-induced relaxation was not affected by tetrodotoxin or atropine in endothelin-1-contracted esophageal strips and not by tetrodotoxin in carbachol-contracted strips, indicating a direct effect of CNP on the human esophageal muscularis mucosae. Taken together, these results demonstrate that natriuretic peptides cause relaxation of the muscularis mucosae of the human esophagus and suggest that the relaxation is through interaction with NPR-B. Natriuretic peptides may play an important role in the control of human esophageal motility.  相似文献   

16.
Atrial natriuretic peptide (ANP) receptors have been described on rodent adipocytes and expression of their mRNA is found in human adipose tissue. However, no biological effects associated with the stimulation of these receptors have been reported in this tissue. A putative lipolytic effect of natriuretic peptides was investigated in human adipose tissue. On isolated fat cells, ANP and brain natriuretic peptide (BNP) stimulated lipolysis as much as isoproterenol, a nonselective beta-adrenergic receptor agonist, whereas C-type natriuretic peptide (CNP) had the lowest lipolytic effect. In situ microdialysis experiments confirmed the potent lipolytic effect of ANP in abdominal s.c. adipose tissue of healthy subjects. A high level of ANP binding sites was identified in human adipocytes. The potency order defined in lipolysis (ANP > BNP > CNP) and the ANP-induced cGMP production sustained the presence of type A natriuretic peptide receptor in human fat cells. Activation or inhibition of cGMP-inhibited phosphodiesterase (PDE-3B) (using insulin and OPC 3911, respectively) did not modify ANP-induced lipolysis whereas the isoproterenol effect was decreased or increased. Moreover, inhibition of adenylyl cyclase activity (using a mixture of alpha(2)-adrenergic and adenosine A1 agonists receptors) did not change ANP- but suppressed isoproterenol-induced lipolysis. The noninvolvement of the PDE-3B was finally confirmed by measuring its activity under ANP stimulation. Thus, we demonstrate that natriuretic peptides are a new pathway controlling human adipose tissue lipolysis operating via a cGMP-dependent pathway that does not involve PDE-3B inhibition and cAMP production.  相似文献   

17.
The objectives of this study were to investigate and compare the responses of atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) in the circulation of hydrated, dehydrated, and dehydrated losartan - treated camels; and to document the cardiac storage form of B-type natriuretic peptide in the camel heart. Eighteen male camels were used in the study: control or hydrated camels (n = 6), dehydrated camels (n = 6) and dehydrated losartan-treated camels (n = 6) which were dehydrated and received the angiotensin II (Ang II) AT-1 receptor blocker, losartan, at a dose of 5 mg/kg body weight intravenously for 20 days. Control animals were supplied with feed and water ad-libitum while both dehydrated and dehydrated-losartan treated groups were supplied with feed ad-libitum but no water for 20 days. Compared with time-matched controls, dehydrated camels exhibited a significant decrease in plasma levels of both ANP and BNP. Losartan-treated camels also exhibited a significant decline in ANP and BNP levels across 20 days of dehydration but the changes were not different from those seen with dehydration alone. Size exclusion high performance liquid chromatography of extracts of camel heart indicated that proB-type natriuretic peptide is the storage form of the peptide.We conclude first, that dehydration in the camel induces vigorous decrements in circulating levels of ANP and BNP; second, blockade of the renin-angiotensin system has little or no modulatory effect on the ANP and BNP responses to dehydration; third, proB-type natriuretic peptide is the storage form of this hormone in the heart of the one-humped camel.  相似文献   

18.
During fetal life the myocardium expands through replication of cardiomyocytes. In sheep, cardiomyocytes begin the process of becoming terminally differentiated at about 100 gestation days out of 145 days term. In this final step of development, cardiomyocytes become binucleated and stop dividing. The number of cells at birth is important in determining the number of cardiomyocytes for life. Therefore, the regulation of cardiomyocyte growth in the womb is critical to long term disease outcome. Growth factors that stimulate proliferation of fetal cardiomyocytes include angiotensin II, cortisol and insulin-like growth factor-1. Increased ventricular wall stress leads to short term increases in proliferation but longer-term loss of cardiomyocyte generative capacity. Two normally circulating hormones have been identified that suppress proliferation: atrial natriuretic peptide (ANP) and tri-iodo-l-thyronine (T3). Atrial natriuretic peptide signals through the NPRA receptor that serves as a guanylate cyclase and signals through cGMP. ANP powerfully suppresses mitotic activity in cardiomyocytes in the presence of angiotensin II in culture. Addition of a cGMP analog has the same effect as ANP. ANP suppresses both the extracellular receptor kinases and the phosphoinositol-3 kinase pathways. T3 also suppresses increased mitotic activity of stimulated cardiomyocytes but does so by increasing the cell cycle suppressant, p21, and decreasing the cell cycle activator, cyclin D1.  相似文献   

19.
Methacholine, atrial natriuretic peptide (ANP), nitroprusside (nitric oxide), angiotensin II, and bradykinin raised cyclic GMP (cGMP) levels in cultured bovine adrenal chromaffin cells. The role of cGMP in secretion from chromaffin cells was examined using 8-bromo-cGMP. This analogue had no effect on basal secretion or secretion due to angiotensin II, bradykinin, or a high K+ level but potentiated secretion due to low doses of nicotine. At supramaximal doses of nicotine, 8-bromo-cGMP inhibited secretion. These effects of 8-bromo-cGMP were not due to changes in the nicotine-induced rise in cytosolic calcium concentration. A potentiation of secretion due to low doses of nicotine was also found following simultaneous addition of ANP or nitroprusside, a result suggesting that ANP and nitric oxide (endothelium-derived relaxing factor) could be important regulators of secretion from adrenal chromaffin cells.  相似文献   

20.
The present study investigated the role of nitric oxide (NO) on atrial natriuretic peptide (ANP) release stimulated by angiotensin II (Ang II) (10(-7) M) in superfused sliced rat atrial tissue. The use of N(G)-nitro-L-arginine methyl ester (L-NAME) at 10(-4) M, an inhibitor of nitric oxide synthase did not modify basal ANP release. In presence of Ang II (10(-7) M), we observed that L-NAME enhanced ANP secretion induced by Ang II. Furthermore, cGMP levels increased significantly in the presence of Ang II and was attenuated by L-NAME. On the other hand, the perfusion of 8 bromo-cGMP (10(-5) M) with Ang II reduced the effect of this octapeptide on ANP secretion. Secondly, we evaluated the effect of authentic NO on ANP release and observed that perfusion of NO reduced significantly the effect of Ang II on ANP release. We propose that the effect of Ang II on ANP secretion was modulated by NO likely via cGMP pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号