首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We derived stromal cell lines from mouse thymus using methods previously established for bone marrow stroma. Two main morphologically distinct groups of cell strains emerged: epithelioid and mixed fibroblast-macrophage. Transmission electron microscopy revealed frequent junctional-complex formations between adjacent cells, a feature that characterized almost all of the thymus stromal lines, but was confined to only one of the five distinct subtypes of cell lines from bone marrow. In contrast to marrow stromal cells, the thymus-derived cell lines were all negative with fat-detecting reagents, had low acid phosphatase and no basic phosphatase activities and were unable to support the in vitro proliferation of myeloid progenitor cells (CFU-gm). Leukemia cell inhibitory activity (LCIA) was detected in one of the thymus stromal cell lines. The differences observed between cell lines derived from the stroma of the thymus and those from bone marrow may relate to the functional specificities of these organs.  相似文献   

2.
Multilineage hemopoiesis induced by cloned stromal cells   总被引:1,自引:0,他引:1  
Long-term hemopoiesis in culture depends upon the presence of an adherent layer composed of a variety of stromal cells. A subtype of endothelial-adipocytes from the bone marrow stroma (clone 14F1.1) was previously shown to induce long-term myelopoiesis and renewal of pluripotent stem cells. One of a series of stromal cell lines and clones from mouse thymus stroma (STAC-1.2) has now been found to support long-term hemopoiesis. These marrow- and thymus-derived stromal cell clones also have lymphopoietic activities: precursor T cells, or pre-B cells accumulated in co-cultures of thymus cells and the stromal clones, as indicated by cell surface markers, T cell receptor and immunoglobulin gene rearrangements. The predominance of a cell type in these cultures depended upon the serum used to supplement the medium. Recombinant interleukin 2 (IL-2) and the 14F1.1 clone synergistically promoted the proliferation of thymocytes, while a thymus hormone, THF-gamma 2, shifted the population to a relatively mature phenotype. It is proposed that one major function of stromal cells, whether from the bone marrow or thymus, is to restrain the maturation flow and preferentially support the accumulation of cells at early differentiation stages.  相似文献   

3.
Hematopoietic stem cells interact with a complex microenvironment both in vivo and in vitro. In association with this microenvironment, murine stem cells are maintained in vitro for several months. Fibroblast-like stromal cells appear to be important components of the microenvironment, since several laboratories have demonstrated that cloned stromal cell lines support hematopoiesis in vitro. The importance of the tissue of origin of such cell lines remains unknown, since systematic generation of stromal cell lines from adult tissues has never been accomplished. In addition, the capacity of stromal cell lines to support reconstituting stem cell has not been examined. We have previously described an efficient and rapid method for the immortalization of primary bone marrow stromal cell lines (Williams et al., Mol. Cell. Biol. 8:3864-3871, 1988) which can be used to systematically derive cell lines from multiple tissues of the adult mouse. Here we report the immortalization of primary murine lung, kidney, skin, and bone marrow stromal cells using a recombinant retrovirus vector (U19-5) containing the simian virus large T antigen (SV40 LT) and the neophosphotransferase gene. The interaction of these stromal cells with factor-dependent cells Patterson-Mix (FDCP-Mix), colony forming units-spleen (CFU-S), and reconstituting hematopoietic stem cells was studied in order to analyze the ability of such lines to support multipotent stem cells in vitro. These studies revealed that stromal cell lines from these diverse tissues were morphologically and phenotypically similar and that they quantitatively bound CFU-S and FDCP-Mix cells equally well. However, only those cell lines derived from bone marrow-supported maintenance of day 12 CFU-S in vitro. One lung-derived stromal cell line, ULU-3, supported the survival of day 8 CFU-S, but not the more primitive CFU-S12. A bone marrow-derived stromal cell line, U2, supported the survival of long-term reconstituting stem cells for up to 3 weeks in vitro as assayed by reconstitution 1 year post-transplant. These studies suggest that adherence of HSC to stromal cells is necessary but not sufficient for maintenance of these stem cell populations and that bone marrow provides specific signals relating to hematopoietic stem cell survival and proliferation.  相似文献   

4.
Bone marrow stromal cell lines have been isolated that directly support B lymphopoiesis in vitro. Single B-lineage precursors proliferate and differentiate on certain of these stromal cell lines to establish long-term B-lineage cultures. These lymphopoietic stromal cells produce novel soluble factors that support proliferation of in vitro established pre-B cell populations. Lymphoid populations established on lymphopoietic stromal cell lines lack surface Ig-bearing cells, but give rise to surface Ig+ cells when transferred to mixed bone marrow feeder layers. Several stromal lines expressed a B-lineage neoplasia marker detected by the monoclonal antibody MAb6C3. Remarkably, only the 6C3Aghi stromal lines supported long-term proliferation of B-lineage cells. We propose that the 6C3 antigen-bearing molecule may play a role in stromal cell-dependent, pre-B cell proliferation, as well as in neoplastic proliferation of pre-B leukemias.  相似文献   

5.
Ontogeny-specific differences in hematopoietic behavior may be influenced by unique adhesive interactions between hematopoietic cells and the microenvironment, such as that mediated by vascular cell adhesion molecule-1 (VCAM-1, CD 106). Although VCAM-1 is variably expressed during vertebrate development, we hypothesized that VCAM-1 expression might be linked to the enhanced capacity of the fetal liver microenvironment to support hematopoiesis. To test this we used immortalized murine stromal cell lines derived from midgestation fetal liver and adult bone marrow to compare the functional expression of VCAM-1. Molecular analysis of VCAM-1 expression was performed on stromal cell lines using Northern blot analysis, immunoprecipitation studies, and solid-phase enzyme-linked immunosorbent assay. Hematopoietic studies were performed by coculturing fetal liver cells with stromal cell lines, and the functional readout was determined by high-proliferative potential colony-forming cell (HPP-CFC) adherence assays. In contrast to our initial hypothesis, we observed greater expression of VCAM-1 messenger ribonucleic acid and protein on an adult marrow stromal cell line. In functional studies, anti-VCAM-1 antibody inhibited the binding of nearly half of the HPP-CFCs to adult marrow stroma but had a minimal effect on their binding to fetal liver stroma, despite the greater adherence of HPP-CFCs to fetal stroma. We conclude that VCAM-1 influences the hematopoietic supportive capacity of immortalized murine stroma derived from adult bone marrow. Our studies suggest that cellular interactions other than those mediated by VCAM-1 are involved in the increased adhesive capacity of immortalized murine stroma derived from fetal liver.  相似文献   

6.
Bone marrow stromal cells have well documented effects on the production of B lymphocytes, but whether or not stromal cell signals are involved in the pre-B to B cell transition is unclear. The potential of two stromal cell lines, S10 and S17, in this process was examined. Initial experiments, using a short term liquid culture, indicated that S10 and S17 stroma efficiently supported the generation of clonable B cells (B lymphocyte CFU) from their immediate precursors in fresh bone marrow. The contribution of macrophages and other accessory cells in those experiments was minimized through use of a colony assay system that permits the direct effects of stromal cell signals on single B cell progenitors to be evaluated. The results indicated that soluble mediators from the S10 and S17 lines could support colony formation from fresh or cultured surface Ig- bone marrow cells. Colonies supported by S17 stroma appeared on day 15 and contained cells that expressed the B220 Ag; surface IgM expression was never observed. S10 supported colonies appeared on day 7 and routinely included surface IgM+ cells. Individual colonies were capable of undergoing additional growth when picked and replated directly onto the different stroma. Those colonies replated onto S10 stroma generated surface IgM expressing cells in up to 60% of experiments, but colonies transferred onto the S17 cell line included B cells only 10% of the time. These data demonstrate that stromal cells alone can provide the signals necessary for generating a surface IgM+ B cell from precursors but that not all stromal cell lines are equally efficient at doing so.  相似文献   

7.
The bone marrow is a complex microenvironment made up of multiple cell types which appears to play an important role in the maintenance of hematopoietic stem cell self-renewal and proliferation. We used murine long-term marrow cultures and a defective recombinant retrovirus vector containing the simian virus 40 large T antigen to immortalize marrow stromal cells which can support hematopoiesis in vitro for up to 5 weeks. Such cloned cell lines differentially supported stem cells which, when transplanted, allowed survival of lethally irradiated mice, formed hematopoietic spleen colonies in vivo, and stimulated lymphocyte proliferation in vitro. Molecular and functional analyses of these cell lines did not demonstrate the production of any growth factors known to support the proliferation of primitive hematopoietic stem cells. All cell lines examined produced macrophage colony-stimulating factor. The use of immortalizing retrovirus vectors may allow determination of unique cellular proteins important in hematopoietic stem cell proliferation by the systematic comparison of stromal cells derived from a variety of murine tissues.  相似文献   

8.
Y Akasaka 《Human cell》1990,3(3):193-200
Bone marrow and spleen are the major hematopoietic tissue in adult mice. However, little is known about the specific mechanism regulating hematopoiesis within these tissues. Since Dexter et al. first described conditions to maintain bone marrow hematopoiesis, long term bone marrow culture (LTBMC) has been developed in order to analyze the mechanism of the maintenance of proliferation and differentiation of hematopoietic stem cells in vitro. Furthermore, several stromal cell lines which are able to support the growth and differentiation of hematopoietic lineage, has been established from LTBMC. Although it is well known that bone marrow stromal cell lines are able to produce colony stimulating factors, it has been suggested that the stromal cell factors which involve membrane bound moieties must have a key role in the regulation of hematopoiesis. We expect that monoclonal antibodies to the surface of bone marrow stromal cells could detect such a critical stroma-associated protein that bounds the cell surface of the bone marrow stroma.  相似文献   

9.
Mouse stromal cell lines (FLS lines), established from the livers of 13-day gestation mouse fetus, supported the proliferation and differentiation of the erythroid progenitor cells from mouse fetal livers and bone marrow in a semisolid medium in the presence of erythropoietin. A large erythroid colony of over 1000 benzidine-positive erythroid cells was developed from a single erythroid progenitor cell on the FLS cell layer after 4 days of culture. When in close contact with the layer, the erythroid progenitor cells divided rapidly with an average generation time of 9.6 h and mature erythroid cells, including enucleated erythrocytes, were produced. The present studies demonstrate that the microenvironment created by the stromal cells can support the rapid expansion of erythropoietic cell population in the fetal liver of mice.  相似文献   

10.
The Steel anemia of mice results from an inherited defect in the hematopoietic microenvironment. Proteoglycans synthesized by bone marrow stromal cells are an important functional component of the hematopoietic microenvironment in normal animals. It is thus possible that Steel anemia results from a molecular abnormality involving bone marrow stromal proteoglycans. To investigate this possibility, we studied proteoglycan synthesis in three stromal cell lines from Steel anemic (Sl/Sld) animals and two control stromal cell lines, one (+/+2.4) from a non-anemic littermate, and one (GBl/6) from a normal mouse. Proteoglycans were precursor labelled with 35S sulfate and separated by ion exchange HPLC, CsCl density gradient centrifugation, and molecular sieve HPLC. Glycosaminoglycan (GAG) moieties were characterized by molecular sieve HPLC and enzyme sensitivity. There were no consistent differences in total proteoglycan synthesis, proteoglycan heterogeneity, GAG hydrodynamic size, or enzyme sensitivity among the cell lines studied. Growth factor binding to stromal extracellular matrix (ECM) was studied by co-culture of an IL-3-dependent cell line (FDC-P1) with cell-free ECM preparations from an Sl/Sld and a control (GBl/6) stromal cell line, with and without pre-incubation with IL-3. Cell-free ECM preparations from Sl/Sld and control cell lines supported FDC-P1 growth to an approximately equal extent after pre-incubation with IL-3. FDC-P1 growth support by ECM preparations from both cell lines was also observed without IL-3 pre-incubation, although to a lesser extent, suggesting ECM binding of endogenous growth factors synthesized by the stromal cells.  相似文献   

11.
Summary Long-term cultures (LTC) producing dendritic cells (DC) have been previously established from spleen. LTC support the development of nonadherent cells comprising small DC progenitors and immature DC. Similarly, the splenic stroma STX3, derived from a LTC which ceased DC production, can support DC development from precursors in overlaid bone marrow. The STX3 stroma is an immortalised mixed population of endothelial cells and elongated spindle-shaped cells, thought to be fibroblasts. The stromal cell components of STX3 have been studied here. A panel of 102 cell lines was established by single-cell sorting. A range of clone morphology, including cobblestone cells and elongated spindle-shaped cells, was reflective of heterogeneity in STX3. However, similar expression levels for the endothelial genes ACVRL1/ALK1, COL18A1, and MCAM in 13 splenic stromal cell lines suggested that both cell types had endothelial origin. The hematopoietic support function of stromal clones was tested in coculture assays with a bone marrow cell overlay. Splenic stromal cell lines with different morphology were both supporters and nonsupporters of hematopoiesis, in terms of foci formation or release of suspension cells. Cloning of STX3 led to the isolation of a panel of splenic endothelial cell lines heterogeneous in terms of morphology and hematopoietic support function.  相似文献   

12.
In the search for stromal-derived growth factors, we have identified a novel secreted short form of immune suppressor factor (ISF) using a combination of a genetic approach and retrovirus-mediated functional screening. This protein, which we termed ShIF, was isolated based on its ability to support proliferation of a mutant clone S21, which was established from Ba/F3 cells that are usually interleukin-3-dependent but became dependent on a stroma cell line ST2 after chemical mutagenesis. ISF, a membrane protein harboring six transmembrane domains, was reported to have immunosuppressive functions. The coding region of ShIF started from the third transmembrane domain of ISF. Biochemical analysis demonstrated that ShIF was expressed in both the secreted and membrane-bound forms of 27-kDa protein, which was supposed to have an internal ATG present in the third transmembrane domain of ISF as a start codon. In addition to the full-length form of ISF, a major protein with a molecular size of 27 kDa was also expressed through the proteolytic process of ISF. ShIF resembles this naturally occurring short form of ISF (sISF). Deletion analysis of the major domains of ISF cDNA revealed that ShIF is an active functional domain of ISF with a capability to support proliferation of S21 cells. Enforced expression of ShIF in MS10 cells, bone marrow stroma cells that do not express endogenous ShIF or ISF, conferred on the cells an ability to support the growth of S21 cells as well as bone marrow cells. Interestingly, ShIF shows a high sequence homology to the C-terminal part of a 95-kDa yeast vacuolar H (+)-ATPase subunit, Vph1p (39%), and a 116-kDa proton pump (VPP1) (54%) of the rat and bovine synaptic vesicle. Therefore, it is possible that ShIF also acts as a proton pump and somehow prevents the cells from undergoing apoptosis.  相似文献   

13.
Sprouty/Spred family proteins have been identified as negative regulators of growth factor-induced ERK/mitogen-activated protein (MAP) kinase activation. However, it has not been clarified whether these proteins regulate cytokine-induced ERK activity. We found that Spred-1 is highly expressed in interleukin-3 (IL-3)-dependent hematopoietic cell lines and bone marrow-derived mast cells. To investigate the roles of Spred-1 in hematopoiesis, we expressed wild-type Spred-1 and a dominant negative form of Spred-1, DeltaC-Spred, in IL-3- and stem cell factor (SCF)-dependent cell lines as well as hematopoietic progenitor cells from mouse bone marrow by retrovirus gene transfer. In IL-3-dependent Ba/F3 cells expressing c-kit, forced expression of Spred-1 resulted in a reduced proliferation rate and ERK activation in response to not only SCF but also IL-3. In contrast, DeltaC-Spred augmented IL-3-induced cell proliferation and ERK activation. Wild-type Spred-1 inhibited colony formation of bone marrow cells in the presence of cytokines, whereas DeltaC-Spred-1 expression enhanced colony formation. Augmentation of ERK activation and proliferation in response to IL-3 was also observed in Spred-1-deficient bone marrow-derived mast cells. These data suggest that Spred-1 negatively regulates hematopoiesis by suppressing not only SCF-induced but also IL-3-induced ERK activation.  相似文献   

14.
Osteoclasts are the cells that resorb bone. It is generally presumed, on the basis of indirect experiments, that they are derived from the hemopoietic stem cell. However, this origin has never been established. We have developed an assay for osteoclastic differentiation in which bone marrow cells are incubated in liquid culture on slices of cortical bone. The bone slices are inspected in the scanning electron microscope after incubation for the presence of excavations, which are characteristic of osteoclastic activity. We have now incubated bone marrow cells at low density, or a factor-dependent mouse hemopoietic cell line (FDCP-mix A4) with 1,25 dihydroxyvitamin D3 (a hormone which we have previously found induces osteoclastic differentiation) with and without murine bone marrow stromal cells, or with and without 3T3 cells, on bone slices. Neither the bone marrow cells nor the bone marrow stromal cells alone developed osteoclastic function even in the presence of 1,25 dihydroxyvitamin D3. However, extensive excavation of the bone surface was observed, only in the presence of 1,25 dihydroxyvitamin D3, on bone slices on which bone marrow stromal cells were cocultured with low-density bone marrow cells or the hemopoietic cell line. Similar results were obtained when the bone marrow stromal cells were killed by glutaraldehyde fixation; 3T3 cells were unable to substitute for stromal cells. These results are strong evidence that osteoclasts derive from the hemopoietic stem cell and suggest that although mature osteoclasts possess neither receptors for nor responsiveness to 1,25 dihydroxyvitamin D3, the hormone induces osteoclastic function through a direct effect on hemopoietic cells rather than through some accessory cell in the bone marrow stroma. The failure of 3T3 cells, which enable differentiation of other hemopoietic progeny from this cell line, to induce osteoclastic differentiation suggests that bone marrow stroma possesses additional characteristics distinct from those that induce differentiation of other hemopoietic cells that are specifically required for osteoclastic differentiation.  相似文献   

15.
The function of adipocytes in the bone marrow stroma   总被引:7,自引:0,他引:7  
The fibroblasts and adipocytes of the bone marrow stroma provide the cytokines and extracellular matrix proteins required for the maturation and proliferation of the circulating blood cells. Due to the complexity of the bone marrow as an organ, the normal physiology of these stromal cells is not well understood. In particular, the role of adipocytes in the bone marrow remains controversial. Cloned bone marrow stromal cell lines provide an in vitro model for analysis of the lympho-hematopoietic microenvironment. These cells may be capable of multiple differentiation pathways, assuming the phenotype of adipocytes, chondrocytes, myocytes, and osteocytes in vitro. Characterization of these cell lines and recent in vivo experiments give new insight into the normal physiology of the bone marrow.  相似文献   

16.
Alternative splicing (AS) is a critical regulatory process of gene expression. In bone marrow microenvironment, AS plays a critical role in mesenchymal stem cells fate determination by forming distinct isoforms of important regulators. As a spliceosome factor, U2AF1 is essential for the catalysis of pre-mRNA splicing, and its mutation can cause differential AS events. In the present study, by forced expression of mutant U2AF1 (U2AF1S34F) in the mouse bone marrow stroma OP9 cells, we determine AS changes in U2AF1S34F transduced OP9 cells and investigate their role in stroma cell biological functions. We find that abundant differential RNA splicing events are induced by U2AF1S34F in OP9 cells. U2AF1S34F causes increased generation of hydrogen peroxide, promotes production of cytokines and chemokines. U2AF1S34F transduced OP9 cells also exhibit dysfunction of mitochondria. RNA-seq data, gene ontology (GO), and gene set enrichment analysis reveal that differentially expressed genes downregulated in response to U2AF1S34F are enriched in peroxisome component and function. U2AF1S34F can also cause release of hydrogen peroxide from OP9 cells. Furthermore, we investigate the influence of U2AF1S34F-induced oxidative stress in stromal cells on hematopoietic cells. When co-culturing mouse bone marrow mononuclear cells with OP9 cells, the U2AF1S34F expressing OP9 cells induce phosphorylation of histone H2AX in hematopoietic cells. Collectively, our results reveal that mutant U2AF1-induced differential AS events cause oxidative stress in bone marrow stromal cells and can further lead to DNA damage and genomic instability in hematopoietic cells.  相似文献   

17.
In vitro osteoclast differentiation is supported by stromal cells. In order to isolate a stromal cell line that can support osteoclast differentiation, 22 cell lines were cloned from mouse bone marrow. One of these clones, TMS-14, is a line of preadipocytes that supports osteoclast-like cell formation without any bone resorbing factors; and another, TMS-12, is a line of preosteoblasts that supports osteoclast-like cell formation with bone resorbing factors such as prostaglandin E(2)(PGE(2)). The difference of these two lines for osteoclast formation was not related with their abilities of PGE(2)production, but with the expression of osteoclast differentiation factor (ODF, also called OPGL, RANKL, and TRANCE), which detected with RT-PCR, in both cell lines. In TMS-14 cells, ODF mRNA was detected with or without PGE(2). In TMS-12 cells, ODF expression was detected in the PGE(2)-treated cells alone. When TMS-14 cells were induced to undergo adipogenic differentiation in response to treatment with thiazolidinedione, a ligand and activator of peroxisome proliferator-activated receptor gamma (PPARgamma), the ability of TMS-14 cells to support osteoclast-like cell formation was prevented in the presence or absence of 1,25(OH)(2)D(3). The gene expression of ODF in TMS-14 cells was also inhibited by treatment with thiazolidinedione. These results suggest that adipogenesis in bone marrow cells is related to the ability to support osteoclast differentiation. This is the first report of a cloned stromal cell line that can support osteoclastogenesis without the treatment with any osteotropic factors. Furthermore, this murine clonal preadipose cell line may be useful for studying senescence-dependent osteoporosis.  相似文献   

18.
The effect of murine cytomegalovirus on myelopoiesis was studied in long-term bone marrow culture to find an in vitro correlate for the lethal virus interference with bone marrow reconstitution (W. Mutter, M. J. Reddehase, F. W. Busch, H.-J. Bühring, and U. H. Koszinowski, J. Exp. Med. 167:1645-1658, 1988). The in vitro generation of granulocyte-monocyte progenitors (CFU-GM) discontinued after infection of the stromal cell layer, whereas the proliferation and differentiation of CFU-GM to granulocyte-monocyte colonies remained unaffected. A protocol was established to probe the functional integrity of earlier hematopoietic cells. Pre-CFU-GM (the progenitors of the CFU-GM) could be recovered from an infected bone marrow donor culture by transfer onto an inductive recipient stromal cell layer. Thus, at least in vitro, infection of bone marrow stroma appears to be the only cause of the defect in myelopoiesis.  相似文献   

19.
Adipogenesis in a myeloid supporting bone marrow stromal cell line.   总被引:3,自引:0,他引:3  
The bone marrow stroma contains pre-adipocyte cells which are part of the hemopoietic microenvironment. Cloned stromal cell lines differ both in their ability to support myeloid and lymphoid development and in their ability to undergo adipocyte differentiation in vitro. These processes have been examined in the +/+2.4 murine stromal cell line and compared to other stromal and pre-adipocyte cell lines. In long-term cultures, the +/+2.4 stromal cells support myeloid cell growth, consistent with their expression of macrophage-colony stimulating factor mRNA. However, despite the presence of mRNA for the lymphoid supportive cytokines interleukins 6 and 7, +/+2.4 cells failed to support stromal cell dependent B lineage lymphoid cells in vitro, suggesting that these stromal cells exhibit only a myelopoietic support function. The +/+2.4 cells differentiate into adipocytes spontaneously when cultured in 10% fetal bovine serum. The process of adipogenesis can be accelerated by a number of agonists based on morphologic and gene marker criteria. Following induction with hydrocortisone, methylisobutylxanthine, indomethacin, and insulin in combination, a time dependent increase in the steady state mRNA and enzyme activity levels of the following adipocyte specific genes was observed: adipocyte P2, adipsin, CAAT/enhancer binding protein, and lipoprotein lipase. In contrast, adipogenesis was accompanied by a slight decrease in the signal intensity of the macrophage-colony stimulating factor mRNA level, similar to that which has been reported in other bone marrow stromal cell lines. These data demonstrate that although the lympho-hematopoietic support function of pre-adipocyte bone marrow stromal cell lines is heterogeneous, they share a common mechanism of adipogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号