首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A fifteen minute incubation of spinach chloroplasts with the divalent Ca2+ chelator, EGTA, in concentrations 50–250 μM, inhibits electron transport through both photosystems. All photosystem II partial reactions, including indophenol, ferricyanide and the DCMU-insensitive silicomolybdate reduction are inhibited from 70–100%. The photosystem II donor reaction, diphenyl carbazide → indophenol, is also inhibited, indicating that the inhibition site comes after the Mn2+ site, and that the first Ca2+ effect noted (site II) is not on the water oxidation enzyme, as is commonly assumed, but between the Mn2+ site and plastoquinone A pool. The other photosystem II effect of EGTA (Ca2+ site I), occurs in the region between plastoquinone A and P700 in the electron transport chain of chloroplasts. About 50% inhibition of the reaction ascorbate + TMPD → methyl viologen is given by incubation with 200 μM EGTA for 15 min. Ca2+ site II activity can be restored with 20 mM CaCl2. Ca2+ site I responds to Ca2+ and plastocyanin added jointly. More than 90% activity in the ascorbate + TMPD → methylviologen reaction can be restored. Various ways in which Ca2+ ions could affect chloroplast structure and function are discussed. Since EGTA is more likely to penetrate chloroplast membranes than EDTA, which is known to remove CF1, the coupling factor, from chloroplast membranes, and since Mg2+ ions are ineffective in restoring activity, it is concluded that Ca2+ may function in the electron transport chain of chloroplasts in a hitherto unsuspected manner.  相似文献   

2.
After acid-treatment of spinach (Spinacia oleracea) chloroplasts, various partial electron transport reactions are inactivated from 25 to 75%. Divalent cations in concentrations from 10 to 50 millimolar can partially restore electron transport rates. Two cation-specific sites have been found in photosystem II: one on the 3-(3,4-dichlorophenyl)-1, 1-dimethylurea-insensitive silicomolybdate pathway, which responds better to restoration by Mg2+ than by Ca2+ ions, the other on the forward pathway to photosystem I, located on the 2,5-dimethylbenzoquinone pathway. This site is selectively restored by Ca2+ ions. When protonated chloroplasts are treated with N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)aziridine, a carboxyl group modifying reagent, presumed to react with glutamic and aspartic acid residues of proteins, restoration of electron transport at the Ca2+-selective site on the 2,5-dimethylbenzoquinone pathway is impaired, while no difference in restoration is seen at the Mg2+ site on the 3-(3,4-dichlorophenyl)-1,1-dimethylurea-insensitive silicomolybdate pathway.

Trypsin treatment of chloroplasts modifies the light-harvesting pigment-protein complex, destroys the dibromothymoquinone-insensitive 2,5-dimethyl-benzoquinone reduction, but does not interfere with the partial restoration of activity of this pathway by Ca2+ ions, implying that the selective Ca2+ effect on photosystem II (selective Ca2+ site) is different from its effects as a divalent cation on the light-harvesting pigment-protein complex involved in the excitation energy distribution between the two photosystems.

  相似文献   

3.
NAD kinase activity has been found in a soluble, cytoplasmic fraction and in the chloroplasts prepared from green spinach leaves. A small amount of both the cytoplasmic and the chloroplastic NAD kinase activities was retained on a calmodulin-Sepharose affinity column. The cytoplasmic NAD kinase eluted from the affinity column was found to be enhanced by calmodulin in a Ca2+-dependent manner. The chloroplastic enzyme which is located exclusively in the stroma and not in the envelope and thylakoid fractions was not affected by Ca2+ and calmodulin. The stromal fraction of purified chloroplasts contained only a negligible amount of calmodulin, most probably due to cytoplasmic contamination. Based on these data, two different mechanisms for the light-dependent modulation of spinach NAD kinase activity are suggested.  相似文献   

4.
Felodipine is a fluorescent dihydropyridine Ca2+-antagonist. It binds to calmodulin in a Ca2+-dependent manner, and undergoes a fluorescence increase which allows us to monitor its interaction with calmodulin. Hydrophobic ligands including the calmodulin antagonist, R24571 and Ca2+ antagonists, prenylamine and diltiazem, bind to calmodulin and potentiate felodipine binding by as much as 20 fold. These studies suggest that allosteric interactions occur among different drug binding sites on calmodulin. Our results are discussed in terms of the mechanism of action of calmodulin.  相似文献   

5.
Summary Inside-out vesicles prepared from human red blood cells took up Ca2+ by an active transport process. Membranes from the same red blood cells displayed Ca2+-activated, Mg2+-dependent adenosine triphosphatase activity. Both the initial rate of Ca2+ transport and the (Ca2++Mg2+)-adenosine triphosphatase activity were increased approximately twofold by the calcium binding protein, calmodulin. Activities in the absence of added calmodulin were termed basal activities. Calmodulin-activated Ca2+ transport and adenosine triphosphatase activities could be antagonized in a relatively selective fashion by the phenothiazine tranquilizer drug, trifluoperazine. High concentrations of trifluoperazine also inhibited basal Ca2+ transport and adenosine triphosphatase activity. By contrast, calmodulin binding protein from beef brain selectively antagonized the effect of calmodulin on Ca2+ transport with no inhibition of basal activity. Ruthenium red antagonized calmodulin-activated and basal activity with equal potency. The results demonstrate that although phenothiazines can act as relatively selective antagonists of calmodulin-induced effects, other effects are possible and cannot be ignored. Calmodulin-binding protein may be a useful tool in the analysis of calmodulin functions. Ruthenium red probably interacts with Ca2+ pump adenosine triphosphatase at a site not related to calmodulin.  相似文献   

6.
Photosystem II particles were prepared from spinach chloroplasts with Triton X-100, and treated with 1.0 M NaCl to remove polypeptides of 24 kDa and 18 kDa and to reduce the photosynthetic oxygen-evolution activity by about half. Oxygen-evolution activity was restored almost to the original level with 10 mM Ca2+, in a similar manner to the rebinding of 24-kDa polypeptide. Other cations such as magnesium, sodium and manganese ions could not restore any oxygen-evolution activity. These observations, together with a kinetic analysis, suggest that Ca2+ can be substituted for the 24-kDa polypeptide in photosynthetic oxygen evolution in Photosystem II particles.  相似文献   

7.
Chloroplasts were prepared from pea seedlings and tested for NAD kinase activity. More than half of a Ca2+, calmodulin-dependent activity and most of a Ca2+, calmodulin-independent activity of the homogenate were associated with chloroplasts. The Ca2+, calmodulin-dependent activity could be detected by adding Ca2+ and calmodulin to the incubation medium containing intact chloroplasts. This activity could not be separated from the chloroplasts by successive washes or by phase partition in aqueous two-polymer phase systems. After chloroplasts fractionation, the Ca2+, calmodulin-dependent NAD kinase activity was localized at the envelope, and the Ca2+, calmodulin-independent activity was recovered from the stroma. In view of these results and of a previous report [Simon (1982) Plant Cell Rep. 1, 119–122] the occurrence and presumed role of calmodulin in the chloroplast are discussed.  相似文献   

8.
Illumination of isolated type A spinach chloroplasts causes a rapid increase in their activity of fructosebisphosphatase, as assayed at physiological substrate and Mg2+ concentrations. Activation is accelerated by addition of dihydroxyacetone phosphate to the chloroplasts and decreased by inorganic phosphate concentrations greater than those optimal for CO2 fixation. At all times, measured fructosebisphosphatase activity was greater than was necessary to account for the observed rates of CO2 fixation. Activation of purified fructosebisphosphatase in vitro by dithiothreitol or reduced thioredoxin is extremely slow, but is greatly accelerated in the presence of physiological concentrations of Mg2+ and fructosebisphosphate if Ca2+ ions are present. Increased concentrations of fructosebisphosphate greatly increase the rate and extent of activation whereas in the absence of fructosebisphosphate Ca2+ ions have no effect. Neither inorganic phosphate nor dihydroxyacetone phosphate significantly affect the rate of activation. Ca2+ ions strongly inhibit the activity of the activated form of fructosebisphosphatase. It is proposed that free Ca2+ ions within chloroplasts are involved in preventing fructosebisphosphatase from functioning in the dark, and that free and/or bound Ca2+ facilitates the rapid reductive activation of this enzyme when the light is turned on again.  相似文献   

9.
Investigations on photosynthesis have greatly benefited by the use of specific inhibitors that affect a specific site of inhibition on the electron-transport chain. We show here for the first time that cobalt (Co2+) ions can be used specifically to inactivate electron donation to the reaction centre of Photosystem (PS) II without affecting PS I reactions. This conclusion is based on the following observations: (1) addition of exogenous electron donors such as NH2OH does not relieve Co2+-induced inactivation of photoelectron transport or the lowering of steady-state chlorophyll a fluorescence yield; this suggests that the inhibition is beyond the NH2OH donation site and before the fluorescence quencher Q, i.e., on the reaction centre complex itself. (2) Washing of Co2+-pretreated chloroplasts with isolation buffer to remove Co2+ does not relieve Co2+-induced inhibition of Hill activity, suggesting that the Co2+ effect is irreversible. (3) Co2+ did not alter the PS I reactions. Thus, Co2+-treated chloroplasts can be used to study PS I functions free from PS II reactions in isolated chloroplasts.  相似文献   

10.
The Ca2+ uptake of the mitochondria of guinea pig peritoneal macrophages was not stimulated by the addition of calmodulin. However, calmodulin antagonists, both phenotiazines and N-naphthalenesulfonamides, in low concentrations inhibited the Ca2+ uptake of the mitochondoria, as compared to the inhibition of the calmodulin-dependent stimulation of brain phosphodiesterase. These calmodulin antagonists appear to have severe side effects on active processes of the mitochondria and which are unrelated to the specific effect on calmodulin.  相似文献   

11.
The results obtained by biochemical measurement demonstrated for the first time that significant decrease of the plasma membrane Ca2+-ATPase activity occurred during capacitation and acrosome reaction of guinea pig sperm. Ethaorynic acid, one kind of Ca2+-ATPase antagonists, inhibited the plasma membrane Ca2+-ATPase activity, but calmodulin (50μg/mL) and trifluoperazine (200- 500μmol/L) did not, suggesting that calmodulin is not involved in ATP-driven Ca2+ efflux from sperm. However, calmodulin is involved in the control of Ca2+ influx. TFP, one kind of calmodulin antagonists, accelerated the acrosome reaction and Ca2+ uptake into sperm cells significantly. Ca2+-ATPase antagonists, quercetin, sodium orthovandate, furosemide and ethacrynic acid promoted the acrosome reaction, but inhibited Ca2+ uptake, which cannot be explained by their inhibitory effects on the plasma membrane Ca2+-ATPase activity. It is speculated that this phenomenon might be caused by simultaneous inhibitions of the activities of Ca2+-ATPase present in the plasma membrane, the outer acrosome membrane and the outer mitochondrion membrane resulting in Ca2+ accumulation in the cytoplasm, which in turn blocks further Ca2+ entry through some negative feedback mechanism(s). The inhibitory effect of Ca2+-ATPase antagonist on glycolytic activity may also be the reason for Ca2+ accumulation in cytoplasm and inhibition of Ca2+ uptake.  相似文献   

12.
A soluble Ca2+- and Ca2+—calmodulin-activated protein kinase was partially purified from wheat germ. The phosphorylation of histones and casein catalyzed by this enzyme is largely Ca2+-dependent. After repeated gel filtration of the protein kinase in the presence of 1 mM EGTA, the phosphorylation of casein and histones by the enzyme is activated 3-fold and up to 16-fold, respectively, by added calmodulin (12.5 μM). Such activation of the protein kinase by calmodulin is Ca2+-dependent. The protein kinase binds to calmodulin—Sepharose 4B in a Ca2+-dependent fashion. This type of Ca2+-activated protein kinase may be involved in stimulus—response coupling in plants.  相似文献   

13.
The present study assessed the influence of intracellular Ca2+ and calmodulin against the neurotoxicity of oxysterol 7-ketocholesterol in relation to the mitochondria-mediated cell death process and oxidative stress in PC12 cells. Calmodulin antagonists calmidazolium and W-7 prevented the 7-ketocholesterol-induced mitochondrial damage, leading to caspase-3 activation and cell death, whereas Ca2+ channel blocker nicardipine, mitochondrial Ca2+ uptake inhibitor ruthenium red, and cell permeable Ca2+ chelator BAPTA-AM did not reduce it. Exposure of PC12 cells to 7-ketocholesterol caused elevation of intracellular Ca2+ levels. Unlike cell injury, calmodulin antagonists, nicardipine, and BAPTA-AM prevented the 7-ketocholesterol-induced elevations of intracellular Ca2+ levels. The results show that the cytotoxicity of 7-ketocholesterol seems to be modulated by calmodulin rather than changes in intracellular Ca2+ levels. Calmodulin antagonists may prevent the cytotoxicity of 7-ketocholesterol by suppressing the mitochondrial permeability transition formation, which is associated with the increased formation of reactive oxygen species and the depletion of GSH.  相似文献   

14.
Strong inhibition of uncoupled photosynthetic electron transport by Cu2+ in isolated spinach chloroplasts was observed by measuring changes in O2 concentration in the reaction medium. Inhibition was dependent not only on the concentration of the inhibitor, but also on the ratio of chlorophyll to inhibitor. Binding of Cu2+ to the chloroplast membranes resulted in removal of Cu2+ from solution. When chloroplasts were exposed to preincubation in light, there was increased inhibition as a result of Cu2+ binding to inhibitory sites. Preincubation in the dark resulted in Cu2+ binding to noninhibitory sites and decreased inhibition. The degree of inhibition was lower at low light intensities than at high light intensities.  相似文献   

15.
A 21-kDa novel polypeptide which possesses characteristics normally considered to be diagnostic of the calmodulin present in eukaryotic cells was isolated from the cyanobacterium Nostoc sp. PCC 6720. The major technique employed in the isolation of the polypeptide was ion-exchange chromatography on a Mono Q column. The 21-kDa polypeptide was shown: to activate pea NAD kinase in vitro, in a Ca2+ requiring reaction; to react with polyclonal antibodies raised against spinach calmodulin, but not with those raised against bovine brain calmodulin; and to exhibit a Ca2+ dependent shift in migration during SDS-PAGE.Abbreviations ATCC American Type Culture Collection - DCPIP 2,6-dichlorophenylindophenol - PBS Phosphate buffered saline  相似文献   

16.
The kinetic plot (initial rate of Ca2+ transport versus concentration) of mitochondrial Ca2+ transport is hyperbolic in a sucrose medium. The plot becomes sigmoidal in the presence of competitive inhibitors of Ca2+ binding to low affinity sites of the membrane surface such as Mg2+ and K+. The plot also becomes sigmoidal in the presence of Ba2+. Ba2+ is a competitive inhibitor of both Ca2+ transport and Ca2+ binding to the low affinity sites. The Ki for the inhibition of Ca2+ transport by Ba2+ increases in the presence of K+ and Mg2+, which suggests a competition for the low affinity sites between the cations. The plot is still hyperbolic in the presence of La3+, which inhibits Ca2+ transport competitively. Ruthenium red which is a pure non-competitive inhibitor of mitochondrial Ca2+ transport, does not affect the shape of the kinetic plot. These results indicate that the surface potential, which depends on the ions bound to the low affinity sites, determines whether the kinetics of Ca2+ uptake in mitochondria is sigmoidal or hyperbolic.  相似文献   

17.
The presence of an Na+/Ca2+ exchange system in basolateral plasma membranes from rat small intestinal epithelium has been demonstrated by studying Na+ gradient-dependent Ca2+ uptake and the inhibition of ATP-dependent Ca2+ accumulation by Na+. The presence of 75 mM Na+ in the uptake solution reduces ATP-dependent Ca2+ transport by 45%, despite the fact that Na+ does not affect Ca2+-ATPase activity. Preincubation of the membrane vesicles with ouabain or monensin reduces the Na+ inhibition of ATP-dependent Ca2+ uptake to 20%, apparently by preventing accumulation of Na+ in the vesicles realized by the Na+-pump. It was concluded that high intravesicular Na+ competes with Ca2+ for intravesicular Ca2+ binding sites. In the presence of ouabain, the inhibition of ATP-dependent Ca2+ transport shows a sigmoidal dependence on the Na+ concentration, suggesting cooperative interaction between counter transport of at least two sodium ions for one calcium ion. The apparent affinity for Na+ is between 15 and 20 mM. Uptake of Ca2+ in the absence of ATP can be enhanced by an Na+ gradient (Na+ inside > Na+ outside). This Na+ gradient-dependent Ca2+ uptake is further stimulated by an inside positive membrane potential but abolished by monensin. The apparent affinity for Ca2+ of this system is below 1 μM. In contrast to the ATP-dependent Ca2+ transport, there is no significant difference in Na+ gradient-dependent Ca2+ uptake between basolateral vesicles from duodenum, midjejunum and terminal ileum. In duodenum the activity of ATP-driven Ca2+ uptake is 5-times greater than the Na+/Ca2+ exchange capacity but in the ileum both systems are of equal potency. Furthermore, the Na+/Ca2+ exchange mechanism is not subject to regulation by 1α,25-dihydroxy vitamin D-3, since repletion of vitamin D-deficient rats with this seco-steroid hormone does not influence the Na+/Ca2+ exchange system while it doubles the ATP-driven Ca2+ pump activity.  相似文献   

18.
Removal of coupling factor protein (CF1) from spinach thylakoid membranes results in an enhancement of proton permeability but has no effect on chloride or potassium permeability. Anion permeability was measured by the rate of thylakoid packed volume changes. Potassium permeability was monitored by turbidity changes, packed thylakoid volume changes and ion flux studies using 86Rb+ as a tracer. 45Ca2+ was used to measure divalent cation fluxes. CF1-depleted chloroplasts had an unaltered rate of Ca2+ uptake, but the rate of Ca2+ efflux appeared to be increased. Calcium efflux rates could also be increased by the addition of a proton specific uncoupler, FCCP.  相似文献   

19.
Addition of NADPH to osmotically lysed spinach chloroplasts results in a reduction of the primary acceptor (Q) of Photosystem II. This reduction of Q reaches a maximum of 50% in chloroplasts maintained under weak illumination and requires added ferredoxin and Mg2+. The reaction is inhibited by (i) an antibody to ferredoxin-NADP+ reductase (EC 1.6.7.1), (ii) treatment of chloroplasts with N-ethylmaleimide in the presence of NADPH, (iii) disulfodisalicylidenepropanediamine, (iv) antimycin, and (v) acceptors of non-cyclic electron transport. Uncouplers of phosphorylation do not affect NADPH-driven reduction of Q.It is proposed that electron flow from NADPH to Q may occur in the dark by a pathway utilising portions of the normal cyclic and non-cyclic electron carrier sequences. The possible in vivo role for such a pathway in redox poising of cyclic electron transport and hence in controlling the ATP/NADPH supply ratio is discussed.  相似文献   

20.
The synaptosomal plasma membrane Ca2+-ATPase (PMCA) plays an essential role in regulating intracellular Ca2+ concentration in brain. We have recently found that PMCA is the only Ca2+ pump in brain which is inhibited by amyloid-β peptide (Aβ), a neurotoxic peptide implicated in the pathology of Alzheimer's disease (AD) [1], but the mechanism of inhibition is lacking. In the present study we have characterized the inhibition of PMCA by Aβ. Results from kinetic assays indicate that Aβ aggregates are more potent inhibitors of PMCA activity than monomers. The inhibitory effect of Aβ could be blocked by pretreating the purified protein with Ca2+-calmodulin, the main endogenous activator of PMCA, and the activity of truncated PMCA lacking the calmodulin binding domain was not affected by Aβ. Dot-overlay experiments indicated a physical association of Aβ with PMCA and also with calmodulin. Thus, calmodulin could protect PMCA from inhibition by Aβ by burying exposed sites on PMCA, making them inaccessible to Aβ, and also by direct binding to the peptide. These results suggest a protective role of calmodulin against neuronal Ca2+ dysregulation by PMCA inhibition induced by Aβ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号