首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The efficiency of anticancer therapy is often restricted by the development of drug resistance. Here, we report that the doxorubicin (DOX)-resistant MCF-7/Adr cells were more resistant to DOX-treatment than MCF-7 cells. However, an alternative treatment of DOX/TNF-alpha enhanced the cytotoxic effect in multidrug resistant MCF-7/Adr cell line. Treatment of cells with TNF-alpha following doxorubicin (DOX) resulted in a decrease of the activated Rel A/p65 in nuclei. Histone deacetylase 1 (HDAC1) was found to interact with Rel A/p65 in the complex, suggesting that HDAC1 is involved in mediating nuclear export of Rel A/p65. The combined treatment of TNF-alpha/DOX also resulted in a significant decrease of mRNA levels of anti-apoptotic genes, such as the cellular inhibitor of apoptosis-1 (c-IAP1), and the long isoform of B cell leukemia/lymphoma x gene (Bcl-xL), leading to efficient induction of caspase-8 cleavage and cell death. In previous work, we demonstrated that TNF-alpha promotes DOX-induced cell death and anti-cancer effect through downregulation of p21 in p53-deficient tumor cells. Thus, we proposed that alternative administration of TNF-alpha and DOX may be a new and efficient therapeutic strategy for patients that develop resistance to cytotoxic treatment.  相似文献   

2.
A thymidylate synthase (TS)-ribonucleoprotein (RNP) complex composed of TS protein and the mRNA of the tumor suppressor gene p53 was isolated from cultured human colon cancer cells. RNA gel shift assays confirmed a specific interaction between TS protein and the protein-coding region of p53 mRNA, and in vitro translation studies demonstrated that this interaction resulted in the specific repression of p53 mRNA translation. To demonstrate the potential biological role of the TS protein-p53 mRNA interaction, Western immunoblot analysis revealed nearly undetectable levels of p53 protein in TS-overexpressing human colon cancer H630-R10 and rat hepatoma H35(F/F) cell lines compared to the levels in their respective parent H630 and H35 cell lines. Polysome analysis revealed that the p53 mRNA was associated with higher-molecular-weight polysomes in H35 cells compared to H35(F/F) cells. While the level of p53 mRNA expression was identical in parent and TS-overexpressing cell lines, the level of p53 RNA bound to TS in the form of RNP complexes was significantly higher in TS-overexpressing cells. The effect of TS on p53 expression was also investigated with human colon cancer RKO cells by use of a tetracycline-inducible system. Treatment of RKO cells with a tetracycline derivative, doxycycline, resulted in 15-fold-induced expression of TS protein and nearly complete suppression of p53 protein expression. However, p53 mRNA levels were identical in transfected RKO cells in the absence and presence of doxycycline. Taken together, these findings suggest that TS regulates the expression of p53 at the translational level. This study identifies a novel pathway for regulating p53 gene expression and expands current understanding of the potential role of TS as a regulator of cellular gene expression.  相似文献   

3.
The p53 protein has been a subject of intense research interest since its discovery as about 50% of human cancers carry p53 mutations. Mutations in the p53 gene are the most frequent genetic lesions in breast cancers suggesting a critical role of p53 in breast cancer development, growth and chemosensitivity. This report describes the derivation and characterization of MCF-7As53, an isogenic cell line derived from MCF-7 breast carcinoma cells in which p53 was abrogated by antisense p53 cDNA. Similar to MCF-7 and simultaneously selected hygromycin resistant MCF-7H cells, MCF-7As53 cells have consistent basal epithelial phenotype, morphology, and estrogen receptor expression levels at normal growth conditions. Present work documents investigation of molecular variations, growth kinetics, and cell cycle related studies in relation to absence of wild-type p53 protein and its transactivation potential as well. Even though wild-type tumor suppressor p53 is an activator of cell growth arrest and apoptosis-mediator genes such as p21, Bax, and GADD45 in MCF-7As53 cells, no alterations in expression levels of these genes were detected. The doubling time of these cells decreased due to depletion of G0/G1 cell phase because of constitutive activation of Akt and increase in cyclin D1 protein levels. This proliferative property was abrogated by wortmannin, an inhibitor of PI3-K/Akt signaling pathway. Therefore this p53 null cell line indicates that p53 is an indispensable component of cellular signaling system which is regulated by caveolin-1 expression, involving Akt activation and increase in cyclin D1, thereby promoting proliferation of breast cancer cells.  相似文献   

4.
Antony ML  Kim SH  Singh SV 《PloS one》2012,7(2):e32267
Benzyl isothiocyanate (BITC), a constituent of edible cruciferous vegetables, decreases viability of cancer cells by causing apoptosis but the mechanism of cell death is not fully understood. The present study was undertaken to determine the role of Bcl-2 family proteins in BITC-induced apoptosis using MDA-MB-231 (breast), MCF-7 (breast), and HCT-116 (colon) human cancer cells. The B-cell lymphoma 2 interacting mediator of cell death (Bim) protein was dispensable for proapoptotic response to BITC in MCF-7 and MDA-MB-231 cells as judged by RNA interference studies. Instead, the BITC-treated MCF-7 and MDA-MB-231 cells exhibited upregulation of p53 upregulated modulator of apoptosis (PUMA) protein. The BITC-mediated induction of PUMA was relatively more pronounced in MCF-7 cells due to the presence of wild-type p53 compared with MDA-MB-231 with mutant p53. The BITC-induced apoptosis was partially but significantly attenuated by RNA interference of PUMA in MCF-7 cells. The PUMA knockout variant of HCT-116 cells exhibited significant resistance towards BITC-induced apoptosis compared with wild-type HCT-116 cells. Attenuation of BITC-induced apoptosis in PUMA knockout HCT-116 cells was accompanied by enhanced G2/M phase cell cycle arrest due to induction of p21 and down regulation of cyclin-dependent kinase 1 protein. The BITC treatment caused a decrease in protein levels of Bcl-xL (MCF-7 and MDA-MB-231 cells) and Bcl-2 (MCF-7 cells). Ectopic expression of Bcl-xL in MCF-7 and MDA-MB-231 cells and that of Bcl-2 in MCF-7 cells conferred protection against proapoptotic response to BITC. Interestingly, the BITC-treated MDA-MB-231 cells exhibited induction of Bcl-2 protein expression, and RNA interference of Bcl-2 in this cell line resulted in augmentation of BITC-induced apoptosis. The BITC-mediated inhibition of MDA-MB-231 xenograft growth in vivo was associated with the induction of PUMA protein in the tumor. In conclusion, the results of the present study indicate that Bim-independent apoptosis by BITC in cancer cells is mediated by PUMA.  相似文献   

5.
We investigated the role of 14-3-3sigma protein in insulin-like growth factor-I (IGF-I) receptor signaling. It has been previously shown that 14-3-3sigma negatively regulates cell cycle especially in response to p53-sensitive DNA damage. In this study we demonstrated that 14-3-3sigma is a positive mediator of IGF-I receptor-induced cell proliferation. Treatment with IGF-I increased 14-3-3sigma mRNA and protein levels about 4-fold, in a time-dependent manner in MCF-7 breast cancer cells. Preincubation with the phosphoinositide 3'-kinase inhibitor LY294002 significantly reduced the effects of IGF-I on 14-3-3sigma gene expression in these cells, suggesting that this effect of IGF-I occurs via the phosphoinositide 3'-kinase pathway. 14-3-3sigma is induced by IGF-I in MCF-7 cells, which express wild-type p53, as well as in MCF-7 cells transfected with a small interference RNA targeting duplex that reduced p53 expression levels. These results suggest that IGF-I induces 14-3-3sigma expression in a manner that is independent of p53. Using the small interference RNA strategy, we demonstrated that a 70-75% reduction of 14-3-3sigma mRNA levels resulted in a similar decrease in the effects of IGF-I on cell cycle progression and proliferation in MCF-7 cells. This effect was also associated with a reduction in IGF-I-induced cyclin D1 expression. Taken together, these results suggest that 14-3-3sigma positively mediates IGF-I-induced cell cycle progression.  相似文献   

6.
The environmental pollutant 6-nitrochrysene (6-NC) is a potent mammary carcinogen in rats; it is more potent than numerous classical mammary carcinogens such as benzo[a]pyrene (BaP). The mechanisms that account for the remarkable carcinogenicity of 6-NC remain elusive. Similar to BaP, 6-NC is also known to induce DNA damage in rodents and in human breast tissues. As an initial investigation, we reasoned that DNA damage induced by 6-NC may alter the expression of p53 protein in a manner that differs from other DNA damaging carcinogens (e.g. BaP). Using human breast adenocarcinoma MCF-7 cells and immortalized human mammary epithelial MCF-10A cells, we determined the effects of 6-NC on the expression of p53 protein and its direct downstream target cyclin-dependent kinase inhibitor p21(Cip1) as well as on the cell cycle progression. Western blot analysis demonstrated that treatments of MCF-7 and MCF-10A cells with 6-NC for 12, 24 or 48h did not increase the level of total p53 protein; however, an increase of p21(Cip1) protein and a commitment increase of G(1) phase were observed in MCF-10A cells but not in MCF-7 cells. Further studies using 1,2-dihydroxy-1,2-dihydro-6-hydroxylaminochrysene (1,2-DHD-6-NHOH-C), the putative ultimate genotoxic metabolite of 6-NC, was conducted and showed a significant induction of p53 (p<0.05) in MCF-7 cells; however, this effect was not evident in MCF-10A cells, indicating the varied DNA damage responses between the two cell lines. By contrast to numerous DNA damaging agents such as BaP which is known to stimulate p53 expression, the lack of p53 response by 6-NC imply the lack of protective functions mediated by p53 (e.g. DNA repair machinery) after exposure to 6-NC and this may, in part, account for its remarkable carcinogenicity in the mammary tissue.  相似文献   

7.
The association between consumption of genistein-containing soybean products and lower risk of breast cancer suggests a cancer chemopreventive role for genistein. Consistent with this suggestion, exposing cultured human breast cancer cells to genistein inhibits cell proliferation, although this is not completely understood. To better understand how genistein works, the ability of genistein to induce apoptosis was compared in phenotypically dissimilar MCF-7 and MDA-MB-231 human breast cancer cells that express the wild-type and mutant p53 gene, respectively. After 6 days of incubation with 50 microM genistein, MCF-7 but not MDA-MB-231 cells, showed morphological signs of apoptosis. Marginal proteolytic cleavage of poly-(ADP-ribose)-polymerase and significant DNA fragmentation were also detected in MCF-7 cells. In elucidating these findings, it was determined that after 2 days of incubation with genistein, MCF-7 but not MDA-MB-231 cells, had significantly higher levels of p53. Accordingly, the expression of certain proteins modulated by p53 was studied next. Levels of p21 increased in both of the genistein-treated cell lines, suggesting that p21 gene expression was activated but in a p53-independent manner, whereas no significant changes in levels of the pro-apoptotic protein, Bax, were found. In MCF-7 cells, levels of the anti-apoptotic protein, Bcl-2, decreased slightly at 18-24 h but then increased considerably after 48 h. Hence, the Bax:Bcl-2 ratio initially increased but later decreased. These data suggest that at the genistein concentration tested, MCF-7 cells in contrast to MDA-MB-231 cells were sensitive to the induction of apoptosis by genistein, but Bax and Bcl-2 did not play clear roles.  相似文献   

8.
Mdm2 is a nuclear phosphoprotein which functions as a negative feedback regulator of the p53 tumor suppressor gene. In this study, we investigated the alteration of Mdm2 and p53 in three human cancer cell lines containing either a wild-type or mutant p53 gene after treatment with Adriamycin (doxorubicin, ADR), a DNA damaging agent. We found that human breast cancer MCF-7 cells containing wild-type p53 were much more susceptible to ADR compared to human breast cancer MDA-MB-231 and human prostate cancer Du-145 cells which contain mutant p53. ADR resulted in a significant dose-dependent accumulation of p53 protein in MCF-7 cells, whereas little or no influence was observed on p53 protein of the two mutant p53 cell lines. However, a significant down-regulation of Mdm2 at protein and mRNA levels was observed in these three cell lines following ADR treatment. Moreover, the decrease of Mdm2 was in both a dose- and time-dependent manner. It is interestingly noted that 5 μM is a critical dose for significant down-regulation of the Mdm2 protein. Selected proteasome inhibitors did not rescue the ADR-caused decline in the expression of Mdm2 protein. Therefore, our present results reveal that ADR can induce a down-regulation of Mdm2 via a p53-independent pathway in human cancer cells and the ubiquitin-proteasome degradation mechanism may not be involved in the decreased expression of Mdm2 protein.  相似文献   

9.
Transcriptional activation of p53 by Pitx1   总被引:1,自引:0,他引:1  
  相似文献   

10.
Silibinin is a natural polyphenol with high antioxidant and anticancer properties, which causes cell cycle arrest and apoptosis in most cancer cell types including breast cancer, but the in-line mechanisms, are still unknown. Silibinin significantly downregulated oncomiR miR-21 expression in breast cancer cells. Here the effect of anti-miR-21 on cell viability, apoptotic induction, cell cycle distribution, and the expression levels of downstream targets of miR-21 were investigated in MCF-7 and T47D cells. MiR-21 mimic transfection was also applied in silibinin treated samples to evaluate functional role of miR-21downregulation on silibinin effects. It was found that after anti-miR-21 transfection, no significant changes were detected in cell viability, apoptosis (except early apoptosis), and cell cycle in MCF-7 and T47D cells. Compared to silibinin, miR-21 mimic transfection in combination with silibinin caused a slight modulation in some of the examined silibinin effects including apoptosis, Bcl2 mRNA and PTEN mRNA and protein levels. Silibinin slightly changed luciferase activity from reporters containing the miR-21 recognition elements from PTEN-3′UTR and Bcl2-3′UTR in both cell lines. Together these data demonstrated negligible cancer-progression impact of miR-21 and limited roles of miR-21 downregulation in examined silibinin effects, and strengthened the anti-cancer pathways of silibinin other than miR-21downregulation in MCF-7 and T47D cells.  相似文献   

11.
MicroRNAs are emerging as important regulators of cancer-related processes. The miR-21 microRNA is overexpressed in a wide variety of cancers and has been causally linked to cellular proliferation, apoptosis, and migration. Inhibition of mir-21 in MCF-7 breast cancer cells causes reduced cell growth. Using array expression analysis of MCF-7 cells depleted of miR-21, we have identified mRNA targets of mir-21 and have shown a link between miR-21 and the p53 tumor suppressor protein. We furthermore found that the tumor suppressor protein Programmed Cell Death 4 (PDCD4) is regulated by miR-21 and demonstrated that PDCD4 is a functionally important target for miR-21 in breast cancer cells.  相似文献   

12.
13.
The aim of the present work was to study whether melatonin, at physiological concentrations, exerts its antiproliferative effects on MCF-7 human breast cancer cells by inducing the expression of some of the proteins involved in the control of the cell cycle. MCF-7 cells were cultured for 48 h in DMEM media containing either melatonin (1 nM) or the diluent (0.001% ethanol). At this concentration, after 48 hours of incubation, melatonin reduced the number of viable cells in relation to controls. The decreased cell proliferation was coincident with a significant increase in the expression of p53 as well as p21WAF1 proteins. These results demonstrate that melatonin inhibits MCF-7 cell proliferation by inducing an arrest of cell cycle dependent on an increased expression of p21WAF1 protein, which is mediated by the p53 pathway.  相似文献   

14.
15.
Zheng G  Xiong Y  Yi S  Zhang W  Peng B  Zhang Q  He Z 《FEBS letters》2012,586(2):163-168
We previously demonstrated that 14-3-3σ was downregulated in 5-fluorouracil (5-Fu)-resistant MCF-7 breast cancer cells (MCF-7/5-Fu). Here, we found that stably enhanced 14-3-3σ expression strengthened the effects of 5-Fu, Mitoxantrone and cDDP. 14-3-3σ stabilised the p53 protein and bound Akt to inhibit its activity and its downstream targets: survivin, Bcl-2 and NF-κB-p50. In addition, decreased p53 expression, but not promoter hypermethylation, was responsible for the downregulation of 14-3-3σ in MCF-7/5-Fu cells. Meanwhile, initial treatments with high concentrations of 5-Fu clearly induced 14-3-3σ and p53 expression in a time-dependent manner. 14-3-3σ-mediated molecular events that synergise with p53 may play important roles in the chemotherapy of breast cancer.  相似文献   

16.
为了探讨增强p53、p21基因表达水平和降低c—myc基因表达水平对乳腺癌细胞MCF-7.增殖的协同抑制作用,以及这些基因对细胞产生效应时的相互关系,本研究中首先构建了正义的p53、p21和反义的c—myc 3种真核细胞表达载体,并根据析因实验设计三种载体不同剂量组合。按照组合用质粒转染细胞,然后对转染细胞的增殖抑制率进行检测,并采用金正均Q值法、单因素方差分析中的LSD法、聚类分析法等统计学方法对结果进行统计分析。结果显示,不同量的p53、p21反义c—myc对MCF-7细胞的增殖均有抑制作用,抑制的程度各基因间存在差异。在各基因组合中,p21与反义c—myc,p53与反义c—myc联用具有协同作用,对MCF-7细胞的增殖产生更强的抑制,而p53与p21之间未显示出协同作用。对三基因协同结果进行聚类分析后,发现第一类组合协同作用最明显,第九类组合的抑制率最高。由此推测,作为抑癌基因的p53或CDK抑制基因p21高表达,同时原癌基因c—myc表达受到抑制,可相互协同显著增强对MCF-7细胞增殖的抑制作用。  相似文献   

17.
Resveratrol is a promising chemopreventive agent that mediates many cellular targets involved in cancer signaling pathways. p53 has been suggested to play a role in the anticancer properties of resveratrol. We investigated resveratrol-induced cytotoxicity in H1299 cells, which are non-small lung cancer cells that have a partial deletion of the gene that encodes the p53 protein. The results for H1299 cells were compared with those for three cell lines that constitutively express wild-type p53: breast cancer MCF-7, adenocarcinomic alveolar basal epithelia A549 and non-small lung cancer H460. Cell viability assays revealed that resveratrol reduced the viability of all four of these cell lines in a dose- and time-dependent manner. MCF-7, A549 and H460 cells were more sensitive to resveratrol than were H1299 cells when exposed to the drug for 24 h at concentrations above 100 µM. Resveratrol also increased the p53 protein levels in MCF-7 cells without altering the p53 mRNA levels, suggesting a post-translational modulation of the protein. The resveratrol-induced cytotoxicity in these cells was partially mediated by p53 and involved the activation of caspases 9 and 7 and the cleavage of PARP. In H1299 cells, resveratrol-induced cytotoxicity was less pronounced and (in contrast to MCF-7 cells) cell death was not accompanied by caspase activation. These findings are consistent with the observation that MCF-7 cells were positively labeled by TUNEL following exposure to 100 µM resveratrol whereas H1299 cells under similar conditions were not labeled by TUNEL. The transient transfection of a wild-type p53-GFP gene caused H1299 cells to become more responsive to the pro-apoptotic properties of resveratrol, similarly to findings in the p53-positive MCF-7 cells. Our results suggest a possible therapeutic strategy based on the use of resveratrol for the treatment of tumors that are typically unresponsive to conventional therapies because of the loss of normal p53 function.  相似文献   

18.
19.
20.
为了探讨增强p53、p21基因表达水平和降低c-myc基因表达水平对乳腺癌细胞MCF-7增殖的协同抑制作用,以及这些基因对细胞产生效应时的相互关系,本研究中首先构建了正义的p53、p21和反义的c-myc3种真核细胞表达载体,并根据析因实验设计三种载体不同剂量组合。按照组合用质粒转染细胞,然后对转染细胞的增殖抑制率进行检测,并采用金正均Q值法、单因素方差分析中的LSD法、聚类分析法等统计学方法对结果进行统计分析。结果显示,不同量的p53、p21反义c-myc对MCF-7细胞的增殖均有抑制作用,抑制的程度各基因间存在差异。在各基因组合中,p21与反义c-myc,p53与反义c-myc联用具有协同作用,对MCF-7细胞的增殖产生更强的抑制,而p53与p21之间未显示出协同作用。对三基因协同结果进行聚类分析后,发现第一类组合协同作用最明显,第九类组合的抑制率最高。由此推测,作为抑癌基因的p53或CDK抑制基因p21高表达,同时原癌基因c-myc表达受到抑制,可相互协同显著增强对MCF-7细胞增殖的抑制作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号