首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatial heterogeneity, like species diversity, is an important ecosystem property. We examine the effects of land use on the diversity and spatial distribution of plants in five semi-arid communities of eastern Spain using non-linear methods to assess the spatialtemporal dynamics of plant populations. Specifically, we are interested in detecting long-term structural changes or drift in an ecosystem before it is too late to prevent irreversible degradation. Fractal analysis is used to characterize the complexity of plant spatial patterns and Information Theory indices are used to measure change in information flow with land use changes and soil substrate. We found that grazing favored diversity and heterogeneity of species distribution on the impoverished gypsum and saline substrate community, as opposed to the detrimental effect of grazing in the Alpha steppe community. Indeed, old-field succession after 30 years of abandonment showed a recovery of species diversity but not the spatial structure of the vegetation. Further, Information Fractal Dimension, representing the unpredictability of plant spatial patterns in the landscape, increased as we moved from a highly diverse to a less diverse community, revealing the change to a more scattered and homogeneous spatial plant distribution. The Information Fractal Dimension is a good estimator of ecosystem disturbance, independent of scale, and thus can be used to monitor ecosystem dynamics.  相似文献   

2.
A nested sampling design was used to describe the spatial patterns for the species richness and composition in the seed bank and vegetation of three Mediterranean old-fields (1, 7, and 15 yr after the last ploughing). Three scales were examined hierarchically: sampling units within plots of 0.25 m2 for the vegetation and of 0.05 m2 for the seed bank, 100 m2 plots within fields, and fields of 1000 m2. In spite of the strong spatial variation among sampling units, species richness and composition of both seed bank and vegetation showed hierarchically structured patterns of heterogeneity, while each old-field was a homogeneous entity. These spatial patterns tended to be partially masked when the data were aggregated at the scale of the plot. Such results stress the use of a nested sampling design for studying variation in species richness and taxonomic composition in both vegetation and seed bank. This design, in combination with CCA, also showed that the vegetation showed a coarser grain than the seed bank, probably in relation to seed clumping.  相似文献   

3.
Couteron  Pierre  Kokou  Kouami 《Plant Ecology》1997,132(2):211-227
Spatial patterns of woody individuals were studied in a semi-arid savanna of West Africa located in Burkina Faso at and around 14° 12 N and 2° 27 W. The study was based upon a 10.24 ha plot within which individuals were mapped. Spatial pattern analysis was carried out using second order characteristics of point processes as K functions and pair correlations. The overall density amounted to 298 individuals ha-1. The most abundant species were Combretum micranthum G. Don., Grewia bicolor Juss. and Pterocarpus lucens Lepr. Anogeissus leiocarpus (D.C.) G. et Perr. was also an important constituant of this vegetation type, owing to its taller stature. Clumped spatial distributions were identified for all species except for two, for which complete spatial randomness (CSR) was found (including P. lucens, a dominant woody plant). No regular pattern was found even when tall individuals were considered alone. Aggregation dominates interspecific relationships, resulting in multispecific clumps and patches. The overall aggregation pattern was constituted by two different structures. A coarse-grain pattern of ca. 30–40 m was based on edaphic features, and expresses the contrast between sparse stands on petroferric outcrops and denser patches on less shallow soils. A finer-grain pattern made of clumps ca. 5–10 m wide, with no obvious relation to pre-existing soil heterogeneity. There was no overall pattern for saplings (between 0.5 m and 1.5 m in height) irrespective of species, and thus no obvious common facilitation factor. For species with a high recruitment level there was no significant relationship between mature adult and saplings. The only case of clumped saplings with randomly distributed adults was found in P. lucens. However, this cannot be unequivocally interpreted as density dependent regulation since the existence of such a process was not consistent with the spatial distribution of dead P. lucens individuals (victims of the last drought). The mean density around dead P. lucens was lower than around surviving ones, indicating that the last drought tended to reinforce clumping rather than promote a regular pattern of trees. Spatial pattern analysis yielded no evidence supporting a hypothesis of stand density regulation through competition between individuals. Other processes, as surface sealing of bare soils or insufficient recruitment, may play a more important role in preventing a savanna-like vegetation from turning into denser woodlands or thickets.  相似文献   

4.
5.
Athalassic wetlands play a pivotal role in sediment and nutrient cycling and retention at the catchment level and are important ecosystems for local and regional biodiversity. Yet, the management of wetlands outside of riverine floodplains (non-riverine wetlands) is difficult, as there is limited understanding of these water bodies and of the processes that threaten them, like secondary salinisation. Accordingly, we describe the patterns of variation in wetland salinity and water chemistry across a regional landscape that is threatened by secondary salinisation. Spatial analyses indicated the distribution of the study wetlands was non-random and there was considerable positive spatial auto-correlation in water chemistry among wetlands—indicating a lack of independence. We detected massive variation in water chemistry among wetlands compared to minimal within-wetland variation and conductivity accounted for most of the among-wetland variation confirming its prominence in non-riverine wetland water chemistry. Wetland salinities were classified by their chemical evaporative pathway and we found a number of wetlands that may have become secondary salinised. The results reported here support the notion that the study, conservation and management of non-riverine wetlands should include assessments made at multiple spatial scales from individual waterbodies through to catchments. This is important because wetlands may not be independent units, but components of larger systems. However, we also note that the use of individual wetlands as units of replication may be problematic under some circumstances. We also argue that the identification of secondarily salinised wetlands will often require a multiple lines of evidence approach.  相似文献   

6.
Reconstruction mapping of the natural (primary) vegetation of intensively cultivated land is based on: (1) classification of actually existing remains of natural or near-natural plant communities as mapping units; (2) delimitation of their habitat types; (3) detection of correlations between vegetation units and habitat types. Natural plant communities thus serve as indicators of abiotic habitat conditions. Reconstruction mapping is based on the extrapolation of the potential distribution of individual vegetation units to sites of similar habitat types where the natural vegetation does not exist any more. The same procedure is used for mapping the potential natural vegetation. Both types of natural vegetation maps are identical on sites where the abiotic natural habitat conditions (relief, geological substratum, climate, water regime, soils) remain practically unchanged. On sites where the natural habitat conditions have been considerably changed by man, e.g. in areas with superficial coal mining (complete destruction of the landscape, removal of soil cover, creation of large slag heaps) or in towns, no natural (primary) vegetation exists. This causes difficulties in the hypothetical concept of the potential natural vegetation and its definition. In contrast, in such sites reconstruction vegetation mapping uses the extrapolation of mapping units of the primary vegetation to the original natural habitat conditions.  相似文献   

7.
To initially describe vegetation structure and spatial variation in plant biomass in a typical alpine wetland of the Qinghai-Tibetan Plateau, net primary productivity and vegetation in relationship to environmental factors were investigated. In 2002, the wetland remained flooded to an average water depth of 25 cm during the growing season, from July to mid-September. We mapped the floodline and vegetation distribution using GPS (global positioning system). Coverage of vegetation in the wetland was 100%, and the vegetation was zonally distributed along a water depth gradient, with three emergent plant zones (Hippuris vulgaris-dominated zone, Scirpus distigmaticus-dominated zone, and Carex allivescers-dominated zone) and one submerged plant zone (Potamogeton pectinatus-dominated zone). Both aboveground and belowground biomass varied temporally within and among the vegetation zones. Further, net primary productivity (NPP) as estimated by peak biomass also differed among the vegetation zones; aboveground NPP was highest in the Carex-dominated zone with shallowest water and lowest in the Potamogeton zone with deepest water. The area occupied by each zone was 73.5% for P. pectinatus, 2.6% for H. vulgaris, 20.5% for S. distigmaticus, and 3.4% for C. allivescers. Morphological features in relationship to gas-transport efficiency of the aerial part differed among the emergent plants. Of the three emergent plants, H. vulgaris, which dominated in the deeper water, showed greater morphological adaptability to deep water than the other two emergent plants.  相似文献   

8.
Abstract. Shrubland communities in Central Spain were studied through classifying growth forms of woody species and determining the shared use of the ground in progressively smaller spaces. 516 plants belonging to the six most abundant species and taken from different sites were included in biometric measurements. Principal Component Analysis (PCA) was used to detect the trends of variation in the architecture of plants. The individuals were classified on the basis of the results of the PCA and different morphological types were detected, mainly ‘elliptical’, ‘spherical’or ‘variable’according to their shape. These morphological types were adopted by most plants depending on their location and community. The horizontal occupation of space seems to be determined by whether or not the species rooted close to each other are able to occupy different strata. The co-occurrence of two species in a reduced space is not facilitated when the two species have the same architecture. Then a spatial segregation tends to occur at a fine scale. The results can be interpreted as an optimization strategy of the shrubland ‘biomass/horizontal occupied area ratio’, which can be maximized in different environmental situations. It can also help to explain the ‘grain’ size of the pattern of horizontal spatial organization of the shrubland.  相似文献   

9.
The aim of this work was to test the hypotheses that the species composition of the vegetation of one pool in Morocco change continuously along with rainfall fluctuations, that among the vegetation can be recognized Pool species and Opportunistic species with distinct dynamics in time. We expected the Pool species to show lower inter-annual variation than the Opportunistic species. This hypothesis was tested in a 10-year study of the species composition of the vegetation along two permanent transects. The results showed high cumulative species richness (95 species) with large differences between years and a predominance of annual species (77). The proportion of Pool species during these 10 years was low (39%) when compared to opportunists (61%). In dry years the Opportunistic species were dominant and declined during wet years. The number of Pool species was correlated with the amount of rainfall. A large number of these species revealed a preference for wet years. No negative interaction between annuals/perennials and pools/non-pools species was found, suggesting that competition was not a major process during the survey. The intensity of the drought and flood stress, related to climate fluctuations, seems to be the main factors controlling the species composition of the vegetation of this unstable habitat. However, beyond the inter-annual fluctuation of the species composition of the vegetation a directional change was noticed. This directional change could result from a recovery process of the vegetation during the first years of the study after a severe flood which extirpated most of the Opportunistic species of the pool. In the last years this directional change of the species composition of the vegetation is less clear and random recruitment of the Opportunistic species from the surrounding forested habitats could contribute to explain inter-annual changes. The data collected over these 10 years led to the speculation of hypotheses on the consequences of climate change. The expected reduction of humid years and of rainfall regionally may lead to important changes in the species composition of the vegetation of the temporary pools in Morocco. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Guest editors: B. Oertli, R. Cereghino, A. Hull & R. Miracle Pond Conservation: From Science to Practice. 3rd Conference of the European Pond Conservation Network, Valencia, Spain, 14–16 May 2008  相似文献   

10.
11.
Freshwater wetlands often exist as transitional areas between terrestrial uplands and deep open water. Thus they are fundamentally sensitive to changes in hydrology. Some of the more dramatic changes in wetland water supply occur during extensive droughts, where both precipitation and soil water table markedly decline. While it is generally understood that herbaceous wetland macrophytes are more sensitive to decreased water availability than wetland trees, the degree of susceptibility among wetland herbs remains relatively unexplored. Therefore, the purpose of this study was to evaluate plant growth responses of five herbaceous wetland species (monocots Carex alata, Juncus effusus, and Peltandra virginica, and dicots Saururus cernuus, and Justicia americana) to simulated drought conditions (up to 6 weeks in a 1-in-25-year precipitation low with receding soil water tables). Of the five species studied, three (J. americana, S. cernuus, and J. effusus) had no survivors after 6 weeks of simulated drought. J. americana, appeared to be the most sensitive to water deprivation with a 67% decrease in plant phytomass and an 85% decrease in leaf area with only 2 weeks of drought, and complete mortality after 3 weeks. While P. virginica also had significant decreases in biomass, leaf area, relative growth rate (RGR) and unit leaf rate (ULR), in as little as 2 weeks of drought, no noticeable decreases in survival were observed. In contrast, when J. effusus experienced between 2- and 4-weeks of water deprivation, there were significant increases in RGR, ULR, phytomass, leaf area, and shoot:root ratios. S. cernuus and C. alata remained relatively unaffected following 4 weeks of drought; however by the fifth week, there were significant declines in leaf area for both species. In general, this study provides experimental evidence on how herbaceous macrophytes grow under drought conditions. This basic understanding is fundamental if we are to develop better working models on how wetlands will respond to changing environmental conditions that lead to decreased water supply.  相似文献   

12.
13.
Restoration of wetlands has become an increasing field of application of ecological research due to mitigation regulations, changes in agricultural practices and an increasing consideration of the role of wetlands in the water cycle. In areas where the history of human use of natural areas is old and intense, restoration projects must not only consider ecological objectives but also social aspects. The Vistre project was developed to answer a social demand of restoring the flood storage function of a riverine wetland, formerly drained and polderized for agriculture. The river is located in the Petite Camargue, southern France, and flows into the sea a few km downstream of the study site. Openings in the dykes, calculated after a preliminary study, partly restored the connection between the polder and the river basin. A monitoring program of flora and fauna was launched to test the hypothesis that the change in hydrological functioning would be sufficient to obtain the desired vegetation and fauna. During the first years of the project, high rainfall and uncontrolled openings of sluices due to difficulties with the local users caused abnormally high water levels. The vegetation changed to hydrophyte-dominated communities and was controlled mainly by the fluctuations in water level. The habitat objective for fish-eating birds was met and a large tree-nesting heron colony established. Solving the social problem and maintenance of the sills should allow most objectives to be reached, although more slowly than expected.  相似文献   

14.
Maestre  Fernando T.  Cortina  Jordi 《Plant and Soil》2002,241(2):279-291
In arid and semi-arid areas with sparse vegetation cover, the spatial pattern of surface soil properties affects water and nutrient flows, and is a question of considerable interest for understanding degradation processes and establishing adequate management measures. In this study, we investigate the spatial distribution of vegetation and surface soil properties (biological crusts, physical crusts, mosses, rock fragments, earthworm casts, fine root accumulation and below-ground stones) in a semi-arid Stipa tenacissima L. steppe in SE Spain. We applied the combination of spatial analysis by distance indices (SADIE) and geostatistics to assess the spatial pattern of soil properties and vegetation, and correlation analyses to explore how these patterns were related. SADIE analysis detected significant clumped patterns in the spatial distribution of vegetation, mosses, fine root accumulation and below-ground stone content. Contoured SADIE index of clustering maps suggested the presence of patchiness in the distribution of earthworm casts, fine roots, below-ground stone content, mosses and biological crusts. Correlation analyses suggested that spatial pattern of some soil properties such as biological crusts, moss cover, surface rock fragments, physical crusts and fine roots were significantly related with above-ground plant distribution. We discuss the spatial arrangement of surface soil properties and suggest mechanistic explanations for the observed spatial patterns and relationships.  相似文献   

15.
There has been little research examining the soil seed banks of degraded floodplain wetlands and their contribution to wetland rehabilitation in Australia. Our aim was to assess the establishment of plants from the seed bank that may occur following the delivery of an environmental water allocation to Kanyapella Basin, a 2950 ha wetland located on the floodplain of the Goulburn and Murray Rivers in northern Victoria, Australia. Two hypothetical water regimes were investigated (flooded and dry) in a glasshouse experiment, where plants were left to establish from the seed bank over a period of 124 days. Differences in the establishment of plants from the seed bank indicated that the return of a flooding regime is likely to have a significant effect on the composition of the wetland vegetation. Mapping of the distribution of plant species indicated that propagules were highly dispersed across the wetland for the majority of taxa, in contrast to the localised distribution of many of the plant species represented in the extant vegetation. Inundation favoured the establishment of native wetland and floodplain plants, although many areas of Kanyapella Basin that are currently ‘weed-free’ have the potential to become colonised and potentially dominated by introduced plants if the wetland is not managed appropriately. Overall, results supported the aim of management to reestablish a wetting and drying regime through use of an environmental water allocation. This study presents a significant example of the application of seed bank investigations in wetland ecology and management.  相似文献   

16.
17.

Background

Knowledge about how frugivory and seed deposition are spatially distributed is valuable to understand the role of dispersers on the structure and dynamics of plant populations. This may be particularly important within anthropogenic areas, where either the patchy distribution of wild plants or the presence of cultivated fleshy-fruits may influence plant-disperser interactions.

Methodology/Principal Findings

We investigated frugivory and spatial patterns of seed deposition by carnivorous mammals in anthropogenic landscapes considering two spatial scales: ‘landscape’ (∼10 km2) and ‘habitat type’ (∼1–2 km2). We sampled carnivore faeces and plant abundance at three contrasting habitats (chestnut woods, mosaics and scrublands), each replicated within three different landscapes. Sixty-five percent of faeces collected (n = 1077) contained seeds, among which wild and cultivated seeds appeared in similar proportions (58% and 53%) despite that cultivated fruiting plants were much less abundant. Seed deposition was spatially structured among both spatial scales being different between fruit types. Whereas the most important source of spatial variation in deposition of wild seeds was the landscape scale, it was the habitat scale for cultivated seeds. At the habitat scale, seeds of wild species were mostly deposited within mosaics while seeds of cultivated species were within chestnut woods and scrublands. Spatial concordance between seed deposition and plant abundance was found only for wild species.

Conclusions/Significance

Spatial patterns of seed deposition by carnivores differed between fruit types and seemed to be modulated by the fleshy-fruited plant assemblages and the behaviour of dispersers. Our results suggest that a strong preference for cultivated fruits by carnivores may influence their spatial foraging behaviour and lower their dispersal services to wild species. However, the high amount of seeds removed within and between habitats suggests that carnivores must play an important role – often overlooked – as ‘restorers’ and ‘habitat shapers’ in anthropogenic areas.  相似文献   

18.
Body size is a major component of fitness. However, the relative contributions of different factors to optimal size, and the determinants of spatial and temporal variation in size, have not been fully established empirically. Here, we use a mesocosm of a Drosophilidae assemblage inhabiting decaying nectarines to investigate the influence of spatial variation in temperature on adult body size in Drosophila simulans Sturtevant. Two treatments were established; one in the sun where developing larvae were exposed to high temperatures and the other in the shade where temperature conditions were milder. The simple developmental effects of temperature differences (i.e. larger flies are likely to emerge from cooler environments), or the simple effects of stressful temperatures (i.e. high temperatures yield wing abnormalities and smaller flies), were overridden by interactive effects between temperature and larval density. Emergences were lower in the sun than shade, probably as a result of temperature-induced mortality. However, flies attained the same final sizes in the shade and sun. In addition, abnormally winged flies were clustered in the shaded treatments. In the shade treatments, where emergences were higher than in the sun, stressful conditions as a result of high larval density likely resulted in wing abnormalities and small size. Consequently, there was little spatial variation in size across the mesocosm, but substantial spatial variation in abundance. Under natural conditions both mortality and non-lethal effects of temperature and/or crowding are likely to play a role in the evolution of body size.  相似文献   

19.
The Salton Sea (Sea) is a eutrophic to hypereutrophic lake characterized by high nutrient concentrations, low water clarity, and high biological productivity. Based on dissolved phosphorus (P) and nitrogen (N) concentrations and N:P ratios, P is typically the limiting nutrient in the Sea and, therefore, should be the primary nutrient of concern when considering management efforts. Flows in the major tributaries to the Sea have been measured since 1965, whereas total P (TP) concentrations were only measured intermittently by various agencies since 1968. These data were used to estimate annual P loading from 1965 to 2002. Annual loads have increased steadily from ∼940,000 kg around 1968 to ∼1,450,000 kg in 2002 (∼55% increase), primarily a result of increased TP concentrations and loads in the New River. Although the eutrophic condition of the Salton Sea is of great concern, only limited nutrient data are available for the Sea. It is difficult to determine whether the eutrophic state of the Sea has degraded or possibly even improved slightly in response to the change in P loading because of variability in the data and changes in the sampling and analytical methodologies. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Guest editor: S. H. Hurlbert The Salton Sea Centennial Symposium. Proceedings of a Symposium Celebrating a Century of Symbiosis Among Agriculture, Wildlife and People, 1905–2005, held in San Diego, California, USA, March 2005  相似文献   

20.
We examined relationships between mortality rate, relative growth rate (RGR), and spatial patterns of three growth stages (small, medium, and large trees) for 11 dipterocarp species in the Pasoh 50-ha plot. Mortality rates for these species tended to be positively correlated with RGRs, although the correlation was significant only at the small-tree stage. Seven species with high growth and mortality rates exhibited peaks in spatial aggregation at small distances (<100 m) in small trees, but this aggregation disappeared in medium and large trees. In contrast, the other four species with low growth and mortality rates aggregated at large distances (>200 m) throughout the three growth stages in all but one species. Negative associations between different growth stages were observed only for the high-mortality species, suggesting density-dependent mortality. The high-mortality species showed habitat associations with topography, soil type, and the forest regeneration phase after gap formation, whereas the three low-mortality species only had associations with the forest regeneration phase. A randomization procedure revealed that these habitat associations explained little of their spatial aggregation. Our results suggest that the growth strategy has a large effect on the structuring of the spatial distribution of tree species through mortality processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号