首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wetlands in many parts of the world are affected by fragmentation at multiple spatial scales. In Switzerland, most wetlands have been destroyed over the past two centuries and management of the remaining wetland reserves has intensified in the recent years leading to increased fragmentation of reed areas within reserves. Using four years of data on the reproductive performance of color-banded reed bunting Emberiza schoeniclus populations, we explored fragmentation effects on nest predation rates at four spatial scales ranging from the nest to the landscape scale. In the egg stage, predation rate was negatively related to vegetation cover, vegetation height and nest height, but positively linked to water cover and depth next to the nest (nest scale). Probability of predation declined with increasing size of reed patches containing the nests and distances of nests to the water and land sided reed edge, as well as with decreasing edge to area ratio (edge scale). There was a weak positive association between degree of fragmentation of reed patches within sites and nest predation rates (site scale). Finally, nest predation probability increased with distance to the nearest wetland (landscape scale). Jointly analyzing variables from different spatial scales revealed that a model combining variables from the nest, edge and landscape scale best explained predation probability in the egg stage. In the nestling stage, the single most important factor influencing nest predation probability was the distance to the nearest wetland (landscape scale), with nest predation decreasing with distance between sites. Our results show that the probability of nest predation in reed buntings is affected by fragmentation within and between wetland reserves and that the effects differ between breeding stages. Future management of wetland reserves should aim at sparing reed patches large and dense enough to provide safe nest sites for birds.  相似文献   

2.
Phragmites mauritianus is the dominant herbaceous species colonizing riverine habitats in the Kruger National Park, South Africa. These perennial systems are characterized by high annual and seasonal flow variability and a complex mosaic of patches of reeds, sand, water, rock and other vegetation. Patterns of increase and decrease in reed cover in the Letaba River were determined from aerial photographs covering a 54-year period. An initial period of reed expansion (1942–1965) was followed by a period of reed loss (1965–1977) and subsequent gradual re-establishment (1977–1996). A spatially explicit analysis of changes in reed distribution over an 8-year period (1988–1996) showed that patches of reed vegetation are, in the short term, highly dynamic elements within the river landscape. Analyzing short-term, small-scale change provides information which is not obtainable from long-term, large-scale studies. We propose that causes of reed expansion or decline cannot be determined without an understanding of both long- and short-term patterns of change.  相似文献   

3.
1. Reinstating more natural water regimes is often a priority intervention to rehabilitate wetlands that have been degraded through anthropogenic changes to their natural wetting and drying cycles. Hydrological interventions are often made in chronically desiccated wetlands but less commonly in wetlands that have been permanently inundated and that require a drawdown phase for rehabilitation. Reports on the effectiveness of reinstating a drawdown phase in chronically inundated wetlands are particularly rare. 2. We undertook a landscape‐scale, experimental drawdown of water levels at Dowd Morass, a large, Ramsar‐listed, brackish‐water wetland in south‐eastern Australia that had been artificially flooded for 30+ years. During the hydrological manipulation, c. 500 ha of the wetland was drawn down and re‐flooded, and the remaining c. 1000 ha was used as a control site. Fringing areas with a fluctuating water regime were used as a reference site. Results were analysed in terms of gradient analysis, by classifying the different water regimes created by the hydrological interventions. The response of wetland vegetation was measured along replicated transects over a 4‐year period, before, during and after drawdown. Wetland plants were assigned to plant functional groups for analysis. Assembly theory and knowledge of life‐history traits were used to predict that drawdown would promote recruitment of plant species that required exposed sediment for germination and seedling establishment. 3. Within‐wetland microtopography interacted with the hydrological interventions to generate three distinct water regimes, which were differentiated by the spatial extent of exposed sediment and duration of the dry period. Drawdown promoted limited recruitment of some plant species, and the survival of cohorts then depended strongly on the extent and duration of the dry period. Species richness and vegetation cover (understorey and overstorey) continued to decline in constantly flooded areas of the wetland. Increased salinisation of sediments and surface waters reduced the effectiveness of the drawdown and dramatically affected species richness and cover of aquatic vegetation, which did not recover fully when fresher conditions returned. 4. The capacity of vegetation to respond to the reinstatement of a drawdown cycle following chronic inundation was constrained by abiotic (e.g. salinity) and biotic (e.g. depauperate seedbanks) factors. Reinstating a dry phase in chronically inundated, brackish‐water wetlands is complex and risky and may not effectively improve vegetation condition in the short term. In the case of Dowd Morass, rehabilitation was most successful in sites that had been shallowly flooded prior to drawdown and that remained dry for longest.  相似文献   

4.
Question: We studied vegetation succession after drainage in a bog, as an analogue for potential persistent water table drawdown due to climate change. We asked: (1) how does bog vegetation change following a long‐term water table lowering and (2) how are effects of drainage on hydrology and vegetation distributed temporally and spatially? Location: Mer Bleue peatland, Ontario, Canada (45.41°N, 75.48°W). Methods: Analyses of changes in vegetation and hydrology associated with drainage were examined spatially along a hydrosequence and temporally using paleoecological reconstructions from peat cores (testate amoebae, pollen) in a drained portion of a peatland untouched for 85 years following drainage. Relationships between modern vegetation and water table were assessed through clustering and ordination analyses of vegetation relevés. Results: Post‐drainage increases in tree cover, especially Betula and Larix, decreases in Sphagnum cover and shifts in species composition of dominant shrubs were observed. Present‐day vegetation patterns along the hydrosequence were primarily related to seasonal variability of water table depth. Paleoecological records reveal that where the present‐day vegetation has been impacted by drainage, persistent water table lowering occurred in response to drainage. However, in an area with relatively natural vegetation, a transient drop in water table depth occurred at the time of drainage. Conclusions: Temporal and spatial patterns revealed that the bog response to drainage was spatially and temporally heterogeneous, and probably mediated by feedbacks among vegetation, peat structure and hydrology. Spatial patterns along the hydrosequence were similar to those observed in paleoecological reconstructions, but the use of the two complementary techniques provides additional insights.  相似文献   

5.
The Great Artesian Basin springs (Australia) are unique groundwater dependent wetland ecosystems of great significance, but are endangered by anthropogenic water extraction from the underlying aquifers. Relationships have been established between the wetland area associated with individual springs and their discharge, providing a potential means of monitoring groundwater flow using measurements of vegetated wetland area. Previous attempts to use this relationship to monitor GAB springs have used aerial photography or high resolution satellite images and gave sporadic temporal information. These “snapshot” studies need to be placed within a longer and more regular context to better assess changes in response to aquifer draw-downs. In this study we test the potential of 8 years of Moderate Resolution Imaging Spectroradiometer Normalised Difference Vegetation Index data as a long-term tracer of the temporal dynamics of wetland vegetation at the Dalhousie Springs Complex of the Great Artesian Basin. NDVI time series were extracted from MODIS images and phenologies of the main wetland vegetation species defined. Photosynthetic activity within wetlands could be discriminated from surrounding land responses in this medium resolution imagery. The study showed good correlation between wetland vegetated area and groundwater flow over the 2002–2010 period, but also the important influence of natural species phenologies, rainfall, and anthropogenic activity on the observed seasonal and inter-annual vegetation dynamics. Declining trends in the extent (km2) of vegetated wetland areas were observed between 2002 and 2009 followed by a return of wetland vegetation since 2010. This study underlines the need to continue long-term medium resolution satellite studies of the GAB to fully understand variability and trends in the spring-fed wetlands. The MODIS record allows a good understanding of variability within the wetlands, and gives a high temporal-frequency context for less frequent higher spatial resolution studies, therefore providing a strong baseline for assessment of future changes.  相似文献   

6.
Invasive plants can substantially modify wetland structure and animal distribution patterns. In eastern North America, a Eurasian haplotype of the common reed (Phragmites australis, haplotype M) is invading wetlands. We studied the invasion of common reed in freshwater wetlands of an urbanized landscape and its effects on the distribution of amphibians at different life stages. Specifically, we hypothesized that the probability of reed invasion would be greatest in wetlands near anthropic disturbances. We predicted that the probability of desiccation at sampling stations increases with reed cover. Furthermore, we expected that wetlands invaded by common reed would have lower amphibian abundances, apparent survival, and rates of recruitment. We conducted trapping surveys to compare anuran assemblages of tadpoles, juveniles, and adults in 50 wetlands during two field seasons. The probability of reed invasion in wetlands increased with the cover of heavily-managed areas within 1,000 m and the distance to the nearest forest, but decreased with the length of roads within 1,000 m. The probability of station desiccation increased with reed cover. We found no evidence of a negative effect of reed presence on anuran population parameters, at any life stage. Landscape variables, such as the percent cover of forest or heavily-managed areas within a given radius from each wetland, influenced the abundance or the apparent survival of juvenile frogs and the abundance of ranid tadpoles. Our results show that amphibian patterns depend more strongly on the structure of the landscape surrounding wetlands than on exotic reed invasion in wetlands.  相似文献   

7.
琼北火山熔岩湿地生态安全格局研究   总被引:3,自引:1,他引:2  
火山熔岩湿地作为湿地系统中重要组成部分,广泛分布于海南岛北部火山岩地区,其生态安全状况直接影响着与其相连的水陆生态系统的安全。基于Landsat遥感影像、DEM数据以及植被覆盖指数,通过构建稳定性及敏感性评价体系,在景观斑块尺度上对海南岛北部火山熔岩湿地分布区1988-2018年的稳定性动态变化及敏感性现状进行分析,旨在探索该区域生态安全分布格局。结果表明:(1)1988和2018年两个时间节点的湿地斑块稳定性均以府城镇、城西镇、龙泉镇等熔岩湿地主要分布区域的稳定性最高,西南部农业用地区域及北部沿海地区斑块稳定性最弱;(2)1988-2018年期间研究区域熔岩湿地稳定性整体呈增长趋势,面积重心和稳定性重心在向南转移的同时在东西方向上呈收缩状态;(3)研究区域极度敏感和高度敏感区域主要分布在湿地密集分布区域,不敏感区域则主要分布在研究区域北部的海口市区及开发利用较多的沿海乡镇;(4)稳定性与敏感性结果呈正相关关系,湿地斑块稳定性低的沿海及城镇地区,在生态上多表现为不敏感和低敏感,而湿地斑块稳定性高的区域通常表现出高敏感性。这也说明自然生态系统相较人工生态系统,虽然其结构更为完善稳定,抗干扰能力相对较强,但也更容易遭到破坏,恢复周期长,因而在城镇发展等人为活动中需要慎重对待高敏感区域。  相似文献   

8.
In lake ecosystems a major proportion of methane (CH(4) ) emissions originate from the littoral zone, which can have a great spatial variability in hydrology, soil quality and vegetation. Hitherto, spatial heterogeneity and the effects it has on functioning and diversity of methanotrophs in littoral wetlands have been poorly understood. A diagnostic microarray based on the particulate methane monooxygenase gene coupled with geostatistics was used to analyse spatial patterns of methanotrophs in the littoral wetland of a eutrophic boreal lake (Lake Kev?t?n, Eastern Finland). The wetland had a hydrology gradient with a mean water table varying from -8 to -25 cm. The wettest area, comprising the highest CH(4) oxidation, had the highest abundance and species richness of methanotrophs. A high water table favoured the occurrence of type Ib methanotrophs, whereas types Ia and II were found under all moisture conditions. Thus the spatial heterogeneity in functioning and diversity of methanotrophs in littoral wetlands is highly dependent on the water table, which in turn varies spatially in relation to the geomorphology of the wetland. We suggest that changes in water levels resulting from regulation of lakes and/or global change will affect the abundance, activity and diversity of methanotrophs, and consequently CH(4) emissions from such systems.  相似文献   

9.
Five three- to four-year old created palustrine/emergent wetland sites were compared with five nearby natural wetlands of comparable size and type. Hydrologic, soil and vegetation data were compiled over a nearly two-year period (1988-90). Created sites, which were located along major highways, exhibited more open water, greater water depth, and greater fluctuation in water depth than natural wetlands. Typical wetland soils exhibiting mottling and organic accumulation were wanting in created sites as compared with natural sites. Typha latifolia (common cattail) was the characteristic emergent vegetation at created sites, whereas a more diverse mosaic of emergent wetland species was often associated with Typha at the natural sites. Species richness was slightly higher in created (22–45) vs. natural (20–39) wetlands, but the mean difference (33 vs. 30) was not significant. Nearly half (44%) of the 54 wetland taxa found at the various study sites were more frequently recorded at created than natural wetlands. The presence of mycorrhizae in roots of Typha angustifolia (narrow-leaved cattail) and Phragmites australis (common reed) was greater at created than natural wetlands, which may be related to differential nutrient availability. Wildlife use at all sites ranged from occasional to rare, with more sightings of different species in the natural (39) than created (29) wetlands. The presence of P. australis and introduced Lythrum salicaria (purple loosestrife) may pose a threat to future species richness at the created sites. One created site has permanent flow-through hydrology, and its vegetation and wildlife somewhat mimic a natural wetland; however, the presence of P. australis and its potential spread pose an uncertain future for this site. This study suggests the possibility of creating small palustrine/emergent wetlands having certain functions associated with natural wetlands, such as flood water storage, sediment accretion and wildlife habitat. It is premature to evaluate fully the outcome of these wetland creation efforts. A decade or more is needed, emphasizing the importance of long term monitoring and the need to establish demonstration areas.  相似文献   

10.
11.
The Prairie Pothole Region (PPR) of North America is a globally important resource that provides abundant and valuable ecosystem goods and services in the form of biodiversity, groundwater recharge, water purification, flood attenuation, and water and forage for agriculture. Numerous studies have found these wetlands, which number in the millions, to be highly sensitive to climate variability . Here, we compare wetland conditions between two 30‐year periods (1946–1975; 1976–2005) using a hindcast simulation approach to determine if recent climate warming in the region has already resulted in changes in wetland condition. Simulations using the WETLANDSCAPE model show that 20th century climate change may have been sufficient to have a significant impact on wetland cover cycling. Modeled wetlands in the PPR's western Canadian prairies show the most dramatic effects: a recent trend toward shorter hydroperiods and less dynamic vegetation cycles, which already may have reduced the productivity of hundreds of wetland ‐ dependent species.  相似文献   

12.
The Aquatic Warbler (Acrocephalus paludicola) is a song bird breeding in fen mires and similarly structured other wetlands with a water depth of 1–10 cm. Widespread in central-European wetlands at the beginning of the 20th century, the species is now globally threatened. The westernmost and genetically distinct Pomeranian population is even on the verge of extinction. The major challenge in the conservation of remaining habitat is the cost-efficient removal of biomass. About 50% of the Pomeranian population survives in a valley fen near Rozwarowo in Northwest Poland, where between 1993 and 2007 a conspicuous change in breeding habitat has taken place from summer grazed sedge meadows to commercial winter cut reed beds. We compared vegetation structure, site conditions, and potential prey abundance with the distribution and abundance of Aquatic Warblers in Rozwarowo Marshes and studied temporal changes and the compatibility of conservation and reed cutting interests. Aquatic Warblers now occur almost exclusively in sparsely growing, low reed with abundant Thelypteris palustris, Carex elata, and Lysimachia vulgaris. This vegetation type provides more potential prey for Aquatic Warblers than the higher productive tall reed, whereas the patches of sedge vegetation have become too small following succession after abandonment. Currently, commercial reed cutting maintains suitable Aquatic Warbler breeding habitat. Considering the impending changes in the reed market, there is a need for flexible agri-environmental schemes (AES) to ensure that stripes are left uncut and to prevent eutrophication by high and long flooding of the site.  相似文献   

13.
ABSTRACT Although brood survival has a pronounced effect on population growth in mallards (Anas platyrhynchos), knowledge of brood ecology is more limited than for other vital rates. During 1993–1997 we collected wetland selection data from 210 radiomarked mallard broods on 15 study areas located throughout the Canadian Prairie-Parklands. We used information-theoretic approaches to select the best-approximating model of habitat selection in relation to wetland characteristics. Wetland permanence, cover type, width of flooded emergent vegetation, and interactions between these variables and date, moisture level, and dominant species of emergent vegetation were all important predictors of wetland selection. Mallard broods selected deeper wetlands, especially later in the brood-rearing season. Mallard broods also selected wetlands with large central expanses of open water and wide peripheral zones of flooded emergent cover. These habitat characteristics can most easily be met in landscapes that already contain an abundance and diversity of natural wetland habitats. Where such wetlands are unavailable, restoration or management of deeper wetlands may be necessary to meet the habitat requirements of mallard ducklings.  相似文献   

14.
Abstract. Poa ligularis is a dioecious species and a valuable forage plant which is widespread in the arid steppe of northern Patagonia (Argentina). The vegetation in these areas consists of a system of perennial plant patches alternating with bare soil areas defining contrasting micro‐environments. We hypothesized that (1) male and female individuals of P. ligularis are spatially segregated in different micro‐environments, (2) the intensity of spatial segregation of sexes depends on plant structure and (3) spatial segregation of sexes is enhanced by competitive interactions between the sexes within the vegetation patches. We analysed the spatial distribution of female and male individuals in relation to the spatial pattern of vegetation in two areas differing in their vegetation structure. The location of P. ligularis within patches where either male, female or both sexes occurred was also analysed. The results indicate that different patterns of spatial distribution of sexes of P. ligularis may be found at the community level depending on the dominant life forms and geometric structure of plant patches. Where patches are of a lower height, with a high internal patch cover, individuals of both sexes are concentrated within patch canopies. In sites characterized by large, tall patches and less internal patch cover suitable microsites for female and male P. ligularis occur both within and outside the patch with males located at further distances from the patch edge. Where the patch is large and tall enough to allow the establishment of males and females at relatively high numbers, males occupy the patch periphery or even colonize the interpatch bare soil. These spatial patterns are consistent with selective traits in which females better tolerate intraspecific competition than males, while males tolerate wider fluctuations in the physical environment (soil moisture, nitrogen availability, wind intensity, etc.).  相似文献   

15.
Abstract

The transformation of freshwater wetlands to pastures is a common practice in Mexico. This rapid loss of wetlands contrasts with the scarce information that exists about these ecosystems. To identify the environmental factors that control vegetation structure of a freshwater wetland invaded by the African grass Echinochloa pyramidalis, we characterized the vegetation (species composition, cover and aerial biomass), soil (moisture, redox potential, bulk density and topography) and water (water depth level, electric conductivity and pH) in two seasons of the year (dry and rainy). In addition, we analyzed the soil and water of three vegetation areas in the wetland, one dominated by E. pyramidalis, another by Sagittaria lancifolia and a third by Typha domingensis. The parameters associated with the hydrology of the wetland (water level, soil moisture, redox potential and bulk density) explained the plant species distribution. The invasive grass dominated in the relatively drier areas in the wetland while native species such as S. lancifolia, T. domingensis and Pontederia sagitatta dominated wetter sites. Introduction of E. pyramidalis has caused negative changes in the wetland, in particular a decrease of the diversity of plant species. In addition, we believe that the invader grass, as a C4 species, has more efficient use of water than the native plants, as well as a larger biomass, characteristics that can change the hydrological pattern of this wetland.  相似文献   

16.
辽河三角洲湿地生长季蒸散量时空格局及影响因素   总被引:3,自引:0,他引:3  
蒸散是湿地系统水分损失的重要途径之一,有效量化湿地蒸散量并对其时空格局进行研究具有重要意义。本文以Landsat数据和气象观测数据为基础,利用SEBAL模型估算辽河三角洲湿地1985—2017年共8期植被生长季的蒸散量,并分析其时空格局和影响因素。结果表明:(1)反演得到的蒸散量平均相对误差为9.01%,估测值与实测值相关系数为0.61,基本满足湿地蒸散研究需求;(2)研究区多年日蒸散量均值和相对变化率整体呈双峰态势,极小值出现在2005年,极大值出现在1989年和2014年;(3)日蒸散量具有水陆交界处最低、西部较低、中东部和南部高的趋势,具有显著的空间分异特征;(4)不同土地利用/覆被类型的蒸散量大小依次为:水体区湿地植被区非湿地植被区非植被区(除水体外),多年不同土地利用/覆被类型的蒸散量变化也呈双峰态势,日总蒸散量变化与土地利用转型有关,土地利用/覆被是导致湿地蒸散时空分异的重要因素;(5)平均蒸散量与太阳辐射、气温、风速、相对湿度四个气象因子加权值显著相关,相关系数为0.69,两者年际波动趋势基本一致,蒸散量变化与气象条件变动联系密切。  相似文献   

17.
Patchiness in wetlands is a common and well documented phenomenon. Oligotrophic wetlands of northern Belize display noticeable vegetation heterogeneity at both large and small scales. In this paper, we document the small scale patches in herbaceous wetlands, describe differences between patches and surrounding wetland habitats and explain patch formation and sustenance. We conducted a survey of patches and confirmed their occurrence by spatial analysis. Patches were distinguished from a surrounding wetland by denser and taller vegetation, higher amount of empty snail shells and elevated soil phosphorus (P). Plants in patches had higher tissue nitrogen (N) and P content and there was also higher total N and P per m2 incorporated in plant biomass. In terms of stable isotopes, plants in patches were enriched in 15N; patch soils were depleted in 13C. Observations of focal individuals of Aramus guarauna, limpkin, a wading bird feeding almost exclusively on snails, revealed the origin of the snail shell piles frequently found in patches. An adult limpkin captured on average 18 snails daily, of these 80% were handled in patches and birds often repeatedly used the same patch. Experimental patch creation by adding chicken manure or P to 1 m2 plots resulted in higher and denser vegetation with values increasing in order: control, P, manure plots. The effect was significant at both experimental locations six months after the treatment and at one location even 40 months after the treatment. We present a simple mechanistic explanation for nutrient redistribution in wetlands and their eventual accumulation in patches. Both nutrient and isotopic differences result from animal input into patches, e.g. bird droppings or prey remnants. Foraging activity of Aramus guarauna is most likely responsible for patch formation. A positive feedback (repeated use of a suitable patch) is apparently the mechanism sustaining patches in these marsh environments.  相似文献   

18.
Healthy wetlands play a significant role in climate change mitigation by storing carbon that would otherwise contribute to global warming, leading to the reduction of water and food resources as well as more extreme weather phenomena. Investigating the magnitude of carbon storage potential of different freshwater wetland systems using multiple ecological indicators at varying spatial scales provides insight and justification for selective wetland restoration and conservation initiatives. We provide a holistic accounting of total carbon values for 193 wetland sites, integrating existing carbon algorithms to rapidly assess each of the following carbon pools: above-ground, below-ground, soil, woody debris, shrub cover, and herbaceous cover. Aspects of soil, vegetation, and ecosystem characteristics and stressors were measured to obtain an overall understanding of the ecosystems ability to store carbon (long-term) along a gradient of human disturbance. Based on a review of the literature, methods were prioritized based on the initial data available from field measurements as well as their practicality and ease in replicating the process in the future. Lacustrine human impounded (88.7?±?18.0 tC/ha), riverine beaver impounded (116.2?±?29.4 tC/ha), riverine upper perennial (163.3?±?11.8 tC/ha), riverine lower perennial (199.2?±?24.7 tC/ha), riverine headwater complex (159.5?±?22.2 tC/ha), perennial/seasonal depression (269.6?±?42.4 tC/ha), and slope (162.2?±?14.6 tC/ha) wetland types were compared. Overall results showed moderate variability (9.33–835.95 tC/ha) for total carbon storage values across the wetland types, with an average total carbon storage of 174.6?±?8.8 tC/ha for all wetlands. Results show that carbon storage was significantly higher (p?=?0.002) in least disturbed wetland sites. Apart from perennial/seasonal depression wetlands, all reference standard wetlands had greater carbon storage, less disturbance impact, and a greater extent of forest cover than non-reference wetlands. Carbon storage values calculated were comparable to published literature.  相似文献   

19.
Abstract. Wetland vegetation developed in the crater of Mount Usu, northern Japan, soon after the 1977–1978 eruptions which destroyed the vegetation. The cover of each species was measured in 1994 in 118 50 cm × 50 cm plots situated in transects and related to environmental factors (elevation, water depth, soil texture, soil compaction, soil organic matter, and soil pH) to clarify vegetation development. Five vegetation types were recognized dominated by Eleocharis kamtschatica, Equisetum arvense, Lythrum salicaria, Juncus fauriensis and Phragmites australis respectively. Sedge/grass marsh and reed swamp dominated deep-water sites; willow swamp and wet meadow vegetation characterized shallow-water sites, indicating that vegetation zonation developed soon after the eruption. Since those wetland plants were derived neither from seed banks nor from vegetative propagules, they had to immigrate from outside the summit areas. However, except for willows, most species lack the ability for long-distance dispersal. Late successional species, such as P. australis established in the early stages of the primary succession. The water depth varied by 27.5 cm among the plots. Coarse soil particles accumulated, and pH (5.22–6.55) was low on the elevated sites. Organic matter ranged from 2.8 % to 19.1 %, and was high on the elevated sites. Water depth was responsible for the establishment of large-scale vegetation patterns, while edaphic factors, i.e. soil compaction, pH, and organic matter, were determinants of small-scale vegetation patterns. Among the edaphic factors, soil compaction appeared to have a strong influence on vegetation development.  相似文献   

20.
ABSTRACT We studied Blanding's turtle (Emydoidea blandingii) microhabitat in natural wetlands and wetlands constructed for the turtles in Dutchess County, New York, USA. Investigation of these topics can provide information on ways to increase the extent of Blanding's turtle habitat, improve its quality, and assure that conservation or restoration managers do not overlook key habitat characteristics. Microhabitat was determined by radiotracking individuals to their exact locations and recording habitat variables. Blanding's turtles were associated with shallow water depths (x̄ = 30 cm), muck substrates, and areas of abundant vegetation (total cover xM = 87%). Buttonbush (Cephalanthus occidentalis)had the greatest mean total cover (29%). In the constructed wetlands, Blanding's turtles were associated with significantly less cover and warmer water than in the natural wetlands. Blanding's turtles appeared to be using the constructed wetlands to bask and forage in the spring and early summer but moved to deeper wetlands in late summer when the constructed wetlands dried up or became too warm. For Blanding's turtles, new habitat should contain abundant emergent vegetation (including buttonbush in Dutchess County and other areas where the turtles are known to use buttonbush swamps), basking areas, muck, floating plant material, and submerged aquatic vegetation. Blanding's turtle's use of constructed wetlands highlights the value of a complex of connected wetland habitats in providing for the varied needs of the turtle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号