首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rhizobium etli is a gram-negative soil bacterium that induces nitrogen-fixing nodules on common bean roots (Phaseolus vulgaris). R. etli encodes two genes homologous to nodT of Rhizobium leguminosarum. nodTch is chromosomal and forms an operon with new genes resembling a multi-drug efflux pump of the resistance-nodulation-cell division (RND) family. nodTch is the last gene of this operon and can also be independently transcribed; the gene product is located in the bacterial outer membrane. Cell survival requires nodTch under all conditions tested. A second nodT gene, nodTpc, is encoded by plasmid c; it is constitutively transcribed but does not complement the essential function encoded by nodTch. NodT proteins belong to the outer membrane efflux proteins of the TolC superfamily. The number of duplications in the tolC gene family positively correlates with genome size in gram-negative bacteria. Nonetheless, some alpha-proteobacteria, including R. etli, encode fewer outer membrane factor exporters than expected suggesting further roles in addition to detoxification.  相似文献   

2.
Maize (Zea mays) and bean (Phaseolus vulgaris) have been traditionally grown in association for thousands of years in Mesoamerica. From surface sterilized maize roots, we have isolated over 60 Rhizobium strains that correspond to Rhizobium etli bv. phaseoli (the main symbiont of bean) on the basis of 16S rRNA gene restriction patterns, metabolic enzyme electropherotypes, organization of nif genes, and the ability to nodulate beans. The colonization capacity of some of the isolates was tested with an unimproved maize cultivar and with 30 maize land races. Increases in plant dry weight upon R. etli inoculation were recorded with some of the land races, and these increases may be related to plant growth promotion effects. Additionally, from within maize grown in monoculture we have also recovered R. etli isolates recognizable by their 16S rRNA gene types, which lack nif genes and are incapable of nodulating bean. These strains are presumed to correspond to the earlier described non-symbiotic R. etli obtained from bean rhizosphere.  相似文献   

3.
Rhizobium etli and R. tropici form nitrogen-fixing nodules on Phaseolus vulgaris (common bean). In the hope that R. etli strains with additional citrate synthase genes have better carbon economies, merodiploid strains were constructed. Previously, one such construct was shown to have an increased nodulation capacity in the standard bean cultivar Negro Xamapa. In the present work, derivatives from different R. etli strains carrying the R. tropici plasmid-borne or chromosomal citrate synthase gene were constructed and tested for nodulation in bean cultivars selected for their high capacity to fix nitrogen. Nodule numbers were dependent on the strain and the cultivar used. Differences in nodule number were not reflected in plant biomass.  相似文献   

4.
Multidrug efflux pumps have emerged as relevant elements in the intrinsic and acquired antibiotic resistance of bacterial pathogens. In contrast with other antibiotic resistance genes that have been obtained by virulent bacteria through horizontal gene transfer, genes coding for multidrug efflux pumps are present in the chromosomes of all living organisms. In addition, these genes are highly conserved (all members of the same species contain the same efflux pumps) and their expression is tightly regulated. Together, these characteristics suggest that the main function of these systems is not resisting the antibiotics used in therapy and that they should have other roles relevant to the behavior of bacteria in their natural ecosystems. Among the potential roles, it has been demonstrated that efflux pumps are important for processes of detoxification of intracellular metabolites, bacterial virulence in both animal and plant hosts, cell homeostasis and intercellular signal trafficking.  相似文献   

5.
Rhizobium etli CFN42 is unable to use nitrate for respiration and lacks nitrate reductase activity as well as the nap or nar genes encoding respiratory nitrate reductase. However, genes encoding proteins closely related to denitrification enzymes, the norCBQD gene cluster and a novel nirKnirVnnrRnnrU operon are located on pCFN42f. In this study, we carried out a genetic and functional characterization of the reductases encoded by the R. etli nirK and norCB genes. By gene fusion expression analysis in free-living conditions, we determined that R. etli regulates its response to nitric oxide through NnrR via the microaerobic expression mediated by FixKf. Interestingly, expression of the norC and nirK genes displays a different level of dependence for NnrR. A null mutation in nnrR causes a drastic drop in the expression of norC, while nirK still exhibits significant expression. A thorough analysis of the nirK regulatory region revealed that this gene is under both positive and negative regulation. Functional analysis carried out in this work demonstrated that reduction of nitrite and nitric oxide in R. etli requires the reductase activities encoded by the norCBQD and nirK genes. Levels of nitrosylleghemoglobin complexes in bean plants exposed to nitrate are increased in a norC mutant but decreased in a nirK mutant. The nitrate-induced decline in nitrogenase-specific activity observed in both the wild type and the norC mutant was not detected in the nirK mutant. This data indicate that bacterial nitrite reductase is an important contributor to the formation of NO in bean nodules in response to nitrate.  相似文献   

6.
Multidrug resistance (MDR) systems are ubiquitously present in prokaryotes and eukaryotes and defend both types of organisms against toxic compounds in the environment. Four families of MDR systems have been described, each family removing a broad spectrum of compounds by a specific membrane-bound active efflux pump. In the present study, at least four MDR systems were identified genetically in the soil bacterium Streptomyces lividans. The resistance genes of three of these systems were cloned and sequenced. Two of them are accompanied by a repressor gene. These MDR gene sequences are found in most other Streptomyces species investigated. Unlike the constitutively expressed MDR genes in Escherichia coli and other gram-negative bacteria, all of the Streptomyces genes were repressed under laboratory conditions, and resistance arose by mutations in the repressor genes.Abbreviations MDR Multidrug resistance  相似文献   

7.
8.
The diversity and phylogeny of 32 rhizobial strains isolated from nodules of common bean plants grown on 30 sites in Ethiopia were examined using AFLP fingerprinting and MLSA. Based on cluster analysis of AFLP fingerprints, test strains were grouped into six genomic clusters and six single positions. In a tree built from concatenated sequences of recA, glnII, rpoB and partial 16S rRNA genes, the strains were distributed into seven monophyletic groups. The strains in the groups B, D, E, G1 and G2 could be classified as Rhizobium phaseoli, R. etli, R. giardinii, Agrobacterium tumefaciens complex and A. radiobacter, respectively, whereas the strains in group C appeared to represent a novel species. R. phaseoli, R. etli, and the novel group were the major bean nodulating rhizobia in Ethiopia. The strains in group A were linked to R. leguminosarum species lineages but not resolved. Based on recA, rpoB and 16S rRNA genes sequences analysis, a single test strain was assigned as R. leucaenae. In the nodC tree the strains belonging to the major nodulating groups were clustered into two closely linked clades. They also had almost identical nifH gene sequences. The phylogenies of nodC and nifH genes of the strains belonging to R. leguminosarum, R. phaseoli, R. etli and the putative new species (collectively called R. leguminosarum species complex) were not consistent with the housekeeping genes, suggesting symbiotic genes have a common origin which is different from the core genome of the species and indicative of horizontal gene transfer among these rhizobia.  相似文献   

9.
Rhizobium etli is a Gram-negative soil-dwelling alphaproteobacterium that carries out symbiotic biological nitrogen fixation in close association with legume hosts. R. etli strains exhibit high sequence divergence and are geographically structured, with a potentially dramatic influence on the outcome of symbiosis. Here, we present the genome sequence of R. etli CNPAF512, a Brazilian isolate from bean nodules. We anticipate that the availability of genome sequences of R. etli strains from distinctly different areas will provide valuable new insights into the geographic mosaic of the R. etli pangenome and the evolutionary dynamics that shape it.  相似文献   

10.
Randomly amplified polymorphic DNA (RAPD) analysis was used to investigate the diversity of 179 bean isolates recovered from six field sites in the Arcos de Valdevez region of northwestern Portugal. The isolates were divided into 6 groups based on the fingerprint patterns that were obtained. Representatives for each group were selected for sequence analysis of 4 chromosomal DNA regions. Five of the groups were placed within Rhizobium lusitanum, and the other group was placed within R. tropici type IIA. Therefore, the collection of Portuguese bean isolates was shown to include the two species R. lusitanum and R. tropici. In plant tests, the strains P1-7, P1-1, P1-2, and P1-16 of R. lusitanum nodulated and formed nitrogen-fixing symbioses both with Phaseolus vulgaris and Leucaena leucocephala. A methyltransferase-encoding nodS gene identical with the R. tropici locus that confers wide host range was detected in the strain P1-7 as well as 24 others identified as R. lusitanum. A methyltransferase-encoding nodS gene also was detected in the remaining isolates of R. lusitanum, but in this case the locus was that identified with the narrow-host-range R. etli. Representatives of isolates with the nodS of R. etli formed effective nitrogen-fixing symbioses with P. vulgaris and did not nodulate L. leucocephala. From sequence data of nodS, the R. lusitanum genes for symbiosis were placed within those of either R. tropici or R. etli. These results would support the suggestion that R. lusitanum was the recipient of the genes for symbiosis with beans from both R. tropici and R. etli.  相似文献   

11.
Improving stress tolerance and yield in crops are major goals for agriculture. Here, we show a new strategy to increase drought tolerance and yield in legumes by overexpressing trehalose-6-phosphate synthase in the symbiotic bacterium Rhizobium etli. Phaseolus vulgaris (common beans) plants inoculated with R. etli overexpressing trehalose-6-phosphate synthase gene had more nodules with increased nitrogenase activity and higher biomass compared with plants inoculated with wild-type R. etli. In contrast, plants inoculated with an R. etli mutant in trehalose-6-phosphate synthase gene had fewer nodules and less nitrogenase activity and biomass. Three-week-old plants subjected to drought stress fully recovered whereas plants inoculated with a wild-type or mutant strain wilted and died. The yield of bean plants inoculated with R. etli overexpressing trehalose-6-phosphate synthase gene and grown with constant irrigation increased more than 50%. Macroarray analysis of 7,200 expressed sequence tags from nodules of plants inoculated with the strain overexpressing trehalose-6-phosphate synthase gene revealed upregulation of genes involved in stress tolerance and carbon and nitrogen metabolism, suggesting a signaling mechanism for trehalose. Thus, trehalose metabolism in rhizobia is key for signaling plant growth, yield, and adaptation to abiotic stress, and its manipulation has a major agronomical impact on leguminous plants.  相似文献   

12.
13.
Multidrug resistant (MDR) tuberculosis is caused by Mycobacterium tuberculosis resistant to isoniazid and rifampicin, the two most effective drugs used in tuberculosis therapy. Here, we investigated the mechanism by which resistance towards isoniazid develops and how overexpression of efflux pumps favors accumulation of mutations in isoniazid targets, thus establishing a MDR phenotype. The study was based on the in vitro induction of an isoniazid resistant phenotype by prolonged serial exposure of M. tuberculosis strains to the critical concentration of isoniazid employed for determination of drug susceptibility testing in clinical isolates. Results show that susceptible and rifampicin monoresistant strains exposed to this concentration become resistant to isoniazid after three weeks; and that resistance observed for the majority of these strains could be reduced by means of efflux pumps inhibitors. RT-qPCR assessment of efflux pump genes expression showed overexpression of all tested genes. Enhanced real-time efflux of ethidium bromide, a common efflux pump substrate, was also observed, showing a clear relation between overexpression of the genes and increased efflux pump function. Further exposure to isoniazid resulted in the selection and stabilization of spontaneous mutations and deletions in the katG gene along with sustained increased efflux activity. Together, results demonstrate the relevance of efflux pumps as one of the factors of isoniazid resistance in M. tuberculosis. These results support the hypothesis that activity of efflux pumps allows the maintenance of an isoniazid resistant population in a sub-optimally treated patient from which isoniazid genetically resistant mutants emerge. Therefore, the use of inhibitors of efflux should be considered in the development of new therapeutic strategies for preventing the emergence of MDR-TB during treatment.  相似文献   

14.
15.
Sequence analysis upstream of the Rhizobium etli fixLJ homologous genes revealed the presence of three open reading frames homologous to the arcABC genes of Pseudomonas aeruginosa. The P. aeruginosa arcABC genes code for the enzymes of the arginine deiminase pathway: arginine deiminase, catabolic ornithine carbamoyltransferase (cOTCase), and carbamate kinase. OTCase activities were measured in free-living R. etli cells and in bacteroids isolated from bean nodules. OTCase activity in free-living cells was observed at a different pH optimum than OTCase activity in bacteroids, suggesting the presence of two enzymes with different characteristics and different expression patterns of the corresponding genes. The characteristics of the OTCase isolated from the bacteroids were studied in further detail and were shown to be similar to the properties of the cOTCase of P. aeruginosa. The enzyme has a pH optimum of 6.8 and a molecular mass of approximately 450 kDa, is characterized by a sigmoidal carbamoyl phosphate saturation curve, and exhibits a cooperativity for carbamoyl phosphate. R. etli arcA mutants, with polar effects on arcB and arcC, were constructed by insertion mutagenesis. Bean nodules induced by arcA mutants were still able to fix nitrogen but showed a significantly lower acetylene reduction activity than nodules induced by the wild type. No significant differences in nodule dry weight, plant dry weight, and number of nodules were found between the wild type and the mutants. Determination of the OTCase activity in extracts from bacteroids revealed a strong decrease in activity of this enzyme in the arcA mutant compared to the wild-type strain. Finally, we observed that expression of an R. etli arcA-gusA fusion was strongly induced under anaerobic conditions.  相似文献   

16.
Multidrug efflux pumps contribute to multiple antibiotic resistance in Pseudomonas aeruginosa. Pump expression usually has been quantified by Western blotting. Quantitative real-time polymerase chain reaction has been developed to measure mRNA expression for genes of interest. Whether this method correlates with pump protein quantities is unclear. We devised a real-time PCR for mRNA expression of MexAB-OprM and MexXY-OprM multidrug efflux pumps. In laboratory strains differing in MexB and MexY expression and in several clinical isolates, protein and mRNA expression correlated well. Quantitative real-time PCR should be a useful alternative in quantitating expression of multidrug efflux pumps by P. aeruginosa isolates in clinical laboratories.  相似文献   

17.
Multidrug resistance transporter MRP1 could be effectively inhibited by some flavonoids. The influence of the two pairs of isoflavones: formononetin/daidzein and biochanin A/genistein on the efflux of fluorescent substrate of MRP1-like protein from erythrocytes and biophysical properties of lipid membranes has been compared. Compounds in each pair differ by the substituent in position 4' of B ring of isoflavone molecule. In the process of O-demethylation, CH(3) group (present in formonetin and biochanin A) is replaced by hydrogen (daidzein, genistein). Inhibition of MRP1-like protein transport activity by methylated and demethylated isoflavones was very similar. Their influence on lipid thermotropic properties and fluidity of lipid bilayer was not also significantly different.  相似文献   

18.
The symbiotic interaction between Rhizobium etli and Phaseolus vulgaris, the common bean plant, ultimately results in the formation of nitrogen-fixing nodules. Many aspects of the intermediate and late stages of this interaction are still poorly understood. The R. etli relA gene was identified through a genome-wide screening for R. etli symbiotic mutants. RelA has a pivotal role in cellular physiology, as it catalyzes the synthesis of (p)ppGpp, which mediates the stringent response in bacteria. The synthesis of ppGpp was abolished in an R. etli relA mutant strain under conditions of amino acid starvation. Plants nodulated by an R. etli relA mutant had a strongly reduced nitrogen fixation activity (75% reduction). Also, at the microscopic level, bacteroid morphology was altered, with the size of relA mutant bacteroids being increased compared to that of wild-type bacteroids. The expression of the sigma(N)-dependent nitrogen fixation genes rpoN2 and iscN was considerably reduced in the relA mutant. In addition, the expression of the relA gene was negatively regulated by RpoN2, the symbiosis-specific sigma(N) copy of R. etli. Therefore, an autoregulatory loop controlling the expression of relA and rpoN2 seems operative in bacteroids. The production of long- and short-chain acyl-homoserine-lactones by the cinIR and raiIR systems was decreased in an R. etli relA mutant. Our results suggest that relA may play an important role in the regulation of gene expression in R. etli bacteroids and in the adaptation of bacteroid physiology.  相似文献   

19.
Phenazine production was engineered in Rhizobium etli USDA9032 by the introduction of the phz locus of Pseudomonas chlororaphis O6. Phenazine-producing R. etli was able to inhibit the growth of Botrytis cinerea and Fusarium oxysporum in vitro. Black bean inoculated with phenazine-producing R. etli produced brownish Fix(-) nodules.  相似文献   

20.
Cowpea (Vigna unguiculata) and mung bean (Vigna radiata) are important legume crops yet their rhizobia have not been well characterized. In the present study, 62 rhizobial strains isolated from the root nodules of these plants grown in the subtropical region of China were analyzed via a polyphasic approach. The results showed that 90% of the analyzed strains belonged to or were related to Bradyrhizobium japonicum, Bradyrhizobium liaoningense, Bradyrhizobium yuanmingense and Bradyrhizobium elkanii, while the remaining represented Rhizobium leguminosarum, Rhizobium etli and Sinorhizobium fredii. Diverse nifH and nodC genes were found in these strains and their symbiotic genes were mainly coevolved with the housekeeping genes, indicating that the symbiotic genes were mainly maintained by vertical transfer in the studied rhizobial populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号