首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Fragaria vesca is a short-lived perennial with a seasonal-flowering habit. Seasonality of flowering is widespread in the Rosaceae and is also found in the majority of temperate polycarpic perennials. Genetic analysis has shown that seasonal flowering is controlled by a single gene in F. vesca, the SEASONAL FLOWERING LOCUS (SFL). Here, we report progress towards the marker-assisted selection and positional cloning of SFL, in which three ISSR markers linked to SFL were converted to locus-specific sequence-characterized amplified region (SCAR1–SCAR3) markers to allow large-scale screening of mapping progenies. We believe this is the first study describing the development of SCAR markers from ISSR profiles. The work also provides useful insight into the nature of polymorphisms generated by the ISSR marker system. Our results indicate that the ISSR polymorphisms originally detected were probably caused by point mutations in the positions targeted by primer anchors (causing differential PCR failure), by indels within the amplicon (leading to variation in amplicon size) and by internal sequence differences (leading to variation in DNA folding and so in band mobility). The cause of the original ISSR polymorphism was important in the selection of appropriate strategies for SCAR-marker development. The SCAR markers produced were mapped using a F. vesca f. vesca × F. vesca f. semperflorens testcross population. Marker SCAR2 was inseparable from the SFL, whereas SCAR1 mapped 3.0 cM to the north of the gene and SCAR3 1.7 cM to its south.Communicated by H. Nybom  相似文献   

2.
To date, the development of microsatellite (SSR) markers in the genus Fragaria has focused on F. vesca. However, further species are thought to have contributed to the complex allo‐octoploid genome of the cultivated strawberry, F.×ananassa. Here, we present 22 new SSR markers developed from the diploid species F. viridis. Twenty‐one of the primer pairs amplified polymorphisms in six F. viridis accessions, with an average of 4.95 alleles per primer pair and an average expected heterozygosity of 0.68. Fourteen of these primer pairs, and a locus monomorphic in F. viridis, amplified polymorphic alleles in the parents of a F. vesca mapping population.  相似文献   

3.
This study reports the development and characterization of 10 polymorphic microsatellite primer pairs in wild strawberry (Fragaria vesca). The primers were designed from a genomic library enriched for di‐, tri‐ and tetranucleotide repeats from F. vesca‘Reugen’. They showed single locus polymorphism in a set of nine F. vesca accessions; two to six alleles were detected per locus. The level of polymorphism in F. vesca was surprisingly low, although three pairs of primers were sufficient to distinguish between most accessions.  相似文献   

4.
A candidate gene approach was used to determine the likely molecular identity of the c locus (yellow fruit color) in Fragaria vesca, a diploid (2n=2x=14) strawberry. Using PCR with degenerate primer pairs, intron-containing segments of structural genes coding for chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS) and one Del-like regulatory gene in the anthocyanin biosynthetic pathway, were amplified, cloned and sequenced. Intron length polymorphisms for each of these genes were detected among three diploid varieties: F. vesca Alpine variety ’Yellow Wonder’ (YW) (Europe); DN1C, a F. vesca clone collected from Northern California; and Fragaria nubicola FRA520, a U.S.D.A. accession collected in Pakistan. Using F2 generations of the crosses DN1C×YW and YW×FRA520 as mapping populations, the six candidate genes were mapped in relation to previously mapped randomly amplified polymorphic DNA (RAPD) markers and morphological markers. The F3H gene was linked without recombination to the c locus in linkage group I, while the other five candidate genes mapped to different linkage groups. These results suggest that the wild-type allele (C) of the c (yellow fruit color) locus encodes an F3H necessary for red fruit color in F. vesca. Received: 28 August 2000 / Accepted: 21 December 2000  相似文献   

5.
To identify the powdery mildew (PM) resistance gene in mungbean, inter-simple sequence repeat (ISSR) markers and newly developed ISSR-anchored resistance gene analog (ISSR-RGA) markers were evaluated. When F2:7 and F2:8 recombinant inbred line populations derived from a cross between CN72 (susceptible cultivar in Thailand) and V4718 (resistant line from Asian Vegetable Research and Development Center) were evaluated for PM resistance under field conditions, the PM resistance gene from V4718 was found to be inherited as a single major gene. Fifteen out of 75 ISSR primers produced 27 DNA bands putatively associated with PM resistance in bulk segregant analysis (BSA). Ten ISSR primers were combined with four RGA primers homologous to the nucleotide-binding site and kinase domains of resistance (R) genes to generate 40 ISSR-RGA primer combinations. When these 40 ISSR-RGA primer combinations and 10 corresponding ISSR primers were used in BSA, 873 ISSR and 756 ISSR-RGA loci were amplified. Fifty-two of 756 ISSR-RGA loci were new, and 11 of these 23 ISSR-RGA loci were putatively associated with the PM resistance. Simple linear regression confirmed that 5 of the 27 ISSR markers and 3 of the 11 ISSR-RGA markers were significantly associated with the PM resistance gene. When these eight ISSR and ISSR-RGA markers were used for quantitative trait loci (QTL) analysis, multiple interval mapping identified a major QTL, qPMC72V18-1, explaining up to 92.4% of the phenotypic variation, flanked by I42PL229 and I85420 markers at the distance of 4 and 9 cM, respectively. These results suggest that ISSR and ISSR-RGA markers are highly efficient tools for mapping PM resistance gene in mungbean. The markers closely linked to the PM resistance gene will be useful for future marker-assisted selection to develop mungbean varieties resistant to PM.  相似文献   

6.
Ten codominant RAPD markers, ranging in size from about 300 to about 1350 bp, were identified in mapping populations of chickpea (Cicer arietinum L.) and diploid strawberry (Fragaria vesca L.). A distinguishing feature of all ten markers, and perhaps of codominant RAPD markers in general, was the presence in heterozygous individuals of a non-parental, heteroduplex band migrating more slowly than either of the respective parental bands. This non-parental band could also be generated by mixing parental DNAs before PCR (template mixing). As a means of identifying primers likely to detect codominant RAPD markers, parental and mixed-template (parent-parent) PCR-product gel lanes were compared for 20 previously untested RAPD primers (10-base oligomers). Four primers that produced a total of five non-parental, heteroduplex bands in mixed-template reactions were selected, and then used to detect a total of five segregating, codominant markers and nine dominant markers in the respective F2 mapping population, a codominant marker frequency of 35.7%. When closely migrating fast and slow bands of codominant RAPDs were difficult to differentiate, parent-progeny template mixing was used to deliberately generate heteroduplex bands in fast- or slow-band F2 homozygotes, respectively, allowing confirmation of marker phenotype.  相似文献   

7.
A set of 41 polymorphic microsatellite markers were developed using a CT/AG‐enriched genomic library of Fragaria vesca cv. Reine des Vallées. Thirty‐five of them were polymorphic in F. vesca and were tested in one accession each of six additional diploid Fragaria species and the octoploid Fragaria× ananassa. A mean of 5.3 alleles per locus and a low level of observed heterozygosity were generally detected in the 32 single‐locus simple sequence repeats of F. vesca. Most of these loci amplify in the other diploid species and in F. × ananassa.  相似文献   

8.
This is the first report on genetic studies and molecular tagging of a gene regulating flowering time in the stem nodulating legume crop Sesbania rostrata (Bremek. & Obrem.). An F2 segregating population was developed from a cross between Trombay Sesbania rostrata-1 (TSR-1, a radiation induced late flowering mutant) and S. rostrata. A phenotypic segregation ratio of 3 (normal flowering):1 (late flowering) in the F2 generation indicated that the late flowering is governed as a monogenic recessive trait. A genotypic ratio of 1:2:1 in the F2 generation, determined from phenotypic segregation patterns in 73 F3 families, confirmed the monogenic inheritance of the late flowering trait. Inter Simple Sequence Repeat (ISSR) and Amplified Fragment Length Polymorphism (AFLP) marker techniques were evaluated for their applicability as genetic marker systems in this green manure crop. Using the F2 segregating population, an ISSR marker (UBC 8811000) tightly linked to the trait was identified. Two linked AFLP markers GCTG500 and CCAT350 were also identified. They were found to be at a distance of 1.4 ± 0.034 cM and 8.0 ± 0.047 cM flanking the flowering locus respectively. The ISSR marker UBC 8811000 was converted into a Sequence Characterized Amplified Region (SCAR) marker. The single recessive mutation regulating the late flowering trait and the availability of tightly linked, flanking markers will help in identification and isolation of the gene controlling the flowering time trait.  相似文献   

9.
Inter-simple sequence repeat (ISSR) analysis was evaluated for its usefulness in generating markers to extend the genetic linkage map of Citrus using a backcross population previously mapped with restriction fragment length polymorphism (RFLP), random amplified polymorphic DNA (RAPD) and isozyme markers. ISSR markers were obtained through the simple technique of PCR followed by analysis on agarose gels, using simple sequence repeat (SSR) primers. Optimization of reaction conditions was achieved for 50% of the SSR primers screened, and the primers amplified reproducible polymorphic bands in the parents and progeny of the backcross population. Mendelian segregation of the polymorphic bands was demonstrated, with an insignificant number of skewed loci. Most of the SSR primers produced dominant loci; however co-dominance was observed with loci derived from three primers. A new genetic map was produced by combining the segregation data for the ISSR markers and data for the RFLP, RAPD and isozyme markers from the previous map and creating genetic linkages among all the markers using JoinMap 2.0 mapping software. The new map has an improved distribution of markers along the linkage groups with fewer gaps, and marker order showed partial or complete conservation in the linkage groups. The incorporation of ISSR markers into the genetic linkage map demonstrates that ISSR markers are suitable for genetic mapping in Citrus. Received: 3 February 2000 / Accepted: 12 May 2000  相似文献   

10.
Arthrocnemum macrostachyum, is a perennial halophytic shrub typical of Mediterranean salt marshes. The present study aims to investigate some combinations of inter simple sequence repeat (ISSR) and random amplified polymorphic DNA (RAPD) primers applied in real PCR. Thereby, the potential of R-ISSR markers to detect new genomic loci in 3 genotypes of A. macrostachyum grown in the Western coast of Syria was examined. Different combinations of RAPD and ISSR primers produced bands that were absent when single ISSR or RAPD primers were used. The results have demonstrated that ISSR primer (AG)8TC gave more informative pattern when combined with different RAPD primers comparing to other tested primers. In contrast, the tested ISSR primer (GACA)4 gave less informative pattern when used alone. These combinations were successfully applied in real PCR to detect new genomic variability in A. macrostachyum genotypes.  相似文献   

11.
We have developed a cytoplasmic male sterile (CMS) line of Brassica juncea through somatic hybridization with Moricandia arvensis and introgressed the fertility restorer gene into B. juncea. This fertility restorer locus is unique in that it is capable of restoring male fertility to two other alloplasmic CMS systems of B. juncea. As a first step toward cloning of this restorer gene we attempted molecular tagging of the Rf locus using the amplified fragment length polymorphism (AFLP) technique. A BC1F1 population segregating for male sterility/fertility was used for tagging using the bulk segregant analysis method. Out of 64 primer combinations tested in the bulks, 5 combinations gave polymorphic amplification patterns. Further testing of these primers in individual plants showed four amplicons associated with the male fertility trait. Polymorphic amplicons were cloned and used for designing SCAR primers. One of the SCAR primers generated amplicons mostly in the fertile plants. Linkage analysis using MAPMAKER showed two AFLP and one SCAR markers linked to the male fertility gene with a map distance ranging from 0.6 to 2.9 cM. All the markers are located on one side of the Rf locus.  相似文献   

12.
Despite the paramount importance of pineapple (Ananas comosus L.) in world production and trade of tropical fruits, the genomics of this crop is still lagging behind that of other tropical fruit crops such as banana or papaya. A genetic map of pineapple was constructed using an F2 segregating population obtained from a single selfed F1 plant of a cross A. comosus var. comosus (cv. Rondon, clone BR 50) × A. comosus var. bracteatus (Branco do mato, clone BR 20). Multiple randomly amplified markers (RAPD, ISSR and AFLP) were brought together with SSR and EST-SSR markers identified among sequences uploaded to public databases and with sequence-specific markers (SCAR, SSR and CAPS) derived from random amplified markers. Sixty-three randomly amplified markers (RAPD, ISSR and AFLP) were selected and cloned, resulting in 71 sequences which were used to generate sequence-specific SCAR and CAPS markers. The present map includes 492 DNA markers: 57 RAPD, 22 ISSR, 348 AFLP, 20 SSR, 12 EST-SSR, 25 SCARs, 8 CAPS, and the morphological trait locus “piping”, gathered into 33 linkage groups that integrate markers inherited from both botanical varieties, four linkage groups with markers only from var. comosus and three linkage groups with markers exclusively from var. bracteatus. The relatively higher mapping efficiency of sequence-specific markers derived from randomly amplified markers (50.7%) versus SSR (31.4%) and EST-SSR (28.9%) markers is discussed. Spanning over 80% of the 2,470 cM estimated average length of the genome, the present map constitutes a useful research tool for molecular breeding and genomics projects in pineapple and other Bromeliaceae species.  相似文献   

13.
Dendrocalamus hamiltonii is a giant, evergreen, clumping, multipurpose bamboo with strong culms which are mainly used for construction, handicrafts and fuel. The tender shoots are also used as food. Overexploitation of existing natural stocks coupled with harvesting of culms before seed formation, a long flowering cycle, irregular and poor seed production, short seed viability, seed sterility, limited availability of offsets and rhizomes and seasonal dependence are some of the major bottlenecks in conventional propagation of this species. Therefore, alternative methods like micropropagation can fill the gap in demand and supply of true-to-type planting material. Recently, our micropropagation protocol for rapid multiplication of D. hamiltonii through axillary bud proliferation using nodal explants from mature culms was standardized, and more than 3,000 plants were transferred to the field. However, somaclonal variations are known to appear in the in vitro-derived clones due to culture-induced stresses. Therefore, the present investigation was conducted to ascertain the effect of the length of in vitro culture age on clonal fidelity of regenerated plants using random amplified polymorphic DNA (RAPD), inter-simple sequence repeat (ISSR), amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers. The genomic DNA samples (i.e. mother plant, in vitro-raised shoots from the 3rd to 30th passage, and in vitro-raised plants transferred to the field) were subjected to PCR amplification using 90 primer combinations (25 each of RAPD, ISSR and SSR, and 15 AFLP primer combinations) of which 76 (23 RAPD, 24 ISSR, 21 SSR and 8 AFLP) markers showed amplified DNA fragments. The 23 RAPD primers produced 162 distinct amplified DNA fragments from 2 (OPE-5) to 16 (OPE-16) fragments per primer, while 24 ISSR primers produced 181 distinct amplified DNA fragments with an average of 7.5 fragments per primer. The number of bands generated by SSR primers varied from 3 (RM-7 and RM-240) to 14 (RM-44), and the eight combinations of AFLP primers produced 369 distinct and scorable amplified DNA fragments with an average of 46.1 fragments per primer. Appearance of monomorphic bands with all the tested primer combinations confirmed the true-to-type nature of the in vitro clones of D. hamiltonii and hence the suitability of the developed micropropagation protocol for commercial-scale plant production.  相似文献   

14.
Extending the period of fruit production is a way to substantially increase crop yield in many fruit or ornamental species. In the cultivated octoploid strawberry (Fragaria × ananassa), the most consumed small fruit worldwide, fruit production season can be extended by selecting the perpetual flowering (PF) cultivars. This trait is of considerable interest to growers and to the food industry. Four homoeologous loci controlling a single trait can be expected in such a complex octoploid species. However, we recently showed that the PF trait is under the control of the single dominant FaPFRU locus (J. Exp. Bot., 2013, 64 , 1837), making it potentially amenable to marker‐assisted selection (MAS). Here, we report the successful use of a strategy, based on a selective mapping using a reduced sample of individuals, to identify nine markers in close linkage to the FaPFRU allelic variant. Thus, this strategy can be used to fine map the target homoeologous loci in other complex polyploid crop species. Recombinant analysis further enabled us to reduce the locus to a region flanked by two markers, Bx083_206 and Bx215_131, corresponding to a 1.1 Mb region in the diploid F. vesca reference genome. This region comprises 234 genes, including 15 flowering associated genes. Among these, the FLOWERING LOCUS T (FT) is known to be a key activator of flowering. The close association between the PF trait and the FaPFRU flanking markers was validated using an additional segregating population and genetic resources. This study lays the foundation for effective and rapid breeding of PF strawberry cultivars by MAS.  相似文献   

15.
周丽  胡春根 《广西植物》2016,36(8):949-955
该文使用简单重复序列间( ISSR)分子标记,对送春与多花兰种间杂交后代进行了研究。结果表明:从80个ISSR引物中筛选出14个扩增效果稳定的ISSR引物,对两亲本和59个F1代个体进行了ISSR扩增,得到107个扩增位点,扩增的片段大小位于90~2100 bp之间,平均每个引物扩增7.64条条带,得到11种类型的带。 ISSR标记在送春×多花兰的F1代中表现出一定的多态性,分离频率为44.86%,分离位点有83.33%符合孟德尔1︰1或3︰1的分离规律,产生偏孟德尔分离的位点占12.50%,余下的4.17%属于特殊分离带型。可能导致后代变异的位点为偏孟德尔分离的6条带、缺失的8条带或新生成的2条带。聚类图中父本和母本与F1代个体间的遗传距离较远,59个杂交后代先聚集成一组,再同母本相聚为一组,最后才同父本聚在一起,59个杂种均偏母本型。送春与多花兰的杂交后代在植株形态、染色体、遗传物质方面都具备双亲特点,61个个体间的ISSR分子量标记结果和植株形态学特征都说明,59个F1代杂种包含送春和多花兰的遗传特性是真杂种;F1代杂种既有双亲的互补特征带,又有双亲的重组片断即产生新的特异带,这说明送春与多花兰的杂交后代具有遗传变异的特点。该研究结果可以有效地对杂交后代进行定向选择,为兰花的杂交育种提供了分子依据。  相似文献   

16.
The Bs2 resistance gene of pepper confers resistance against the bacterial pathogen Xanthomonas campestris pv. vesicatoria. As a first step toward isolation of the Bs2 gene, molecular markers tightly linked to the gene were identified by randomly amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) analysis of near-isogenic lines. Markers flanking the locus were identified and a high-resolution linkage map of the region was developed. One AFLP marker, A2, was found to cosegregate with the locus, while two others, F1 and B3, flank the locus and are within 0.6 cM. Physical mapping of the A2 and F1 markers indicates that these markers may be within 150 kb of each other. Together, these results indicate that the Bs2 region may be cloned either by chromosome walker or landing. The linked markers were also used to characterize gamma-irradiation-induced mutants at the Bs2 locus. Received: 15 January 1999 / Accepted: 11 May 1999  相似文献   

17.
This study reports the development and characterization of 20 microsatellite primer pairs in wild strawberry Fragaria vesca. One hundred primers were obtained from an AC‐enriched library developed in the cultivar ‘Ilaria’. A set of eight F. vesca genotypes was used to detect the polymorphism resulting in an average of 7.0 alleles, an average observed heterozygosity of 0.32 and an average expected heterozygosity of 0.73. Nineteen (95%) of the primers also amplified the cultivated octoploid strawberry Fragaria×ananassa.  相似文献   

18.
Recessive alleles (va, va 1 , va 2 , etc) of the tobacco Va locus confer resistance to potato virus Y (PVY). To elucidate the mechanism underlying this resistance, we attempted to identify randomly amplified polymorphic (RAPD) markers that reveal polymorphism between two nearly isogenic lines (NILs) that differ in their susceptibility to PVY. Using each of 500 primers and 800 pairs of primers, we identified over 100 RAPD fragments that differed between the NILs. We applied these RAPD primers or primer combinations to an F2 population obtained from a cross between the susceptible line BY4 and the resistant va 2 -bearing NIL, F55. It was found that only 10 RAPD markers were polymorphic between resistant and susceptible plants. Unexpectedly, these markers were all linked to Va. All 10 RAPD markers were present in all 8 susceptible varieties tested. At least one RAPD marker was not detected in 8 out of 10 resistant varieties. Southern analysis revealed that the sequences of markers were not present in the genomes of resistant varieties, and the markers were found in individually distinct positions on the chromosomes of susceptible tobacco varieties. These results strongly suggest that the resistance conferred by va is due to deletions at the Va locus governing susceptibility to PVY. Received: 20 May 1999 / Accepted: 17 August 1999  相似文献   

19.
A Brassica juncea mapping population was generated and scored for seed coat colour. A combination of bulked segregant analysis and AFLP methodology was employed to identify markers linked to seed coat colour in B. juncea. AFLP analysis using 16 primer combinations revealed seven AFLP markers polymorphic between the parents and the bulks. Individual plants from the segregating population were analysed, and three AFLP markers were identified as being tightly linked to the seed coat colour trait and specific for brown-seeded individuals. Since AFLP markers are not adapted for large-scale application in plant breeding, our objective was to develop a fast, cheap and reliable PCR-based assay. Towards this goal, we employed PCR-walking technology to isolate sequences adjacent to the linked AFLP marker. Based on the sequence information of the cloned flanking sequence of marker AFLP8, primers were designed. Amplification using the locus-specific primers generated bands at 0.5 kb and 1.2 kb with the yellow-seeded parent and a 1.1-kb band with the brown-seeded parent. Thus, the dominant AFLP marker (AFLP8) was converted into a simple codominant SCAR (Sequence Characterized Amplified Region) marker and designated as SCM08. Scoring of this marker in a segregating population easily distinguished yellow- and brown-seeded B. juncea and also differentiated between homozygous (BB) and heterozygous (Bb) brown-seeded individuals. Thus, this marker will be useful for the development of yellow seed B. juncea cultivars and facilitate the map-based cloning of genes responsible for seed coat colour trait. Received: 2 October 1999 / Accepted: 11 November 1999  相似文献   

20.
Tetraploid Paspalum notatum (bahiagrass) is a valuable forage grass with aposporous apomictic reproduction. In a previous study, we showed that apospory in bahiagrass is under the control of a single dominant gene with a distorted segregation ratio. The objective of this work was to identify molecular markers linked to apospory in tetraploid P. notatum and establish a preliminary syntenic relationship with the genomic region associated with apospory in P. simplex. A F1 population of 290 individuals, segregating for apospory, was generated after crossing a completely sexual plant (Q4188) with a natural aposporous apomictic plant (Q4117). The whole progeny was classified as sexual or aposporous by embryo sacs analysis. A bulked segregant analysis was carried out to identify molecular markers co-segregating with apospory. Four hundred RAPD primers, 30 AFLP primers combinations and 85 RFLP clones were screened using DNA from both parental genotypes and aposporous and sexual bulks. Linkage analysis was performed with cytological and genetic information from the complete progeny. Cytoembryological analysis showed 219 sexual and 71 aposporous F1 individuals. Seven different molecular markers (2 RAPD, 4 AFLP and 1 RFLP) were found to be completely linked to apospory. The RFLP probe C1069, mapping to the telomeric region of the long arm of rice chromosome 12, was one of the molecular markers completely linked to apospory in P. notatum. This marker had been previously associated with apospory in P. simplex. A preliminary map of the chromosome region carrying the apospory locus was constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号