首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Epstein-Barr virus (EBV) infection of primary human B cells drives their indefinite proliferation into lymphoblastoid cell lines (LCLs). B cell immortalization depends on expression of viral latency genes, as well as the regulation of host genes. Given the important role of microRNAs (miRNAs) in regulating fundamental cellular processes, in this study, we assayed changes in host miRNA expression during primary B cell infection by EBV. We observed and validated dynamic changes in several miRNAs from early proliferation through immortalization; oncogenic miRNAs were induced, and tumor suppressor miRNAs were largely repressed. However, one miRNA described as a p53-targeted tumor suppressor, miR-34a, was strongly induced by EBV infection and expressed in many EBV and Kaposi's sarcoma-associated herpesvirus (KSHV)-infected lymphoma cell lines. EBV latent membrane protein 1 (LMP1) was sufficient to induce miR-34a requiring downstream NF-κB activation but independent of functional p53. Furthermore, overexpression of miR-34a was not toxic in several B lymphoma cell lines, and inhibition of miR-34a impaired the growth of EBV-transformed cells. This study identifies a progrowth role for a tumor-suppressive miRNA in oncogenic-virus-mediated transformation, highlighting the importance of studying miRNA function in different cellular contexts.  相似文献   

5.
The pathogenic lymphocryptovirus Epstein-Barr virus (EBV) is shown to express at least 17 distinct microRNAs (miRNAs) in latently infected cells. These are arranged in two clusters: 14 miRNAs are located in the introns of the viral BART gene while three are located adjacent to BHRF1. The BART miRNAs are expressed at high levels in latently infected epithelial cells and at lower, albeit detectable, levels in B cells. In contrast to the tissue-specific expression pattern of the BART miRNAs, the BHRF1 miRNAs are found at high levels in B cells undergoing stage III latency but are essentially undetectable in B cells or epithelial cells undergoing stage I or II latency. Induction of lytic EBV replication was found to enhance the expression of many, but not all, of these viral miRNAs. Rhesus lymphocryptovirus, which is separated from EBV by > or =13 million years of evolution, expresses at least 16 distinct miRNAs, seven of which are closely related to EBV miRNAs. Thus, lymphocryptovirus miRNAs are under positive selection and are likely to play important roles in the viral life cycle. Moreover, the differential regulation of EBV miRNA expression implies distinct roles during infection of different human tissues.  相似文献   

6.
7.
8.
MicroRNAs (miRNAs) are a large class of small (~22 nt) non-coding RNAs that negatively regulate gene expression most often at the level of translation, and have been shown to be key regulators in a variety of processes including development, cell cycle and immunity. The Epstein-Barr virus (EBV) is an oncogenic herpes virus endemic in humans that encodes at least twenty-two of its own miRNAs. Cellular miRNAs have well-established roles in cancer and immune pathways, and multiple cellular miRNAs directly target viral messages. Additionally, multiple viruses express suppressors of cellular RNAi-induced silencing. Here we show that EBV de novo infection of primary cultured human B-cells results in a dramatic down-regulation of cellular miRNA expression, suggesting the virus may encode or activate a suppressor of miRNA expression. We additionally show that the immuno-modulatory microRNA miR-146a, down-regulated on initial infection, is significantly up-regulated more than 100-fold upon induction of the viral lytic cycle, and appears to have inhibitory effects on the progression of the lytic cycle. Our results show that EBV has large effects on cellular miRNA expression.  相似文献   

9.
10.
Epstein-Barr virus (EBV) is a human tumor virus and a paradigm of herpesviral latency. Mature naïve or memory B cells are EBV's preferred targets in vitro and in vivo. Upon infection of any B cell with EBV, the virus induces cellular proliferation to yield lymphoblastoid cell lines (LCLs) in vitro and establishes a latent infection in them. In these cells a ‘classical’ subset of latent viral genes is expressed that orchestrate and regulate cellular activation and proliferation, prevent apoptosis, and maintain viral latency. Surprisingly, little is known about the early events in primary human B cells infected with EBV. Recent analyses have revealed the initial but transient expression of additional viral genes that do not belong to the ‘classical’ latent subset. Some of these viral genes have been known to initiate the lytic, productive phase of EBV but virus synthesis does not take place early after infection. The early but transient expression of certain viral lytic genes is essential for or contributes to the initial survival and cell cycle entry of resting B cells to foster their proliferation and sustain a latent infection. This review summarizes the recent findings and discusses the presumed function(s) of viral genes expressed shortly but transiently after infection of B-lymphocytes with EBV.  相似文献   

11.
12.
13.
14.
15.
miRNAs通过完全或不完全的碱基互补绑定到信使RNA(mRNA)上,通过抑制翻译或者直接导致mRNA降解的方式来调节靶基因的表达.为了研究miRNAs在转录水平上面的调控作用,两种人类基因组中组织特异的miRNAs(miR-1和miR-124)被转染到HeLa细胞中,微阵列(microarray)分析转染前后细胞中各基因mRNA表达水平变化情况的结果表明:动物基因组中靶基因与miRNAs不完全的碱基互补也会导致mRNA的直接降解.通过分析实验得到的mRNA表达水平变化数据,发现这相同miRNA的不同靶基因mRNA表达水平的下调倍数有着明显的差别,推测这些靶基因mRNA序列本身存在某些影响其受调节程度的因素.为此,提取和分析这些靶基因mRNA的序列特征,通过对这些序列特征与mRNA表达水平下调数据进行统计相关分析,最终发现,miRNA靶基因受调节的程度与以下几个因素相关联:mRNA序列中miRNA靶位点的个数,靶位点与miRNA序列碱基互补的程度,以及绑定后形成二级结构的稳定程度(即最低自由能的大小).在此基础上,初步建立起一个多因子作用下的miRNA 靶基因mRNA表达水平下调程度模型,分析表明:该模型在一定程度上可以反映了部分序列特征对于miRNA靶基因mRNA表达水平下调程度的影响.  相似文献   

16.
17.
MicroRNAs (miRNAs) play an important role in the regulation of gene expression and are involved in many cellular processes including inhibition of viral replication in infected cells. In this study, three subtypes of influenza A viruses (pH1N1, H5N1 and H3N2) were analyzed to identify candidate human miRNAs targeting and silencing viral genes expression. Candidate human miRNAs were predicted by miRBase and RNAhybrid based on minimum free energy (MFE) and hybridization patterns between human miRNAs and viral target genes. In silico analysis presented 76 miRNAs targeting influenza A viruses, including 70 miRNAs that targeted specific subtypes (21 for pH1N1, 27 for H5N1 and 22 for H3N2) and 6 miRNAs (miR-216b, miR-3145, miR-3682, miR-4513, miR-4753 and miR-5693) that targeted multiple subtypes of influenza A viruses. Interestingly, miR-3145 is the only candidate miRNA targeting all three subtypes of influenza A viruses. The miR-3145 targets to PB1 encoding polymerase basic protein 1, which is the main component of the viral polymerase complex. The silencing effect of miR-3145 was validated by 3′-UTR reporter assay and inhibition of influenza viral replication in A549 cells. In 3′-UTR reporter assay, results revealed that miR-3145 triggered significant reduction of the luciferase activity. Moreover, expression of viral PB1 genes was also inhibited considerably (P value < 0.05) in viral infected cells expressing mimic miR-3145. In conclusion, this study demonstrated that human miR-3145 triggered silencing of viral PB1 genes and lead to inhibition of multiple subtypes of influenza viral replication. Therefore, hsa-miR-3145 might be useful for alternative treatment of influenza A viruses in the future.  相似文献   

18.
Sequence requirements for micro RNA processing and function in human cells   总被引:26,自引:3,他引:23  
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号