首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cultivation of genetically engineered Bacillus thuringiensis toxin-expressing (Bt) maize continues to increase worldwide, yet the effects of Bt crops on arbuscular mycorrhizal fungi (AMF) in soil are poorly understood. In this field experiment, we investigated the impact of seven different genotypes of Bt maize and five corresponding non-Bt parental cultivars on AMF and evaluated plant growth responses at three different physiological time points. Plants were harvested 60 days (active growth), 90 days (tasseling and starting to produce ears), and 130 days (maturity) after sowing, and data on plant growth responses and percent AMF colonization of roots at each harvest were collected. Spore abundance and diversity were also evaluated at the beginning and end of the field season to determine whether the cultivation of Bt maize had a negative effect on AMF propagules in the soil. Plant growth and AMF colonization did not differ between Bt and non-Bt maize at any harvest period, but AMF colonization was positively correlated with leaf chlorophyll content at the 130-day harvest. Cultivation of Bt maize had no effect on spore abundance and diversity in Bt versus non-Bt plots over one field season. Plot had the most significant effect on total spore counts, indicating spatial heterogeneity in the field. Although previous greenhouse studies demonstrated that AMF colonization was lower in some Bt maize lines, our field study did not yield the same results, suggesting that the cultivation of Bt maize may not have an impact on AMF in the soil ecosystem under field conditions.  相似文献   

2.
Crop plants genetically modified for the expression of Bacillus thuringiensis (Bt) insecticidal toxins have broad appeal for reducing insect damage in agricultural systems, yet questions remain about the impact of Bt plants on symbiotic soil organisms. Here, arbuscular mycorrhizal fungal (AMF) colonization of transgenic maize isoline Bt 11 (expressing Cry1Ab) and its non-Bt parental line (Providence) was evaluated under different fertilizer level and spore density scenarios. In a three-way factorial design, Bt 11 and non-Bt maize were inoculated with 0, 40, or 80 spores of Glomus mosseae and treated weekly with 'No' (0 g L(-1) ), 'Low' (0.23 g L(-1) ), or 'High' (1.87 g L(-1) ) levels of a complete fertilizer and grown for 60 days in a greenhouse. While no difference in AMF colonization was detected between the Bt 11 and Providence maize cultivars in the lower spore/higher fertilizer treatments, microcosm experiments demonstrated a significant reduction in AMF colonization in Bt 11 maize roots in the 80 spore treatments when fertilizer was limited. These results confirm previous work indicating an altered relationship between this Bt 11 maize isoline and AMF and demonstrate that the magnitude of this response is strongly dependent on both nutrient supply and AMF spore inoculation level.  相似文献   

3.
The cultivation of genetically modified plants (GMP) has raised concerns regarding the plants’ ecological safety. A greenhouse experiment was conducted to assess the impact of five seasons of continuous Bt (Bacillus thuringiensis) maize cultivation on the colonisation and community structure of the non-target organisms arbuscular mycorrhizal fungi (AMF) in the maize roots, bulk soils and rhizospheric soils using the terminal restriction fragment length polymorphism (T-RFLP) analysis of the 28S ribosomal DNA and sequencing methods. AMF colonisation was significantly higher in the two Bt maize lines that express Cry1Ab, 5422Bt1 (event Bt11) and 5422CBCL (MON810) than in the non-Bt isoline 5422. No significant differences were observed in the diversity of the AMF community between the roots, bulk soils and rhizospheric soils of the Bt and non-Bt maize cultivars. The AMF genus Glomus was dominant in most of the samples, as detected by DNA sequencing. A clustering analysis based on the DNA sequence data suggested that the sample types (i.e., the samples from the roots, bulk soils or rhizospheric soils) might have greater influence on the AMF community phylotypes than the maize cultivars. This study indicated that the Cry1Ab protein has minor effects on the AMF communities after five seasons of continuous Bt maize cultivation.  相似文献   

4.
Maize, genetically modified with the insect toxin genes of Bacillus thuringiensis (Bt), is widely cultivated, yet its impacts on soil organisms are poorly understood. Arbuscular mycorrhizal fungi (AMF) form symbiotic associations with plant roots and may be uniquely sensitive to genetic changes within a plant host. In this field study, the effects of nine different lines of Bt maize and their corresponding non‐Bt parental isolines were evaluated on AMF colonization and community diversity in plant roots. Plants were harvested 60 days after sowing, and data were collected on plant growth and per cent AMF colonization of roots. AMF community composition in roots was assessed using 454 pyrosequencing of the 28S rRNA genes, and spatial variation in mycorrhizal communities within replicated experimental field plots was examined. Growth responses, per cent AMF colonization of roots and AMF community diversity in roots did not differ between Bt and non‐Bt maize, but root and shoot biomass and per cent colonization by arbuscules varied by maize cultivar. Plot identity had the most significant effect on plant growth, AMF colonization and AMF community composition in roots, indicating spatial heterogeneity in the field. Mycorrhizal fungal communities in maize roots were autocorrelated within approximately 1 m, but at greater distances, AMF community composition of roots differed between plants. Our findings indicate that spatial variation and heterogeneity in the field has a greater effect on the structure of AMF communities than host plant cultivar or modification by Bt toxin genes.  相似文献   

5.
Phosphorus (P) can be low in soil under low input organic management; however, beneficial crop plant associations with arbuscular mycorrhizal fungi (AMF) are known to promote crop nutrition and increase phosphorus uptake. Thus, management strategies that promote AMF associations are particularly desirable for low-input cropping systems. The objectives of this study were to determine the impact of seeding rate on AMF colonization and the impact of AMF colonization on P concentration and uptake by organically grown field pea and lentil. Field experiments examined the impact of three seeding rates of field pea and lentil on P uptake and crop yield. Phosphorus accumulation was examined further in a controlled growth chamber experiment, in which field pea was sown at rates corresponding to those used in the field and harvested at 10-day intervals until 50 days after emergence. In the field, the level of AMF colonization of roots remained at 80% for field pea, while colonization of lentil increased with increasing seeding rates from 77% to 88%. The level of AMF colonization of field pea achieved in the growth chamber after 50 days was 80% for the two highest seeding rates and 60% for the low seeding rate. The rate at which AMF colonization occurred did not vary between treatments. Ultimately, AMF colonization level did not affect P accumulation. In contrast to several previous studies, both field and growth chamber experiments revealed that AMF colonization was not reduced at higher seeding rates. These results suggest that organic farmers may increase seeding rates without adversely affecting P nutrition.  相似文献   

6.
The impact of land use intensity on the diversity of arbuscular mycorrhizal fungi (AMF) was investigated at eight sites in the “three-country corner” of France, Germany, and Switzerland. Three sites were low-input, species-rich grasslands. Two sites represented low- to moderate-input farming with a 7-year crop rotation, and three sites represented high-input continuous maize monocropping. Representative soil samples were taken, and the AMF spores present were morphologically identified and counted. The same soil samples also served as inocula for “AMF trap cultures” with Plantago lanceolata, Trifolium pratense, and Lolium perenne. These trap cultures were established in pots in a greenhouse, and AMF root colonization and spore formation were monitored over 8 months. For the field samples, the numbers of AMF spores and species were highest in the grasslands, lower in the low- and moderate-input arable lands, and lowest in the lands with intensive continuous maize monocropping. Some AMF species occurred at all sites (“generalists”); most of them were prevalent in the intensively managed arable lands. Many other species, particularly those forming sporocarps, appeared to be specialists for grasslands. Only a few species were specialized on the arable lands with crop rotation, and only one species was restricted to the high-input maize sites. In the trap culture experiment, the rate of root colonization by AMF was highest with inocula from the permanent grasslands and lowest with those from the high-input monocropping sites. In contrast, AMF spore formation was slowest with the former inocula and fastest with the latter inocula. In conclusion, the increased land use intensity was correlated with a decrease in AMF species richness and with a preferential selection of species that colonized roots slowly but formed spores rapidly.  相似文献   

7.
The cultivation of genetically modified (GM) crops has increased significantly over the last decades. However, concerns have been raised that some GM traits may negatively affect beneficial soil biota, such as arbuscular mycorrhizal fungi (AMF), potentially leading to alterations in soil functioning. Here, we test two maize varieties expressing the Bacillus thuringiensis Cry1Ab endotoxin (Bt maize) for their effects on soil AM fungal communities. We target both fungal DNA and RNA, which is new for AM fungi, and we use two strategies as an inclusive and robust way of detecting community differences: (i) 454 pyrosequencing using general fungal rRNA gene-directed primers and (ii) terminal restriction fragment length polymorphism (T-RFLP) profiling using AM fungus-specific markers. Potential GM-induced effects were compared to the normal natural variation of AM fungal communities across 15 different agricultural fields. AM fungi were found to be abundant in the experiment, accounting for 8% and 21% of total recovered DNA- and RNA-derived fungal sequences, respectively, after 104 days of plant growth. RNA- and DNA-based sequence analyses yielded most of the same AM fungal lineages. Our research yielded three major conclusions. First, no consistent differences were detected between AM fungal communities associated with GM plants and non-GM plants. Second, temporal variation in AMF community composition (between two measured time points) was bigger than GM trait-induced variation. Third, natural variation of AMF communities across 15 agricultural fields in The Netherlands, as well as within-field temporal variation, was much higher than GM-induced variation. In conclusion, we found no indication that Bt maize cultivation poses a risk for AMF.  相似文献   

8.
Forage radish (Raphanus sativus L. var. longipinnatus) is being used by increasing numbers of farmers as a winter cover crop in the Mid-Atlantic USA. It is a non-host to arbuscular mycorrhizal fungi (AMF) and releases anti-fungal isothiocyanates (ITCs) upon decomposition in the winter. Field experiments were conducted to determine the effect of forage radish and cereal rye (Secale cereale L.) cover crops on arbuscular mycorrhizal fungus colonization of and P acquisition by a subsequent maize (Zea mays L.) silage crop. Cover crop treatments included forage radish, rye, a mix of forage radish and rye, and no cover crop. Mycorrhizal fungus colonization of maize roots at the V4 stage following forage radish cover crops was not significantly different from that in the no cover crop treatment. In 3 out of 6 site-years, a rye cover crop increased AMF colonization of V4 stage maize roots compared to no cover crop. These findings suggest that forage radish cover crops do not have a negative effect on AMF colonization of subsequent crops.  相似文献   

9.
The P efficiency, crop yield, and response of wheat to arbuscular mycorrhizal fungus (AMF) Glomus caledonium were tested in an experimental field with long-term (19 years) fertilizer management. The experiment included five fertilizer treatments: organic amendment (OA), half organic amendment plus half mineral fertilizer (1/2 OM), mineral fertilizer NPK, mineral fertilizer NK, and the control (without fertilization). AMF inoculation responsiveness (MIR) of wheat plants at acquiring P were estimated by comparing plants grown in unsterilized soil inoculated with G. caledonium and in untreated soil containing indigenous AMF. Without AMF inoculation, higher crop yields but lower colonization rates were observed in the NPK and two OA-inputted treatments, and NPK had significantly (P < 0.05) lower impacts on organic C and available P in soils and thereby P acquisition of wheat plants compared with OA and 1/2 OM. G. caledonium inoculation significantly (P < 0.05) increased colonization rates with the NPK and two P-deficient treatments but significantly (P < 0.05) increased vegetative biomass, crop yield, and P acquisition of wheat as well as soil alkaline phosphatase (ALP) activity, only with the NPK treatment. This gave an MIR of ca. 45% on total P acquisition of wheat plants. There were no other remarkable MIRs. It suggested that the MIR is determined by soil available P status, and rational combination of AMF with chemical NPK fertilizer can compensate for organic amendments by improving P-acquisition efficiency in arable soils.  相似文献   

10.
This is the first report of a comprehensive ecological investigation of AMF symbiosis in banana over a very broad zone of its commercial cultivation, South India. The AMF characteristics in relation to specific banana varieties, soils and seasons are carried out. This baseline data has global use for mycorrhizal applications in the crop. Spore density and percentage root colonization in relation to soil fertility parameters, seasons and soil series, along with other ecological parameters are assessed as per standard methods. Altogether 14 different AMF species of 13 different banana varieties, in terms of spore density and percentage colonization from 47 different soil series of South India are discovered. Among the 14 AMF species observed, Dentiscutata nigra is a new report in banana. Shannon’s diversity index and Simpson’s index over seasons are measured. Evenness in AM fungal population in banana fields in the monsoon was higher than that of summer. Presence of over 30% AMF root colonization in majority of banana varieties revealed its significance in the crop.  相似文献   

11.
I compared growth and arbuscular mycorrhizal fungal (AMF) colonization of two prairie grasses (Wild rye [Elymus canadensis] and Little bluestem [Schizachyrium scoparium]), an early‐ and a late‐dominating species in prairie restorations, respectively, grown in soil from restored prairies of differing age, soil characteristics, and site history. There were no consistent patterns between restoration age and soil inorganic nutrients or organic matter. The oldest restoration site had higher soil mycorrhizal inoculum potential (MIP) than 2‐ and 12‐year‐old restorations. However, MIP did not translate into actual colonization for two species grown in soils from the three restorations, nor did MIP relate to phosphorus availability. There were significant differences in root mass and colonization among Wild rye plants but not among Little bluestem plants grown in soils from the three restorations. Wild rye grown in 2‐year‐old restoration soil had significantly higher AMF colonization than when it was grown in soils from the 12‐ and 17‐year‐old restorations. Wild rye grown in 2‐year‐old restoration soil also had higher colonization than Little bluestem grown in 2‐ and 12‐year‐old restoration soils. Little bluestem had no significant correlations between shoot biomass, root biomass or colonization, and concentrations of soil P, total N, or N:P. However, for Wild rye, total soil N was positively correlated with root mass and negatively correlated with colonization, suggesting that in this species, mycorrhizae may affect N availability. Collectively, these results suggest that soil properties unrelated to restoration age were important in determining differences in growth and AMF colonization of two species of prairie grasses.  相似文献   

12.
The aim of this study was to compare the mycorrhizal responsiveness among old and recent Chinese maize genotypes (released from 1950s to 2008) in low- and high-Olsen-P soils and to identify parameters that would indicate the relationships between the mycorrhizal responsiveness and the functional traits related to P uptake of maize. A greenhouse factorial experiment was conducted. The factors were maize genotype [Huangmaya (HMY), Zhongdan 2 (ZD2), Nongda 108 (ND108), and NE15], inoculation with or without arbuscular mycorrhizal fungi (AMF) (Rhizophagus irregularis), and Olsen-P levels (4, 9, 18, 36, or 60 mg P kg?1). Old and recently released genotypes differed in their response to AMF under low- and high-P supply. Three kinds of responses (in terms of shoot growth) were observed: the response was positive if the soil P content was low, but negative if the soil Olsen-P content was high (HMY and ND108); the response was neutral regardless of soil P content (ZD2); and the response was positive regardless of soil P content (NE15). Principle component (PC) analysis showed that the first PC comprised morphological and physiological traits of maize roots, and the second PC comprised mycorrhizal traits. The opposite was the case, however, in high-P soil. It is concluded that maize breeding selection from 1950s to 2000s is not always against the AM association and that AMF play positive roles in promoting the growth of some maize genotypes in high-P soil. The root length colonization by efficient AMF might be a useful parameter for breeding varieties with increased mycorrhizal responsiveness.  相似文献   

13.
在大棚水泥池内种植两个Bt玉米(5422Bt1和5422CBCL)及其同源常规玉米5422,研究了种植Bt玉米及秸秆还田过程中根际土、根围土、3层根外土(0~20、20~40和40~60 cm)中Bt蛋白含量的时空动态特征及其对土壤养分含量的影响.结果表明: 种植Bt玉米和常规玉米后,根围土(种植后90 d)和3层根外土(种植后30、60和90 d)中均检测到少量的Bt蛋白(含量<0.5 ng·g-1),在Bt玉米5422Bt1和5422CBCL根际土中则分别检测到1.59和2.78 ng·g-1的Bt蛋白.玉米秸秆还田后,Bt蛋白能在3 d内快速降解,在还田后第7天只检测到少量的Bt蛋白.与常规玉米5422相比,种植Bt玉米5422Bt1 90 d后根围土和3层根外土中有机质、速效养分(碱解氮、速效磷和速效钾)和全量养分(全氮、全磷和全钾)含量均没有显著差异;5422Bt1秸秆还田60 d后0~20 cm土层的有机质和全氮含量显著升高,速效钾含量显著降低,而其他养分指标则没有显著差异,20~40 cm和40~60 cm土层的所有养分指标均没有明显差异.种植Bt玉米5422CBCL后根围土中仅速效磷含量显著低于种植常规玉米5422,但0~20 cm土层中全磷含量显著提高,其他养分指标均没有差异;还田5422CBCL秸秆后仅0~20 cm土层的速效磷含量显著高于常规玉米5422.研究结果表明,通过玉米根系分泌和秸秆分解进入土壤的Bt蛋白不会在土壤中累积,对养分含量也基本没有显著影响.
  相似文献   

14.
 Root colonization by arbuscular mycorrhizal fungi (AMF) may affect protein and lipid composition of plants by altering P nutrition or by eliciting other metabolic responses in the host plant. This study was conducted to determine the effects of an AMF and soil P on seed protein and lipid contents and yield of two genotypes of durum wheat (Triticum durum L.). Plants were grown in a greenhouse using soil: sand mixes with different levels of P, and with or without the AMF Glomus mosseae [(Nicol. and Gerd.) Gerd. and Trappe]. Percentage AMF root colonization decreased as P added to soil increased. The wheat genotype CR057 had higher AMF root colonization but lower seed P and protein concentrations than CR006. Without added soil P, protein concentration was significantly lower and lipid concentration and seed dry weight higher in arbuscular mycorrhizal (AM) than in nonAM plants. Seed lipid and protein contents were highly correlated with P content of plants. In nonAM plants, seed lipid and protein contents were low with no added soil P and did not differ with added soil P. Seed protein/lipid (Pro/L) concentration ratios of AM plants were higher than those of nonAM plants only when no P was added to the soil. The data indicate different patterns of seed P accumulation and different relationships between seed P and protein and lipid in AM and nonAM plants. Thus, both the presence and degree of AMF root colonization affected seed lipid metabolism in these durum wheat genotypes. Accepted: 18 May 1999  相似文献   

15.
The impact of land use intensity on the diversity of arbuscular mycorrhizal fungi (AMF) was investigated at eight sites in the "three-country corner" of France, Germany, and Switzerland. Three sites were low-input, species-rich grasslands. Two sites represented low- to moderate-input farming with a 7-year crop rotation, and three sites represented high-input continuous maize monocropping. Representative soil samples were taken, and the AMF spores present were morphologically identified and counted. The same soil samples also served as inocula for "AMF trap cultures" with Plantago lanceolata, Trifolium pratense, and Lolium perenne. These trap cultures were established in pots in a greenhouse, and AMF root colonization and spore formation were monitored over 8 months. For the field samples, the numbers of AMF spores and species were highest in the grasslands, lower in the low- and moderate-input arable lands, and lowest in the lands with intensive continuous maize monocropping. Some AMF species occurred at all sites ("generalists"); most of them were prevalent in the intensively managed arable lands. Many other species, particularly those forming sporocarps, appeared to be specialists for grasslands. Only a few species were specialized on the arable lands with crop rotation, and only one species was restricted to the high-input maize sites. In the trap culture experiment, the rate of root colonization by AMF was highest with inocula from the permanent grasslands and lowest with those from the high-input monocropping sites. In contrast, AMF spore formation was slowest with the former inocula and fastest with the latter inocula. In conclusion, the increased land use intensity was correlated with a decrease in AMF species richness and with a preferential selection of species that colonized roots slowly but formed spores rapidly.  相似文献   

16.
Yuebo Jing  Jihua Mao  Rongbo Li 《Phyton》2022,91(12):2719-2732
Olive (Olea europaea L.) is one of the most important and widely cultivated fruit trees, with high economic, ecological, cultural and scientific value. China began introducing and cultivating olive in the 1960s, and Yunnan Province is one of the main growing areas. Improving the cultivation and productivity of this tree crop species is an important challenge. Olive is a typical mycotrophic species and the potential of arbuscular mycorrhizal fungi (AMF) for this plant is well recognized; nevertheless, studies of olive AMF in China are still very limited. Roots and rhizosphere soils of olive were sampled from five representative growing sites in the Yunnan Province of China to investigate the AMF colonization status in the root systems, the AMF community in the olive orchards and the edaphic factors influencing the arbuscular mycorrhizal (AM) parameters. Root samples of olive trees from different growing sites generally showed AMF colonization, suggesting that autochthonous AMF manifest a high efficiency in colonizing the roots of olive plants. The spore density on the five sites ranged from 81.6 to 350 spores per 20 g soil. Twenty-three AMF species from 9 genera were identified in total, and Glomeraceae was the dominant family. The findings of our study suggested a high AMF diversity harbored by olive growing in different areas of the Yunnan Province, Southwestern China. Furthermore, the hyphal colonization in roots positively correlated with soil pH and EC. The arbuscule colonization in olive roots negatively correlated with soil pH, EC, OM, TN, TP and AN. The spore density positively correlated with OM, TN, AN, AP and sand content. Finally, the Shannon index of AMF in the rhizosphere soil positively correlated with the clay content, but negatively correlated with soil pH, TN and silt content. The high diversity of autochthonous AMF in Yunnan is promising for screening AMF isolates for utilization in the efficient cultivation of this crop.  相似文献   

17.
Diversity in phosphorus (P) acquisition strategies was assessed among eight isolates of arbuscular mycorrhizal fungi (AMF) belonging to three Glomus species, all obtained from the same field site. Maize (Zea mays L. cv. Corso) was used as a test plant. Compartmented cultivation containers coupled with 33P radioisotope labeling of soil P were employed to estimate (1) the distance from the roots that AMF were able to acquire soil P from, (2) the rate of soil colonization, (3) the efficiency of uptake of soil P by AMF, (4) benefits provided to maize in terms of P acquisition and growth. Glomus mosseae and G. intraradices took up P 10 cm from roots, whereas G. claroideum only up to 6 cm from the roots. G. mosseae most rapidly colonized the available soil volume and transported significant amounts of P to maize from a distance, but provided no net P uptake benefit to the plants. On the other hand, both G. intraradices and three out of four G. claroideum isolates significantly improved net P uptake by maize. These effects seem to be related to variability between and to a limited extent also within AMF species, in mycelium development, efficiency of hyphal P uptake and effects on plant P acquisition via the root pathway. In spite of absence of maize growth responses to inoculation with any of the AMF isolates, this study indicates remarkable functional diversity in the underground component of the studied field site.  相似文献   

18.
Abstract

Little attention has been paid to the combined use of arbuscular mycorrhizal fungus (AMF) and steel slag (SS) for ameliorating heavy metal polluted soils. A greenhouse pot experiment was conducted to study the effects of SS and AMF?Funneliformis mosseae (Fm), Glomus versiforme (Gv) and Rhizophagus intraradices (Ri) on plant growth and Cd, Pb uptake by maize grown in soils added with 5?mg Cd kg?1 and 300?mg Pb kg?1 soil. The combined usage of AMF and SS (AMF?+?SS) promoted maize growth, and Gv?+?SS had the most obvious effect. Meanwhile, single SS addition and AMF?+?SS decreased Cd, Pb concentrations in maize, and the greater reductions were found in combined utilization, and the lowest Cd, Pb concentrations of maize appeared in Gv?+?SS. Single SS amendment and AMF?+?SS enhanced soil pH and decreased soil diethylenetriaminepentaacetic acid (DTPA)-extractable Cd, Pb concentrations. Furthermore, alone and combined usage of AMF and SS increased contents of soil total glomalin. Our research indicated a synergistic effect between AMF and SS on enhancing plant growth and reducing Cd, Pb accumulation in maize, and Gv?+?SS exerted the most pronounced effect. This work suggests that AMF inoculation in combination with SS addition may be a potential method for not only phytostabilization of Pb-Cd-contaminated soil but maize safety production.  相似文献   

19.
大田环境下转Bt基因玉米对土壤酶活性的影响   总被引:2,自引:0,他引:2  
颜世磊  赵蕾  孙红炜  田晓燕  李凡  路兴波 《生态学报》2011,31(15):4244-4250
在大田自然条件下,比较研究了转Bt基因玉米和非转基因亲本玉米在种植和秸秆分解时对土壤酶活性影响的差异。结果表明,与亲本非转基因玉米相比,在各生育期内种植转Bt玉米对土壤蛋白酶和土壤脲酶活性均没有显著影响;在喇叭口期和抽雄期,土壤蔗糖酶和土壤酸性磷酸酶活性显著提高。在秸秆还田后,两种玉米秸秆对土壤酸性磷酸酶活性的影响没有显著差异,但使用转Bt玉米秸秆的土壤蔗糖酶、土壤脲酶和土壤蛋白酶的活性则有显著提高。与亲本玉米相比,在所有观测期内,种植Bt玉米及秸秆还田对土壤酶活性的影响,在影响的幅度及趋势上随玉米生育期和土壤酶种类的不同而产生差异,但没有观测到显著不利影响;商业化Bt玉米的环境释放仍有待长期定位观测和评价。  相似文献   

20.
Pot culture experiments were established to determine the effects of colonization by arbuscular mycorrhizal fungi (AMF) (Glomus mosseae and G. sp) on maize (Zea mays L.) grown in Pb, Zn, and Cd complex contaminated soils. AMF and non-AMF inoculated maize were grown in sterilized substrates and subjected to different soil heavy metal (Pb, Zn, Cd) concentrations. The root and shoot biomasses of inoculated maize were significantly higher than those of non-inoculated maize. Pb, Zn, and Cd concentrations in roots were significantly higher than those in shoots in both the inoculated and non-inoculated maize, indicating the heavy metals mostly accumulated in the roots of maize. The translocation rates of Pb, Zn, and Cd from roots to shoots were not significantly difference between inoculated and non-inoculated maize. However, at high soil heavy metal concentrations, Pb, Zn, and Cd in the shoots and Pb in the roots of inoculated maize were significantly reduced by about 50% compared to the non-inoculated maize. These results indicated that AMF could promote maize growth and decrease the uptake of these heavy metals at higher soil concentrations, thus protecting their hosts from the toxicity of heavy metals in Pb, Zn, and Cd complex contaminated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号