首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The COP9 signalosome (CSN) is a multiprotein complex that plays a critical role in diverse cellular and developmental processes in various eukaryotic organisms. Despite of its significance, current understanding of the biological functions and regulatory mechanisms of the CSN complex is still very limited. To unravel these molecular mechanisms, we have performed a comprehensive proteomic analysis of the human CSN complex using a new purification method and quantitative mass spectrometry. Purification of the human CSN complex from a stable 293 cell line expressing N-terminal HBTH-tagged CSN5 subunit was achieved by high-affinity streptavidin binding with TEV cleavage elution. Mass spectrometric analysis of the purified CSN complex has revealed the identity of its composition as well as N-terminal modification and phosphorylation of the CSN subunits. N-terminal modifications were determined for seven subunits, six of which have not been reported previously, and six novel phosphorylation sites were also identified. Additionally, we have applied the newly developed MAP-SILAC and PAM-SILAC methods to decipher the dynamics of the human CSN interacting proteins. A total of 52 putative human CSN interacting proteins were identified, most of which are reported for the first time. In comparison to PAM-SILAC results, 20 proteins were classified as stable interactors, whereas 20 proteins were identified as dynamic ones. This work presents the first comprehensive characterization of the human CSN complex by mass spectrometry-based proteomic approach, providing valuable information for further understanding of CSN complex structure and biological functions.  相似文献   

2.
3.
The COP9 complex (signalosome) is a known regulator of the proteasome/ubiquitin pathway. Furthermore it regulates the activity of the cullin-RING ligase (CRL) families of ubiquitin E3-complexes. Besides the CRL family, the anaphase-promoting complex (APC/C) is a major regulator of the cell cycle. To investigate a possible connection between both complexes we assessed interacting partners of COP9 using an in vivo protein-protein interaction assay. Hereby, we were able to show for the first time that CSN2, a subunit of the COP9 signalosome, interacts physically with APC/C. Furthermore, we detected a functional influence of the COP9 complex regarding the stability of several targets of the APC/C. Consistent with these data we showed a genetic instability of cells over-expressing CSN2.  相似文献   

4.
The COP9 signalosome, once defined as a repressor complex of light-activated development in Arabidopsis, has recently been found in humans and is probably present in most multicellular organisms. The COP9 signalosome is closely related to the lid sub-complex of the 26S proteasome in structural composition and probably shares a common evolutionary ancestor. A multifaceted role of the COP9 signalosome in cell-signaling processes is hinted at by its associated novel kinase activity, as well as the involvement of its subunits in regulating multiple cell-signaling pathways and cell-cycle progression. The molecular genetic studies in Arabidopsis suggest that the complex functions as part of a highly conserved regulatory network, whose physiological role in animals remains to be determined.  相似文献   

5.
The COP9 Signalosome (CSN) is a multiprotein complex that was originally identified in Arabidopsis thaliana as a negative regulator of photomorphogenesis and subsequently shown to be a general eukaryotic regulator of developmental signaling. The CSN plays various roles, but it has been most often implicated in regulating protein degradation pathways. Six of eight CSN subunits bear a sequence motif called PCI. Here, we report studies of subunit 7 (CSN7) from Arabidopsis, which contains such a motif. Our in vitro and structural results, based on 1.5 A crystallographic data, enable a definition of a PCI domain, built from helical bundle and winged helix subdomains. Using functional binding assays, we demonstrate that the PCI domain (residues 1 to 169) interacts with two other PCI proteins, CSN8 and CSN1. CSN7 interactions with CSN8 use both PCI subdomains. Furthermore, we show that a C-terminal tail outside of this PCI domain is responsible for association with the non-PCI subunit, CSN6. In vivo studies of transgenic plants revealed that the overexpressed CSN7 PCI domain does not assemble into the CSN, nor can it complement a null mutation of CSN7. However, a CSN7 clone that contains the PCI domain plus part of the CSN6 binding domain can complement the null mutation in terms of seedling viability and photomorphogenesis. These transgenic plants, though, are defective in adult growth, suggesting that the CSN7 C-terminal tail plays additional functional roles. Together, the findings have implications for CSN assembly and function, highlighting necessary interactions between subunits.  相似文献   

6.
The COP9 Signalosome (CSN) is a highly conserved eight subunit protein complex associated with a wide range of essential biological functions in eukaryotic cells, and directly involved in processes including deneddylation, phosphorylation, and ubiquitination. Despite its significant role, very few studies have been undertaken to reveal the interactions between the CSN and its binding partners, and none in human T cells. Here we present a purification method for the CSN and binding proteins via the Streptavidin-Binding Peptide (SBP) fused to CSN Subunit 1 (CSN1). Using this method, coupled with liquid chromatography-mass spectrometry analysis, we identified all eight subunits of the CSN, as well as expected and putative novel binding partners such as a tumor suppressor under the control of Cullin4a-ligase complex; Neurofibromin 2 (Merlin). This work presents a method for fast, reliable, and specific affinity-based purification of a protein complex from a nonadherent cell line. The purification of the CSN and binding partners from T cells can elucidate the roles of CSN in a cell type where it has never been studied before. This proteomic-based approach can broaden our understanding of the functions of the CSN in contexts such as viral-host interactions or immune activation in their natural milieu.  相似文献   

7.
The COP9 signalosome (CSN) occurs in all eukaryotic cells. It is a regulatory particle of the ubiquitin (Ub)/26S proteasome system. The eight subunits of the CSN possess sequence homologies with the polypeptides of the 26S proteasome lid complex and just like the lid, the CSN consists of six subunits with PCI (proteasome, COP9 signalosome, initiation factor 3) domains and two components with MPN (Mpr-Pad1-N-terminal) domains. Here we show that the CSN directly interacts with the 26S proteasome and competes with the lid, which has consequences for the peptidase activity of the 26S proteasome in vitro. Flag-CSN2 was permanently expressed in mouse B8 fibroblasts and Flag pull-down experiments revealed the formation of an intact Flag-CSN complex, which is associated with the 26S proteasome. In addition, the Flag pull-downs also precipitated cullins indicating the existence of super-complexes consisting of the CSN, the 26S proteasome and cullin-based Ub ligases. Permanent expression of a chimerical subunit (Flag-CSN2-Rpn6) consisting of the N-terminal 343 amino acids of CSN2 and of the PCI domain of S9/Rpn6, the paralog of CSN2 in the lid complex, did not lead to the assembly of an intact complex showing that the PCI domain of CSN2 is important for complex formation. The consequence of permanent Flag-CSN2 overexpression was de-novo assembly of the CSN complex connected with an accelerated degradation of p53 and stabilization of c-Jun in B8 cells. The possible role of super-complexes composed of the CSN, the 26S proteasome and of Ub ligases in the regulation of protein stability is discussed.  相似文献   

8.
The COP9 signalosome is an evolutionarily conserved multiprotein complex that was first identified as an essential complex that represses light-regulated development in Arabidopsis. The COP9 signalosome has similarity to the lid of the 19S regulatory particle of the 26S proteasome and has recently been shown to interact with SCF-type E3 ubiquitin ligases. Although its precise role in the process of protein degradation remains to be established, the COP9 signalosome is a positive regulator of E3 ubiquitin ligases that functions at least in part by mediating the deconjugation of the NEDD8/RUB-modification from the cullin subunit of SCF-type E3 complexes. Here, we discuss these recent findings, which add an additional component to the biology of substrate-specific protein degradation.  相似文献   

9.
The conserved COP9 signalosome (CSN) multiprotein complex is located at the interface between cellular signaling, protein modification, life span and the development of multicellular organisms. CSN is required for light-controlled responses in filamentous fungi. This includes the circadian rhythm of Neurospora crassa or the repression of sexual development by light in Aspergillus nidulans. In contrast to plants and animals, CSN is not essential for fungal viability. Therefore fungi are suitable models to study CSN composition, activity and cellular functions and its role in light controlled development.  相似文献   

10.
The COP9 signalosome is involved in signal transduction, whereas the 26 S proteasome lid is a regulatory subcomplex of the 26 S proteasome responsible for degradation of ubiquitinated proteins. COP9 signalosome and lid possess significant sequence homologies among their eight core subunits and are likely derived from a common ancestor. Surprisingly, from our two-dimensional electron microscopy data, a common architectural plan for the two complexes could not be deduced. None-the-less, the two particles have structural features in common. Both COP9 signalosome and lid lack any symmetry in subunit arrangement and exhibit a central groove, possibly qualified for scaffolding functions.Filter-binding assays with recombinant COP9 signalosome components revealed a multitude of subunit-subunit interactions, supporting the asymmetrical appearance of the complex in electron microscopy. On the basis of two-dimensional images and subunit interaction studies, a first architectural model of COP9 signalosome was created.The fact that four distinct classes of particle views were identified and that only 50 % of the selected particles could be classified indicates a high degree of heterogeneity in electron microscopic images. Different orientations with respect to the viewing axis and conformational variety, presumably due to different grades of phosphorylation, are possible reasons for the heterogeneous appearance of the complex. Our biochemical data show that recombinant COP9 signalosome subunits 2 and 7 are phosphorylated by the associated kinase activity. The modification of COP9 signalosome subunit 2 might be essential for c-Jun phosphorylation. Dephosphorylation does not inactivate the associated kinase activity. Although substrate phosphorylation by COP9 signalosome is significantly decreased by lambda protein phosphatase treatment, "autophosphorylation" is increased.  相似文献   

11.
12.
Hannss R  Dubiel W 《FEBS letters》2011,585(18):2845-2852
The COP9 signalosome (CSN) is a platform for protein communication in eukaryotic cells. It has an intrinsic metalloprotease that removes the ubiquitin (Ub)-like protein Nedd8 from cullins. CSN-mediated deneddylation regulates culling-RING Ub ligases (CRLs) and controls ubiquitination of proteins involved in DNA damage response (DDR). CSN forms complexes with CRLs containing cullin 4 (CRL4s) which act on chromatin playing crucial roles in DNA repair, checkpoint control and chromatin remodeling. Furthermore, via associated kinases the CSN controls the stability of DDR effectors such as p53 and p27 and thereby the DDR outcome. DDR is a protection against cancer and deregulation of CSN function causes cancer making it an attractive pharmacological target. Here we review current knowledge on CSN function in DDR.  相似文献   

13.
COP1 and COP9 signalosome (CSN) are key regulators of plant light responses and development. Deficiency in either COP1 or CSN causes a constitutive photomorphogenic phenotype. Through coordinated actions of nuclear- and cytoplasmic-localization signals, COP1 can respond to light signals by differentially partitions between nuclear and cytoplasmic compartments. Previous genetic analysis in Arabidopsis indicated that the nuclear localization of COP1 requires CSN, an eight-subunit heteromeric complex. However the mechanism underlying the functional relationship between COP1 and CSN is unknown. We report here that COP1 weakly associates with CSN in vivo . Furthermore, we report on the direct interaction involving the coiled-coil domain of COP1 and the N-terminal domain of the CSN1 subunit. In onion epidermal cells, expression of CSN1 can stimulate nuclear localization of GUS-COP1, and the N-terminal domain of CSN1 is necessary and sufficient for this function. Moreover, CSN1-induced COP1 nuclear localization requires the nuclear-localization sequences of COP1, as well as its coiled-coil domain, which contains both the cytoplasmic localization sequences and the CSN1 interacting domain. We also provide genetic evidence that the CSN1 N-terminal domain is specifically required for COP1 nuclear localization in Arabidopsis hypocotyl cells. This study advances our understanding of COP1 localization, and the molecular interactions between COP1 and CSN.  相似文献   

14.
The constitutive photomorphogenesis 9 signalosome (COP9 or CSN) is an evolutionarily conserved multiprotein complex found in plants and animals. Because of the homology between the COP9 signalosome and the 19S lid complex of the proteosome, COP9 has been postulated to play a role in regulating the degradation of polyubiquitinated proteins. Many tumor suppressor and oncogene products are regulated by ubiquitination- and proteosome-mediated protein degradation. Therefore, it is conceivable that COP9 plays a significant role in cancer, regulating processes relevant to carcinogenesis and cancer progression (e.g., cell cycle control, signal transduction and apoptosis). In mammalian cells, it consists of eight subunits (CSN1 to CSN8). The relevance and importance of some subunits of COP9 to cancer are emerging. However, the mechanistic regulation of each subunit in cancer remains unclear. Among the CSN subunits, CSN5 and CSN6 are the only two that each contain an MPN (Mpr1p and Pad1p N-terminal) domain. The deneddylation activity of an MPN domain toward cullin-RING ubiquitin ligases (CRL) may coordinate CRL-mediated ubiquitination activity. More recent evidence shows that CSN5 and CSN6 are implicated in ubiquitin-mediated proteolysis of important mediators in carcinogenesis and cancer progression. Here, we discuss the mechanisms by which some CSN subunits are involved in cancer to provide a much needed perspective regarding COP9 in cancer research, hoping that these insights will lay the groundwork for cancer intervention.  相似文献   

15.
The COP9 signalosome: more than a protease   总被引:1,自引:0,他引:1  
The COP9 signalosome (CSN) is a conserved protein complex that functions in the ubiquitin-proteasome pathway. After two decades of research, we now know that the CSN is a multi-subunit protease that regulates the activity of cullin-RING ligase (CRL) families of ubiquitin E3 complexes. The CSN is rapidly emerging as a key player in the DNA-damage response, cell-cycle control and gene expression. The independent functions of CSN5 (also known as JAB1) add to the complexity of the CSN machinery. Here, we provide an updated view of the structure, functions and regulation of this protein complex.  相似文献   

16.
17.
The constitutive photomorphogenesis 9 signalosome (COP9 or CSN) is an evolutionarily conserved multiprotein complex found in plants and animals. Because of the homology between the COP9 signalosome and the 19S lid complex of the proteosome, COP9 has been postulated to play a role in regulating the degradation of polyubiquitinated proteins. Many tumor suppressor and oncogene products are regulated by ubiquitination- and proteosome-mediated protein degradation. Therefore, it is conceivable that COP9 plays a significant role in cancer, regulating processes relevant to carcinogenesis and cancer progression (e.g., cell cycle control, signal transduction and apoptosis). In mammalian cells, it consists of eight subunits (CSN1 to CSN8). The relevance and importance of some subunits of COP9 to cancer are emerging. However, the mechanistic regulation of each subunit in cancer remains unclear. Among the CSN subunits, CSN5 and CSN6 are the only two that each contain an MPN (Mpr1p and Pad1p N-terminal) domain. The deneddylation activity of an MPN domain toward cullin-RING ubiquitin ligases (CRL) may coordinate CRL-mediated ubiquitination activity. More recent evidence shows that CSN5 and CSN6 are implicated in ubiquitin-mediated proteolysis of important mediators in carcinogenesis and cancer progression. Here, we discuss the mechanisms by which some CSN subunits are involved in cancer to provide a much needed perspective regarding COP9 in cancer research, hoping that these insights will lay the groundwork for cancer intervention.Key words: ubiquitination, CSN, COP9 signalosome, Mdm2, p53, cancer, MPN domain, neddylation, Nedd8, cullin  相似文献   

18.
The COP9 signalosome is an eight-subunit protein complex that regulates protein ubiquitination and protein turnover in a variety of plant developmental and physiological contexts, including light-regulated development, hormone signaling, and defense against pathogens. In all eukaryotes tested, the COP9 signalosome is able to posttranslationally modify the cullin subunit of E3-ubiquitin-ligase complexes by cleaving off the covalently coupled peptide, Nedd8. Two contrasting models ascribe stimulatory or inhibitory roles to the modification of cullin/E3 that is mediated by the COP9 signalosome. There is considerable disagreement as to whether Nedd8 cleavage underlies all of the COP9 signalosome's numerous cellular and phenotypic effects. This is because macroscopic phenotypes do not always correlate with biochemical defects in COP9 signalosome mutants. Additional biochemical activities, including protein interactions with the cellular machineries for protein phosphorylation, protein turnover, and protein translation, have been proposed to account for the role of the COP9 signalosome in development and disease.  相似文献   

19.
Nielsen O 《Current biology : CB》2003,13(14):R565-R567
In fission yeast, the COP9 signalosome is required to activate ribonucleotide reductase for DNA synthesis. This is mediated via the ubiquitin ligase Pcu4, activation of which leads to degradation of the scaffold protein Spd1, which anchors the small ribonucleotide reductase subunit in the nucleus away from the large subunit in the cytoplasm.  相似文献   

20.
The Jun activating binding protein (JAB1) specifically stabilizes complexes of c-Jun or JunD with AP-1 sites, increasing the specificity of target gene activation by AP-1 proteins. JAB1 is also known as COP9 signalosome subunit 5 (CSN5), which is a component of the COP9 signalosome regulatory complex (CSN). Over the past year, JAB1/CSN5 has been implicated in numerous signaling pathways including those that regulate light signaling in plants, larval development in Drosophila, and integrin signaling, cell cycle control, and steroid hormone signaling in a number of systems. However, the general role of the CSN complex, and the specific role of JAB1/CSN5, still remain obscure. This review attempts to integrate the available data to help explain the role of JAB1/CSN5 and the COP9 signalosome in regulating multiple pathways (in this review, both JAB1 and CSN5 terminologies are used interchangeably, depending on the source material).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号