首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Marengo FD 《Cell calcium》2005,38(2):87-99
The relationship between the localized Ca(2+) concentration and depolarization-induced exocytosis was studied in patch-clamped adrenal chromaffin cells using pulsed-laser Ca(2+) imaging and membrane capacitance measurements. Short depolarizing voltage steps induced Ca(2+) gradients and small "synchronous" increases in capacitance during the pulses. Longer pulses increased the capacitance changes, which saturated at 16 fF, suggesting the presence of a small immediately releasable pool of fusion-ready vesicles. A Hill plot of the capacitance changes versus the estimated Ca(2+) concentration in a thin (100 nm) shell beneath the membrane gave n = 2.3 and K(d) = 1.4 microM. Repetitive stimulation elicited a more complex pattern of exocytosis: early pulses induced synchronous capacitance increases, but after five or more pulses there was facilitation of the synchronous responses and gradual increases in capacitance continued between pulses (asynchronous exocytosis) as the steep submembrane Ca(2+) gradients collapsed. Raising the pipette Ca(2+) concentration led to early facilitation of the synchronous response and early appearance of asynchronous exocytosis. We used this data to develop a kinetic model of depolarization-induced exocytosis, where Ca(2+)-dependent fusion of vesicles occurs from a small immediately releasable pool with an affinity of 1-2 microM and vesicles are mobilized to this pool in a Ca(2+)-dependent manner.  相似文献   

2.
Galanin is a neurotransmitter peptide that suppresses insulin secretion. The present study aimed at investigating how a non-peptide galanin receptor agonist, galnon, affects insulin secretion from isolated pancreatic islets of healthy Wistar and diabetic Goto-Kakizaki (GK) rats. Galnon stimulated insulin release potently in isolated Wistar rat islets; 100 microM of the compound increased the release 8.5 times (p<0.001) at 3.3 mM and 3.7 times (p<0.001) at 16.7 mM glucose. Also in islet perifusions, galnon augmented several-fold both acute and late phases of insulin response to glucose. Furthermore, galnon stimulated insulin release in GK rat islets. These effects were not inhibited by the presence of galanin or the galanin receptor antagonist M35. The stimulatory effects of galnon were partly inhibited by the PKA and PKC inhibitors, H-89 and calphostin C, respectively, at 16.7 but not 3.3 mM glucose. In both Wistar and GK rat islets, insulin release was stimulated by depolarization of 30 mM KCl, and 100 microM galnon further enhanced insulin release 1.5-2 times (p<0.05). Cytosolic calcium levels, determined by fura-2, were increased in parallel with insulin release, and the L-type Ca2+-channel blocker nimodipine suppressed insulin response to glucose and galnon. In conclusion, galnon stimulates insulin release in islets of healthy rats and diabetic GK rats. The mechanism of this stimulatory effect does not involve galanin receptors. Galnon-induced insulin release is not glucose-dependent and appears to involve opening of L-type Ca2+-channels, but the main effect of galnon seems to be exerted at a step distal to these channels, i.e., at B-cell exocytosis.  相似文献   

3.
The effect of aspirin on glutamate release from isolated nerve terminals (synaptosomes) from rat hippocampus was examined. The Ca(2+)-dependent release of glutamate evoked by 4-aminopyridine (4AP) was facilitated by aspirin in a concentration-dependent manner, but the 4AP-evoked Ca(2+)-independent release was not modified. Also, aspirin-mediated facilitation of glutamate release was completely inhibited by bafilomycin A1, which depletes vesicle content by inhibiting the synaptic vesicle H(+)-ATPase that drives glutamate uptake, not by l-trans-pyrrolidine-2,4-dicarboxylic acid (l-trans-PDC), a excitatory amino acid (EAA) transporter inhibitor, suggesting that the facilitation of glutamate release produced by aspirin originates from synaptic vesicle exocytosis rather than reversal of the plasma membrane glutamate transporter. In addition, aspirin did not alter either 4AP-evoked depolarization of the synaptosomal plasma membrane potential or Ca(2+) ionophore ionomycin-induced glutamate release, but significantly increased in 4AP-evoked Ca(2+) influx. A possible effect of aspirin on synaptosomal Ca(2+) channels was confirmed in experiments where synaptosomes pretreated with a combination of the N- and P/Q-type Ca(2+) channel blockers, which abolished the aspirin-mediated facilitation of glutamate release. The facilitatory action by aspirin observed in glutamate release was mimicked and occluded by arachidonic acid (AA) and eicosatetraynoic acid (ETYA), an analogue of AA that mimics the effect of AA but cannot be metabolized. Furthermore, this aspirin-mediated facilitation of glutamate release may depend on activation of protein kinase C (PKC), because PKC activator and PKC inhibitor, respectively, superseding or suppressing the facilitatory effect of aspirin. Together, these results suggest that aspirin exerts their presynaptic facilitatory effect, likely through AA directly to induce the activation of PKC, which subsequently enhances the Ca(2+) influx through voltage-dependent N- and P/Q-type Ca(2+) channels to cause an increase in evoked glutamate release from rat hippocampal nerve terminals.  相似文献   

4.
Glucagon, secreted from pancreatic islet alpha cells, stimulates gluconeogenesis and liver glycogen breakdown. The mechanism regulating glucagon release is debated, and variously attributed to neuronal control, paracrine control by neighbouring beta cells, or to an intrinsic glucose sensing by the alpha cells themselves. We examined hormone secretion and Ca(2+) responses of alpha and beta cells within intact rodent and human islets. Glucose-dependent suppression of glucagon release persisted when paracrine GABA or Zn(2+) signalling was blocked, but was reversed by low concentrations (1-20 muM) of the ATP-sensitive K(+) (KATP) channel opener diazoxide, which had no effect on insulin release or beta cell responses. This effect was prevented by the KATP channel blocker tolbutamide (100 muM). Higher diazoxide concentrations (>/=30 muM) decreased glucagon and insulin secretion, and alpha- and beta-cell Ca(2+) responses, in parallel. In the absence of glucose, tolbutamide at low concentrations (<1 muM) stimulated glucagon secretion, whereas high concentrations (>10 muM) were inhibitory. In the presence of a maximally inhibitory concentration of tolbutamide (0.5 mM), glucose had no additional suppressive effect. Downstream of the KATP channel, inhibition of voltage-gated Na(+) (TTX) and N-type Ca(2+) channels (omega-conotoxin), but not L-type Ca(2+) channels (nifedipine), prevented glucagon secretion. Both the N-type Ca(2+) channels and alpha-cell exocytosis were inactivated at depolarised membrane potentials. Rodent and human glucagon secretion is regulated by an alpha-cell KATP channel-dependent mechanism. We propose that elevated glucose reduces electrical activity and exocytosis via depolarisation-induced inactivation of ion channels involved in action potential firing and secretion.  相似文献   

5.
Phorbol esters were used to investigate the action of protein kinase C (PKC) on insulin secretion from pancreatic beta-cells. Application of 80 nM phorbol 12-myristate 13-acetate (PMA), a PKC-activating phorbol ester, had little effect on glucose (15 mM)-induced insulin secretion from intact rat islets. In islets treated with bisindolylmaleimide (BIM), a PKC inhibitor, PMA significantly reduced the glucose-induced insulin secretion. PMA decreased the level of intracellular Ca(2+) concentration ([Ca(2+)](i)) elevated by the glucose stimulation when tested in isolated rat beta-cells. This inhibitory effect of PMA was not prevented by BIM. PMA inhibited glucose-induced action potentials, and this effect was not prevented by BIM. Further, 4alpha-phorbol 12,13-didecanoate (4alpha-PDD), a non-PKC-activating phorbol ester, produced an effect similar to PMA. In the presence of nifedipine, the glucose stimulation produced only depolarization, and PMA applied on top of glucose repolarized the cell. When applied at the resting state, PMA hyperpolarized beta-cells with an increase in the membrane conductance. Recorded under the voltage-clamp condition, PMA reduced the magnitude of Ca(2+) currents through L-type Ca(2+) channels. BIM prevented the PMA inhibition of the Ca(2+) currents. These results suggest that activation of PKC maintains glucose-stimulated insulin secretion in pancreatic beta-cells, defeating its own inhibition of the Ca(2+) influx through L-type Ca(2+) channels. PKC-independent inhibition of electrical excitability by phorbol esters was also demonstrated.  相似文献   

6.
Insulin is secreted from pancreatic beta cells in response to an elevation of cytoplasmic Ca(2+) resulting from enhanced Ca(2+) influx through voltage-gated Ca(2+) channels. Mouse beta cells express several types of Ca(2+) channel (L-, R- and possibly P/Q-type). beta cell-selective ablation of the gene encoding the L-type Ca(2+) channel subtype Ca(v)1.2 (betaCa(v)1.2(-/-) mouse) decreased the whole-cell Ca(2+) current by only approximately 45%, but almost abolished first-phase insulin secretion and resulted in systemic glucose intolerance. These effects did not correlate with any major effects on intracellular Ca(2+) handling and glucose-induced electrical activity. However, high-resolution capacitance measurements of exocytosis in single beta cells revealed that the loss of first-phase insulin secretion in the betaCa(v)1.2(-/-) mouse was associated with the disappearance of a rapid component of exocytosis reflecting fusion of secretory granules physically attached to the Ca(v)1.2 channel. Thus, the conduit of Ca(2+) entry determines the ability of the cation to elicit secretion.  相似文献   

7.
We investigated implications of nitric oxide (NO) derived from islet neuronal constitutive NO synthase (ncNOS) and inducible NOS (iNOS) on insulin secretory mechanisms in the mildly diabetic GK rat. Islets from GK rats and Wistar controls were analysed for ncNOS and iNOS by HPLC, immunoblotting and immunocytochemistry in relation to insulin secretion stimulated by glucose or l-arginine in vitro and in vivo. No obvious difference in ncNOS fluorescence in GK vs control islets was seen but freshly isolated GK islets displayed a marked iNOS expression and activity. After incubation at low glucose GK islets showed an abnormal increase in both iNOS and ncNOS activities. At high glucose the impaired glucose-stimulated insulin release was associated with an increased iNOS expression and activity and NOS inhibition dose-dependently amplified insulin secretion in both GK and control islets. This effect by NOS inhibition was also evident in depolarized islets at low glucose, where forskolin had a further amplifying effect in GK but not in control islets. NOS inhibition increased basal insulin release in perfused GK pancreata and amplified insulin release after glucose stimulation in both GK and control pancreata, almost abrogating the nadir separating first and second phase in controls. A defective insulin response to l-arginine was seen in GK rats in vitro and in vivo, being partially restored by NOS inhibition. The results suggest that increased islet NOS activities might contribute to the defective insulin response to glucose and l-arginine in the GK rat. Excessive iNOS expression and activity might be deleterious for the beta-cells over time.  相似文献   

8.
Protein kinase C (PKC) is considered to modulate glucose-stimulated insulin secretion. Pancreatic beta cells express multiple isoforms of PKCs; however, the role of each isoform in glucose-stimulated insulin secretion remains controversial. In this study we investigated the role of PKCdelta, a major isoform expressed in pancreatic beta cells on beta cell function. Here, we showed that PKCdelta null mice manifested glucose intolerance with impaired insulin secretion. Insulin tolerance test showed no decrease in insulin sensitivity in PKCdelta null mice. Studies using islets isolated from these mice demonstrated decreased glucose- and KCl-stimulated insulin secretion. Perifusion studies indicated that mainly the second phase of insulin secretion was decreased. On the other hand, glucose-induced influx of Ca2+ into beta cells was not altered. Immunohistochemistry using total internal reflection fluorescence microscopy and electron microscopic analysis showed an increased number of insulin granules close to the plasma membrane in beta cells of PKCdelta null mice. Although PKC is thought to phosphorylate Munc18-1 and facilitate soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors complex formation, the phosphorylation of Munc18-1 by glucose stimulation was decreased in islets of PKCdelta null mice. We conclude that PKCdelta plays a non-redundant role in glucose-stimulated insulin secretion. The impaired insulin secretion in PKCdelta null mice is associated with reduced phosphorylation of Munc18-1.  相似文献   

9.
10.
11.
12.
CAPS1 and CAPS2 regulate dense-core vesicle release of transmitters and hormones in neuroendocrine cells, but their precise roles in the secretory process remain enigmatic. Here we show that CAPS2(-/-) and CAPS1(+/-);CAPS2(-/-) mice, despite having increased insulin sensitivity, are glucose intolerant and that this effect is attributable to a marked reduction of glucose-induced insulin secretion. This correlates with diminished Ca(2+)-dependent exocytosis, a reduction in the size of the morphologically docked pool, a decrease in the readily releasable pool of secretory vesicles, slowed granule priming, and suppression of second-phase (but not first-phase) insulin secretion. In beta cells of CAPS1(+/-);CAPS2(-/-) mice, the lowered insulin content and granule numbers were associated with an increase in lysosome numbers and lysosomal enzyme activity. We conclude that although CAPS proteins are not required for Ca(2+)-dependent exocytosis to proceed, they exert a modulatory effect on insulin granule priming, exocytosis, and stability.  相似文献   

13.
Three different methods, membrane capacitance (C(m)) measurement, amperometry and FM dye labeling were used to investigate the role of extracellular ATP in insulin secretion from rat pancreatic beta cells. We found that extracellular application of ATP mobilized intracellular Ca(2+) stores and synchronously triggered vigorous exocytosis. No influence of ATP on the readily releasable pool of vesicles was observed, which argues against a direct modulation of the secretory machinery at a level downstream of Ca(2+) elevation. The stimulatory effects of ATP were greatly reduced by intracellular perfusion of BAPTA but not EGTA, suggesting a close spatial association of fusion sites with intracellular Ca(2+) releasing sites. ATP-induced Ca(2+) transients and exocytosis were not blocked by thapsigargin (TG), by a ryanodine receptor antagonist or by dissipation of pH in acidic stores by monensin alone, but they were greatly attenuated by IP(3) receptor inhibition as well as ionomycin plus monensin, suggesting involvement of IP(3)-sensitive acidic Ca(2+) stores. Taken together, our data suggest that extracellular ATP triggers exocytosis by mobilizing spatially limited acidic Ca(2+) stores through IP(3) receptors. This mechanism may explain how insulin secretion from the pancreas is coordinated through diffusible ATP that is co-released with insulin.  相似文献   

14.
15.
16.
α-Latrotoxin from the venom of black widow spider induces and augments neurotransmitterand hormone release by way of extracellular Ca~(2 ) influx and cellular signal transduction pathways.By usingwhole cell current and capacitance recording,the photolysis of card Ca~(2 ),and Ca~(2 ) microfluorometry andamperometry,we investigated the stimulating effect and mechá(?)ism of α-latrotoxin on exocytosis in ratpancreatic β cells,LβT2 cells and latrophilin plasmid-transfected INS-1 cells.Our data indicated that:(1)α-latrotoxin increased cytosolic Ca~(2 ) concentration through the formation of cation-permitting pores and sub-sequent Ca~(2 ) influx with the presence of extracellular Ca~(2 );(2)α-latrotoxin stimulated exocytosis in normalbath solution and its stimulating effect on secretion was eradicated in Ca~(2 )-free bath solution; and (3)α-latrotoxin sensitized the molecular machinery of fusion through activation of protein kinase C and increasedthe response of cells to Ca~(2 ) photolysed by a flash of ultraviolet light.In summary,α-latrotoxin inducedexocytosis by way of Ca~(2 ) influx and accelerated vesicle fusion by the sensitization of fusion machinery.  相似文献   

17.
We have investigated the potentiating action of cAMP on L-currents of rat chromaffin cells and the corresponding increase of Ca(2+)-evoked secretory responses with the aim of separating the action of cAMP on Ca(2+) entry through L-channels and the downstream effects of cAMP/protein kinase A (PKA) on exocytosis. In omega-toxin-treated rat chromaffin cells, exposure to the permeable cAMP analog 8-(4-chlorophenylthio)-adenosine 3',5'-monophosphate (pCPT-cAMP; 1 mM, 30 min) caused a moderate increase of Ca(2+) charge carried through L-channels (19% in 10 mM Ca(2+) at +10 mV) and a drastic potentiation of secretion ( approximately 100%), measured as membrane capacitance increments (deltaC). The apparent Ca(2+) dependency of exocytosis increased with pCPT-cAMP and was accompanied by 83% enhancement of the readily releasable pool of vesicles with no significant change of the probability of release, as evaluated with paired-pulse stimulation protocols. pCPT-cAMP effects could be mimicked by stimulation of beta(1)-adrenoreceptors and reversed by the PKA inhibitor H89, suggesting strict PKA dependence. For short pulses to +10 mV (100 ms), potentiation of exocytosis by pCPT-cAMP was proportional to the quantity of charge entering the cell and occurred independently of whether L, N, or P/Q channels were blocked, suggesting that cAMP acts as a constant amplification factor for secretion regardless of the channel type carrying Ca(2+). Analysis of statistical variations among depolarization-induced capacitance increments indicates that pCPT-cAMP acts downstream of Ca(2+) entry by almost doubling the mean size of unitary exocytic events, most likely as a consequence of an increased granule-to-granule rather than a granule-to-membrane fusion.  相似文献   

18.
19.
20.
The antioxidant alpha-lipoic acid has been reported to prevent and reverse age-related impairments in learning and memory. However, it is unclear how alpha-lipoic acid improves cognitive function. In this study, the effect of alpha-lipoic acid on the release of endogenous glutamate from rat cerebrocortical nerve terminals (synaptosomes) was examined. We found that alpha-lipoic acid potently facilitated 4-aminopyridine (4AP)-evoked glutamate release, and this release facilitation results from an enhancement of vesicular exocytosis and not from an increase of non-vesicular release. Examination of the effect of alpha-lipoic acid on cytosolic [Ca(2+)] revealed that the facilitation of glutamate release was associated with an increase in voltage-dependent Ca(2+) influx. Consistent with this, alpha-lipoic acid-mediated facilitation of glutamate release was completely prevented in synaptosomes pretreated with a wide spectrum blocker of the N- and P/Q-type Ca(2+) channels, omega-conotoxin MVIIC. The facilitatory effect of alpha-lipoic acid on Ca(2+) influx was not due to an increase of synaptosomal excitability because alpha-lipoic acid did not alter the 4AP-evoked depolarization of the synaptosomal plasma membrane potential. In addition, both ionomycin and hypertonic sucrose-induced glutamate release were enhanced by alpha-lipoic acid. Furthermore, disruption of cytoskeleton organization with cytochalasin D occluded the facilitatory effect of alpha-lipoic acid on 4AP or ionomycin-evoked glutamate release. These results suggest that the antioxidant alpha-lipoic acid enhances the Ca(2+) entry through presynaptic N- and P/Q-type Ca(2+) channels as well as the vesicular release machinery to cause an increase in evoked glutamate release from rat cerebrocortical synaptosomes. Also, activation of PKA and PKC may underlie, at least in part, the alpha-lipoic acid-mediated facilitation of glutamate release observed here as alpha-lipoic acid-enhanced 4AP and ionomycin-evoked glutamate release were significantly attenuated by PKA and PKC inhibitors. This finding may provide some information regarding the mechanism of action of alpha-lipoic acid in the central nervous system (CNS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号