首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copper(II), cobalt and nickel(II) complexes of tris(benzimidazolylmethyl)amine(1) and of its methyl(2), isobutyl(3) or isopropyl(4)-substituted derivatives of one of the backbone methylene groups were prepared and characterized. The ligands (1)–(3) afforded trigonal bipyramidal copper(II) complexes, whereas ligand (4) gave a tetrahedrally distorted tetragonal one because of the steric hindrance arising from the isopropyl group. All the cobalt(II) complexes prepared were supposed to be tetrahedral or pseudotrigonal bipyramidal, and all the nickel(II) complexes to be slightly tetrahedrally distorted octahedral. Ternary copper(II) systems containing several thiolates as the third component exhibited intense blue, brown or green color under a reduced temperature by virtue of the charge transfer bands, S? → Cu.  相似文献   

2.
Synthesis of a new pentahydroxamic acid bifunctional chelating agent (BCA), constructed on the aminoazaalkyl core of diethylenetriaminepentaacetic acid (DTPA), is reported. Rational modifications in the structure of DTPA, which could result in an enhancement of its chelation properties, add to the collection of diagnostic and therapeutic metals bound by this chelator, and might implement significant improvements in the in vivo behavior of this compound, are described. Further improvements in the stability of the ligand-metal complexes of DTPA may improve both diagnostic and therapeutic outcomes such as tumor-to-normal tissue ratios and target-delivered radioactivity. A combination of hydroxamate functions with the azaalkyl backbone of DTPA might be a suitable approach to generate such higher stabilities. This rationale may be justified by the well-known affinity of hydroxamates against different transition metals and favorable properties of DTPA as a versatile chelator. Thus, the N(4),N(alpha),N(alpha),N(epsilon),N(epsilon)-pentakis[[((N-hydroxy-N-methyl]carbonyl)methyl]-2, 6-diamino-4-azahexanoic hydrazide (5, DTPH) was designed and synthesized through a convergent synthesis and in 40.7% overall yield. Conjugation of this compound to the monoclonal antibody (MAb) Delta Ch2HuCC49, used as a model protein, was carried out to evaluate the efficiency of this molecule as a BCA. Radiolabeling of the DTPH-Delta CH2HuCC49 conjugate with lutetium-177 ((177)Lu) and biodistribution of the labeled conjugate in athymic nude mice, bearing LS174T human colon carcinoma xenografts, are reported.  相似文献   

3.
The comb-type copolymers consisting of a polyacrylamide (PAAm) backbone and poly(L-lysine) (PLL) graft chains have been prepared as the "prepolymer" for designing multivalent ligands. To regulate the length and density of the clusters of primary amino groups, the Nalpha-carboxyanhydride of Nepsilon-carbobenzoxy (CBZ)-L-lysine was first polymerized using p-vinylbenzylamine as an initiator. The resulting poly(CBZ-L-lysine) macromonomer was then radically copolymerized with AAm, followed by the deprotection of amino groups. For the model study, the reactive clusters of primary amino groups were completely converted into anion clusters by the reaction with succinic anhydride. The model multivalent ligands having the biotin label on the PAAm backbone were prepared by the terpolymerization of the macromonomer, AAm, and the biotin derivative having a vinyl group. The enzyme-linked immunosorbent assay showed that the biotin with no spacer on the PAAm backbone was recognized by the avidin-peroxidase conjugate specifically. Therefore, the highly sensitive detection of the interaction between cells and various model multivalent ligands was possible. The selective labeling onto the PAAm backbone revealed that the converted anion clusters of graft chains interacted exclusively with the cell and that the backbone was inert to the interaction with the cell. These results indicate that the various PAAm-graft-PLL comb-type copolymers with the defined length and density of the PLL-grafts are the potential prepolymers to investigate and to optimize the affinity of the multivalent ligands for receptors.  相似文献   

4.
The mouse pheromones (+/-)-2-sec-butyl-4,5-dihydrothiazole (SBT) and 6-hydroxy-6-methyl-3-heptanone (HMH) bind into an occluded hydrophobic cavity in the mouse major urinary protein (MUP-1). Although the ligands are structurally unrelated, in both cases binding is accompanied by formation of a similar buried, water-mediated hydrogen bond network between the ligand and several backbone and side chain groups on the protein. To investigate the energetic contribution of this hydrogen bond network to ligand binding, we have applied isothermal titration calorimetry to measure the binding thermodynamics using several MUP mutants and ligand analogs. Mutation of Tyr-120 to Phe, which disrupts a hydrogen bond from the phenolic hydroxyl group of Tyr-120 to one of the bound water molecules, results in a substantial loss of favorable binding enthalpy, which is partially compensated by a favorable change in binding entropy. A similar thermodynamic effect was observed when the hydrogen bonded nitrogen atom of the heterocyclic ligand was replaced by a methyne group. Several other modifications of the protein or ligand had smaller effects on the binding thermodynamics. The data provide supporting evidence for the role of the hydrogen bond network in stabilizing the complex.  相似文献   

5.
New lipophilic contrast agents, 1-[3'-(myristoyloxy)propyl]diethylenetriamine-1,4,7,7-tetraacetic acid (1MP-DTTA), 4-[3'-(myristoyloxy)propyl]diethylenetriamine-1,1,7,7-tetraacetic acid (4MP-DTTA), and 4-[3'-(myristoyloxy)propyl]-2,6-dioxodiethylenetriamine-1,1, 7, 7-tetraacetic acid (4MPD-DTTA), were prepared from either diethylenetriamine or 3-amino-1-propanol (overall yield 16-23%). Liposome-incorporated Gd complexes of ligands 1MP-DTTA, 4MP-DTTA, and 4MPD-DTTA were prepared by mixing GdCl3 and the prepared vesicles consisting of ligand, egg lecithin, and cholesterol (molar ratio 1.1:5.1) followed by further sonication, and their in vitro relaxivities were determined. The relaxivities of these agents were higher than those of the Gd3+ aquoion, Gd(EDTA), or Gd(DTPA) at both 0.23 and 0.47 T. Gd(4MPD-DTTA) displayed the highest relaxivities (24.0 +/- 0.4 and 34.7 +/- 0.4, at 0.23 and 0.47 T, respectively) among these new Gd complexes. The relaxivities of these three agents increased from the lower to the higher magnetic field, indicating a positive field dependence. Stability constants (log K) of Gd(1MP-DTTA), Gd(4MP-DTTA), and Gd(4MPD-DTTA) were found to be 18.2 +/- 0.2, 18.4 +/- 0.2, and 15.7 +/- 0.8, respectively. A lower limit of 0.3 mmol/kg was found for LD50 for these three agents.  相似文献   

6.
Carbosilane dendrimers periphery-functionalized with lactotriaose (GlcNAcbeta1-3Galbeta1-4Glc) with valencies of three, four, six, and twelve were prepared for use in a lectin-binding assay. A lactotriaose derivative was prepared from D-glucosamine and D-lactose derivatives. The N-Troc-protected glucosamine glycosyl donor and 3'-O-unprotected lactose glycosyl acceptor were condensed in the presence of silver trifluoromethanesulfonate and methylsulfenyl bromide to provide corresponding trisaccharide with new beta-1-3 linkages in 92% yield. The protection group of the trisaccharide was transformed into an acetyl group. The 4-pentenyl glycoside was prepared from the acetate via glycosyl bromide. The alkene was converted into acetyl sulfide by addition of thioacetic acid under radical conditions. The lactotriaose unit was linked with carbosilane dendrimers to afford acetyl-protected glycodendrimers. De-O-acetylation of the dendrimers was carried out in the presence of sodium methoxide and then aq NaOH to give the desired lactotriaose clusters using a carbosilane dendrimer backbone. Their biological activities toward WGA were evaluated by fluorescence methods. The binding constants of free lactotriaose and trivalent, tetravalent, hexavalent, and dodecavalent glycodendrimers to WGA were determined to be 1.1x10(3), 4.4x10(4), 5.1x10(4), 2.8x10(6), and 1.3x10(6) M-1, respectively. The hexavalent glycodendrimer showed a 2500-fold larger binding effect than that of free lactotriaose.  相似文献   

7.
A number on new cationic ligands have been designed and synthesized for the selective resolution an purification of the trypszin-like proteases. A series of ligands based on 4-[2′-methyl-4′-(2″,4″-dichloro-1″,3″,5″-triazin-6-ylamino) phenylazo]benzamidine were able to bind to trypsin and the trypsin-like proteases, thrombin and urokinase, but bound pancreatic kallikrein only weakly. Ligands possessing a second cationic group (either 4-aminophenyltrimethylammonium or 4-aminobenzamidine) substituted onto the triazine ring displayed higher affinities than the parent compound for trypsin in solution but bound the enzyme weakly or not at all after immobilization. In contrast, these bis-cationic ligands bound pancreatic kallikrein in solution ad following immobilization. The presence of the second cationic group was crucial, since its replacement by neutral or anionic groups led to loss of affinity for pancreatic kallikrein. One of the bis-cationic ligands was used to purify pancreatic kallikrein 9.5-fold from a crude pancreatic extract in 79% yield, to generate a product 99.9% free of contaminating trypsin activity.  相似文献   

8.
A new approach for covalent coupling diethylenetriaminepentaacetic acid (DTPA) molecules to a partially reduced monoclonal antibody utilizes a malemide modified copolymer of hydroxyethyl methylacrylate and methyl methacrylate (DTPA copolymer) prepared by the group transfer polymerization (GTP) method. An average of 6 DTPA molecules were incorporated per mol maleimeide DTPA copolymer and 1.5 mol maleimide DTPA copolymer per mol antibody. Maleimide DTPA copolymer modified antibody was intramolecularly cross-linked, reduced immunoactivity and had a high in vivo liver uptake.  相似文献   

9.
Novel bismuth(III) complexes 1-4 with the tridentate thiosemicarbazone ligand of 2N1S donor atoms [Hmtsc (L1); 2-acetylpyridine (4N-morpholyl thiosemicarbazone)], the pentadentate double-armed thiosemicarbazone ligand of 3N2S donor atoms [H2dmtsc (L3); 2,6-diacetylpyridine bis(4N-morpholyl thiosemicarbazone)] and the pentadentate double-armed semicarbazone ligand of 3N2O donor atoms [H2dasc (L4b); 2,6-diacetylpyridine bis(semicarbazone)], were prepared by reactions of bismuth(III) nitrate or bismuth(III) chloride and characterized by elemental analysis, thermogravimetric and differential thermal analysis (TG/DTA), FTIR and NMR (1H and 13C) spectroscopy. The crystal and molecular structures of complexes 1, 2a, 2b and 4b, and the "free" ligand L1 were determined by single-crystal X-ray structure analysis. The dimeric 7-coordinate bismuth(III) complex [Bi(dmtsc)(NO3)]2, 1, and the monomeric 7-coordinate complexes [Bi(Hdasc)(H2O)](NO3)2.H2O (major product), 2a, and [Bi(dasc)(H2O)]NO3.H2O (minor product), 2b, all with pentagonal bipyramidal bismuth(III) centers, are depicted with one electron pair (6s2) of the bismuth(III) atom, deprotonated forms of multidentate thiosemicarbazone or semicarbazone ligands, and monodentate NO3 or H2O ligands, respectively. These complexes are related to the positional isomers of one electron pair of the bismuth(III) atom; 1 has an electron pair positioned in the pentagonal plane (basal position), while 2a and 2b have an electron pair in the apical position. The monomeric 8-coordinate complex [Bi(mtsc)2(NO3)], 4b, which was obtained by slow evaporation in MeOH of the 1.5 hydrates 4a, was depicted with one electron pair of the bismuth(III) atom, two deprotonated mtsc- ligand and one nitrate ion. On the other hand, crystals of the complex "[Bi(mtsc)Cl2]", 3, prepared by a reaction of BiCl3 with L1 showed several polymorphs (3a, 3b, 3c and 3d) due to coordination and/or solvation of dimethyl sulfoxide (DMSO) used in the crystallization. Bismuth(III) complexes 1 and 4a showed selective and effective antibacterial activities against Gram-positive bacteria. The structure-activity relationship was discussed.  相似文献   

10.
Two novel tetracopper(I) and tetrasilver(I) complexes [Cu4(atdz)6](ClO4)4·2CH3OH (1) and [Ag4(atdz)6](ClO4)4 (2), have been prepared using 2-amino-1,3,4-thiadiazole (atdz), and their crystal structures and properties have been determined. On each tetranuclear complex, two Cu or Ag atoms (M) are bridged by two atdz ligands to form a six-membered N2M2N2 framework. The two N2M2N2 frameworks are in parallel linked by another atdz ligand to provide the tetranuclear structure with a rectangular M4 core. The four Cu or Ag atoms possess a trigonal-square geometry. The two adjacent MM separations are (3.096(1) and 3.412(1) Å) and (3.316(2) and 3.658(2) Å) for 1 and 2, respectively. On both tetranuclear complexes there are two species of hydrogen bonds between the ClO4 − anions and the NH2 group of atdz ligands. It is proposed that the hydrogen bonds are related to the stabilization of the tetranuclear structure during the crystallization process.  相似文献   

11.
Several chemically modified analogues to a tightly binding ligand for the second PDZ domain of MAGI-3 were synthesized and evaluated for their ability to compete with native peptide ligands. N-methyl scanning of the ligand backbone amides revealed the energetically important hydrogen bonds between the ligand backbone and the PDZ domain. Analogues to the ligand's conserved threonine/serine(-2) residue, involved in a side chain to side chain hydrogen bond with a conserved histidine in the PDZ domain, revealed that the interaction is highly sensitive to the steric structure around the hydroxyl group of this residue. Analogues of the ligand carboxy terminus revealed that the full hydrogen bond network of the GLGF loop is important in ligand binding.  相似文献   

12.
A series of reagents containing 3- or 4-nitrobenzamido ligands tethered to 9-aminoacridine via variable-length linkers have been prepared and their properties as photochemical DNA cleavers (photonucleases) examined. When irradiated with approximately 300-nm light, where the nitrobenzamido ligand can absorb, they cleave DNA in an oxygen-independent reaction presumably involving oxygen transfer from the nitro group to the deoxyribose units of the DNA backbone (Nielsen et al., 1988b). This reaction is pH independent and only slightly affected by the linker length, and the DNA fragments are not substrates for DNA polymerase. When approximately 420-nm light is used, were only the 9-aminoacridinyl ligands absorb, the DNA cleavage is also oxygen-independent but pH dependent, requires DNA saturation with the reagent (base pair:reagent less than or equal to 2), and is most efficient with the longer linkers. The cleavage is specific for guanine residues and results in 5'-phosphate termini and heterogeneous (more than four products) 3'-termini. One of the products is presumably 3'-hydroxy since DNA photocleaved with nitrobenzamido acridine reagents and 420-nm radiation are substrates for DNA polymerase in a nick translation assay as well as for the Klenow fragment. An electron-transfer mechanism is suggested.  相似文献   

13.
Previously we investigated the use of DTPA-coupled proteins to simplify labeling with 99mTc but especially to improve the stability of the label. These investigations have now been extended to include several N2S2 ligands such as N,N′-bis(2-methyl-2-mercaptopropyl)ethylenediamine (DADT) and a novel ligand of similar structure with a propylene bridge between two amines, 2-hydroxy-N,N′-bis(2-methyl-2-mercaptopropyl)propylenediamine (DADT-3C-2OH). The condition of labeling of free ligand (pH, buffer and tin concentration) was optimized to provide 100% chelation with 99mTc at reasonable ligand concentrations (100 μg/mL or less). Labeling was determined by paper chromatography, reverse-phase and size-exclusion HPLC. After incubation in fresh serum, 37 °C for 24 h, repeat analysis showed less than 5% dissociation of the chelate. By contrast, the DTPA chelate shows instability towards oxidation during this period. DADT derivatized on an ethylene carbon showed almost identical serum stability as DADT itself whereas when derivatized on a nitrogen greater instabilities were apparent. Using identical labeling conditions, free DADT was chelated in the presence of IgG at different ligand: protein molar ratios. Non-specific binding of 99mTc to IgG at a 10:1 DADT-HM:IgG molar ratio was as little as 5% and was essentially zero at a 2:1 DADT:IgG molar ratio when labeling was by transcomplexation from 99mTc-EDTA. The DADT-3C-2OH ligand showed superior performance both in regard to serum stability and the absence of non-specific binding. In conclusion, the N2S2 ligands form more stable chelates with 99mTc than does DTPA with reduced non-specific binding and may therefore represent an attractive alternative for labeling proteins with 99mTc by the bifunctional chelate approach.  相似文献   

14.
A group of four binuclear sulfur-bridged molybdenum-polycarboxylato complexes with homocitrate, citrate, cysteine, ethylenediaminetetraacetate ligands, respectively, have been synthesized and characterized. These complexes were prepared in order to study the interaction of Mo and homocitrate in the FeMo-co of nitrogenases. In the structures of K4(NH4)2[Mo2O2S2(C6H4O7)2].10H2O (2), (NH4)2[Mo2O2S2(C3H5SNO2)2].5H2O (3) and (NH4)2[Mo2O2S2(C10H12N2O8)].3.5H2O (4), molybdenum (V) atom adopts a distorted octahedral arrangement through a terminal oxygen atom, two bridging sulfur atoms and three atoms from the ligand (hydroxyl, alpha-, beta-carboxylates, sulfide or amine). The coordination mode of homocitrate ligand in K5(NH4)[Mo2O2S2(C7H5O7)2].3H2O.CH3OH (1) has been proposed in a tridentate fashion via its hydroxyl and a pair of carboxylate groups (alpha-, beta-carboxylates). The electrochemical properties of these complexes have been discussed.  相似文献   

15.
Abstract

The HIV-2 protease (PR2) is an important target for designing new drugs against the HIV-2 infection. In this study, we explored the structural backbone variability of all available PR2 structures complexed with various inhibitors using a structural alphabet approach. 77% of PR2 positions are structurally variable, meaning they exhibit different local conformations in PR2 structures. This variability was observed all along the structure, particularly in the elbow and flap regions. A part of these backbone changes observed between the 18 PR2 is induced by intrinsic flexibility, and ligand binding putatively induces others occurring in the binding pocket. These latter changes could be important for PR2 adaptation to diverse ligands and are accompanied by changes outside the binding pocket. In addition, the study of the link between structural variability of the pocket and PR2–ligand interactions allowed us to localize pocket regions important for ligand binding and catalytic function, regions important for ligand recognition that adjust their backbone in response to ligand binding and regions important for the pocket opening and closing that have large intrinsic flexibility. Finally, we suggested that differences in ligand effectiveness for PR2 could be partially explained by different backbone deformations induced by these ligands. To conclude, this study is the first characterization of the PR2 structural variability considering ligand diversity. It provides information about the recognition of PR2 to various ligands and its mechanisms to adapt its local conformation to bound ligands that could help understand the resistance of PR2 to its inhibitors, a major antiretroviral class.

Communicated by Ramaswamy H. Sarma  相似文献   

16.
Decorporation of Pu and Am by tetrameric catechoylamide (CAM) ligands has been investigated in beagles and mice. Eight dogs were injected intravenously (iv) with 237 + 239Pu(IV) + 241Am(III) citrate, and 30 min later, pairs of dogs were injected iv with 30 mumole/kg of 3,4,3-LICAM(C) [N1,N5,N10,N14-tetrakis(2,3-dihydroxy-5-sulfobenzoyl)tetr aazatetradecane, tetrasodium salt], 3,4,3-LICAM(S) [N1,N5,N10,N14-tetrakis(2,3-dihydroxy-4-carboxybenzoyl)te traazatetradecane, tetrasodium salt], CaNa3-DTPA, or each of the latter two ligands. Blood was sampled, and excreta were collected for 7 days, at which time the dogs were sacrificed and nuclide retention in liver and nonliver tissue was measured. Groups of five mice were each given 238Pu(IV) or 241Am(III) citrate iv; 3 min later 30 mumole/kg of a CAM ligand was injected intraperitoneally, mice were killed at 24 hr, and separated excreta and tissues were analyzed. In the dogs, average retention at 7 days of the injected Pu and Am, respectively, was as follows: 12 and 70% after treatment with a CAM ligand alone; 30 and 20% after DTPA; 12 and 20% after LICAM(S) plus DTPA; 90 and 89% without a ligand. In the mice, mean retention of the injected Pu and Am, respectively, was as follows: 14 and 66% after treatment with LICAM(C); 21 and 54% after LICAM(S); 91 and 87% without a ligand. In both species, about 99% of net Pu excretion (excretion with ligand - excretion without ligand) promoted in 24 hr by DTPA or LICAM(S) was in the urine, whereas about 10% of net Pu excretion promoted by the less hydrophilic LICAM(C) was in feces. Delayed excretion of both Am and Pu was significant in all ligand-treated dogs. Comparison of the nuclide content of tissues of ligand-treated mice with those of mice killed 3 min after nuclide injection indicated that the CAM ligands chelated circulating Pu and Am and prevented further deposition. In addition, the CAM ligands removed much of the presumably loosely bound Pu present in liver and skeleton at the time of ligand injection. LICAM(C) was more effective in removing Pu from liver and LICAM(S) was more effective in the skeleton. Moderate to severe uremia and histological evidence of cell killing in the distal tubules of the kidney were observed in the four dogs injected once with 30 mumole/kg of LICAM(S).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Multivalent interactions have been implicated in the binding of B-cell surface glycoprotein CD22 to its physiological ligands. Because CD22 can influence B-cell antigen receptor (BCR) signaling, multivalent ligands that cluster CD22 may influence B-cell responses. Here, we report an efficient synthesis of a fluorophore-labeled multivalent display of a CD22-binding trisaccharide, Neu5Acalpha2,6Galbeta1,4Glc, using the ring-opening metathesis polymerization (ROMP). Our synthetic strategy involves the modification of an N-hydroxysuccinimide (NHS) ester-substituted polymer generated by ROMP with the aminopropyl glycoside of the trisaccharide. The conjugation efficiency for the coupling is high; when 0.3 equiv of the trisaccharide derivative were used relative to NHS ester groups, the mole fraction (chi) of trisaccharide ligand incorporated onto the backbone was 0.3. A fluorescein-labeled version of the multivalent ligand binds to cells expressing CD22.  相似文献   

18.
The complex [Et4N][W(CO)5OMe] (1) has been prepared from the reaction of the photochemically generated W(CO)5THF adduct and [Et4N][OH] in methanol. Complex 1 was shown to undergo rapid CO dissociation in THF to quantitatively provide the dimeric dianion, [W(CO)4OMe]22−. The resulting THF insoluble salt [Et4N]2[W(CO)4OMe]2 (2) has been structurally characterized by X-ray crystallography, with the doubly bridging methoxide ligands being in an anti configuration. Complex 2 was found to subsequently react with excess methoxide ligand in a THF slurry to afford the face-sharing octahedron complex [Et4N]3[W2(CO)6(OMe)3] (3) which contains three doubly bridging methoxide groups. In the absence of excess methoxide ligand complex 2 cleanly yields the tetrameric complex [Et4N]4[W(CO)3OMe]4 (4) which has been structurally characterized as a cubane-like arrangement with triply bridging μ3-methoxide groups and W(CO)3 units. Although complex 3 was not characterized in the solid state, the closely related glycolate derivative [Et4N]3[W2(CO)6(OCH2CH2OH)3] (5) was synthesized and its structure determined by X-ray crystallography. The trianions of complex 5 are linked in the crystal lattice by strong intermolecular hydrogen bonds. Crystal data for 2: space group P21/n, a = 7.696(2), b = 22.019(4), c = 9.714(2) Å, β = 92.22(3)°, Z = 4, R = 6.43%. Crystal data for 4: space group Fddd, a = 12.433(9), b = 24.01(2), c = 39.29(3) Å, Z = 8, R = 8.13%. Crystal data for 5: space group P212121, a = 11.43(2), b = 12.91(1), c = 29.85(6) Å, Z = 8, R = 8.29%. Finally, the rate of CO ligand dissociation in the closely related aryloxide derivatives [Et4N][W(CO)5OR] (R = C6H5 and 3,5-F2C6H3) were measured to be 2.15 × 10−2 and 1.31 × 10−3 s−1, respectively, in THF solution at 5°C. Hence, the value of the rate constant of 2.15 × 10−2 s−1 establishes a lower limit for the first-order rate constant for CO loss in the W(CO)5OMe anion, since the methoxide ligand is a better π-donating group than phenoxide.  相似文献   

19.
A series of new platinum(II) complexes with diethyl (2-dqmp) and monoethyl (2-Hmqmp) 2-quinolylmethylphosphonates have been prepared and studied. Both organophosphorus ligands by reaction with [PtX(4)](2-) (X=Cl, Br) form either the molecular or ionic complexes depending on the acidity of the reaction solution. Dihalide adducts, trans-[PtL(2)X(2)] (L=2-dqmp, 2-Hmqmp), with N-bonded ligand through the quinoline nitrogen were obtained in the neutral medium, while under acidic conditions at pH<3 were isolated the ion-pair salt complexes, [LH](2)[PtX(4)], containing the protonated quinoline ligand as cation and tetrahaloplatinate complex as anion. In addition, 2-Hmqmp at pH approximately 3.5 forms quinolinium hexahalodiplatinum salt complexes, [2-H(2)mqmp](2)[Pt(2)X(6)], while the chelate complex, [Pt(2-mqmp)(2)].2H(2)O, with N,O-bonded ligand through the quinoline nitrogen and the deprotonated phosphonic acid oxygen was obtained at pH>6. The new complexes were characterized on the basis of elemental and thermogravimetric analyses, conductometric measurements, and by infrared and (1)H NMR spectral studies. As a preliminary assessment of their biological activity, complexes were evaluated for their in vitro cytostatic activity in an epidermoid human carcinoma (KB) and murine leukemia (L1210) cell lines. The results obtained were compared with those obtained for the corresponding Pd(II) complexes.  相似文献   

20.
A novel family of glycopolythiophenes containing sialic acid or mannose ligands were prepared and evaluated for their ability to bind lectins, virus, and bacteria. For the set of glycopolythiophenes studied, the spacer-length between the polymer backbone and the ligand was varied to optimize binding interactions. The glycopolymers were blue-shifted (absorbance of ca. 400 nm) relative to the corresponding homo-polythiophenes (absorbance ca. 440 nm), suggesting a twisted conformation for the glycopolymers. The altered conformation is likely due to electrostatic or H-bonding interactions between the polymer chains, arising from the carbohydrate ligand. Further conformational changes in the polythiophene backbone were detected by the binding of specific receptors; lectins (wheat germ agglutinin, concanavalin A), Influenza virus, and Escherichia coli. The binding interactions result in an unusual red-shift in the visible absorption of the polymer backbone, suggesting a lengthening of the effective conjugated length upon interaction of the ligand with its congnate receptor. These conjugated glycopolymeric systems offer a potentially new platform for the detection of molecular binding interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号