首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
LIDON  F.C.  RAMALHO  J.C.  BARREIRO  M.G.  LAURIANO  J.A. 《Photosynthetica》1998,34(1):151-156
Two weeks old maize (Zea mays L. cv. XL-72.3) plants were submitted to 0 to 81 g m-3 Al for 20 d in a growth medium of low ionic strength. The increasing Al concentrations sharply increased chlorophyll (Chl) concentrations. The rates of photosystem 2 activities (H2O→DCPIP and DPC→DCPIP) increased at 9 g(Al) m-3 but at higher Al doses they decreased again. A slight decrease of qE and qN coupled to an increase of qP was also observed until the 27 g m-3 Al. The Al-induced decline in cytochrome (cyt) b contents per Chl unit was parallel for the b559LP and cyt b559HP forms, but on a leaf area basis more or less opposite trend in both these cyt forms was observed. Increased Al concentrations also decreased carotene and zeaxanthin contents.  相似文献   

2.
Seedlings of winter rape were cultured in vitro on media containing 24-epibrassinolide, EBR (100 nM) and cadmium (300 µM). After 14 d of growth, fast fluorescence kinetics of chlorophyll (Chl) a and contents of photosynthetic pigments and Cd in cotyledons were measured. Cd was strongly accumulated but its content in cotyledons was 14.7 % smaller in the presence of EBR. Neither Cd nor EBR influenced the contents of Chl a and b and carotenoids. Cd lowered the specific energy fluxes per excited cross section (CS) of cotyledon. The number of active reaction centres (RC) of photosystem 2 (RC/CS) decreased by about 21.0 % and the transport of photosynthetic electrons (ET0/CS) by about 17.1 %. Simultaneously, under the influence of Cd, the activity of O2 evolving centres (OEC) diminished by about 19.5 % and energy dissipation (DI0/CS) increased by about 14.6 %. In the cotyledons of seedlings grown on media without Cd, EBR induced only a small increase in the activity of most photochemical reactions per CS. However, EBR strongly affected seedlings cultured with cadmium. Specific energy fluxes TR0/CS and ET0/CS of the cotyledons of plants Cd+EBR media were about 10.9 and 20.9 % higher, respectively, than values obtained for plants grown with Cd only. EBR also limited the increase of DI0/CS induced by Cd and simultaneously protected the complex of OEC against a decrease of activity. Hence EBR reduces the toxic effect of Cd on photochemical processes by diminishing the damage of photochemical RCs and OECs as well as maintaining efficient photosynthetic electron transport.  相似文献   

3.
D'Ambrosio  N.  Arena  C.  Virzo de Santo  A. 《Photosynthetica》2003,41(4):489-495
Gas exchange and fluorescence parameters were measured simultaneously in two Zea mays L. cultivars (Liri and 121C D8) to assess the relationship between the quantum yield of electron transport (PS2) and the quantum yield of CO2 assimilation (CO2) in response to photosynthetic photon flux density (PPFD). The cv. Liri was grown under controlled environmental conditions in a climate chamber (CC) while cv. 121C D8 was grown in CC as well as outdoors (OT). By exposing the two maize cultivars grown in CC to an increasing PPFD, higher photosynthetic and photochemical rates were evidenced in cv. Liri than in cv. 121C D8. In Liri plants the PS2/CO2 ratio increased progressively up to 27 with increasing PPFD. This suggests that the reductive power was more utilised in non-assimilatory processes than in CO2 assimilation at high PPFD. On the contrary, by exposing 121C D8 plants to increasing PPFD, PS2/CO2 was fairly constant (around 11–13), indicating that the electron transport rate was tightly down regulated by CO2 assimilation. Although no significant differences were found between PS2/CO2 of the 121C D8 maize grown under CC and OT by exposing them to high PPFD, the photosynthetic rate and photochemical rates were higher in OT maize plants.  相似文献   

4.
Response to Chilling of Zea mays, Tripsacum dactyloides and their Hybrid   总被引:5,自引:3,他引:2  
Maize (Zea mays ssp. mays) and eastern gamagrass (Tripsacum dactyloides) are known for their susceptibility to chilling injuries. Their hybrid (Z. mays × T. dactyloides) showed higher tolerance to low temperatures (–2 °C) in the field than its parents. Exposure to 5 °C for 2 or 3 d reduced the variable to maximal chlorophyll fluorescence ratio (FV/FM), an indicator of the maximum photochemical efficiency of the photosystem 2, and the variable to minimal fluorescence ratio (FV/F0) more in maize and eastern gamagrass than in hybrid plants. Chlorophyll contents for rewarming plants (25 °C for 3 d) were lower than before chilling in both parents while values for hybrid plants were similar. Electrolyte leakage was higher in chilled than control plants but it did not show significant differences among genotypes. Our data suggest that hybrid plants have higher capacity to recover from chilling injury in controlled conditions than their parents.  相似文献   

5.
Chlorophyll fluorescence quenching induced by low concentrations of m-dinitrobenzene (DNB) is investigated. In intact spinach chloroplasts DNB causes photochemical and non-photochemical quenching. The two forms of quenching are distinguished by applying the saturation pulse method with a new type of modulation fluorometer. Half-maximal photochemical quenching is observed at about 3 micromolar DNB. It is inhibited by 3-(3,4 dichlorophenyl)-1, 1-dimethylurea (DCMU) and by 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). Photochemical quenching by DNB leads to suppression of the I-P transient in a fluorescence induction curve. Upon application of saturating continuous light, the increase of fluorescence yield is separated into a photochemical and a thermal part. DNB causes suppression of only the slowest sub-component of the thermal part, in analogy to the action of Hill reagents. Simultaneous measurements of oxygen exchange rate and fluorescence reveal that a part of DNB induced quenching is accompanied by oxygen uptake. Most DNB-induced non-photochemical quenching is prevented by nigericin and, hence, can be considered energy-dependent quenching. The small component persisting in the presence of nigericin is identical to the one observed with methylviologen and other Hill reagents, likely to be due to static quenching by oxidized plastoquinone. The presented data confirm the original finding of Etienne and Lavergne (Biochim Biophys Acta 283: 268–278, 1972) that low concentrations of DNB selectively affect the thermal component of variable fluorescence. However, while these authors interpreted the quenching by a non-photochemical mechanism, the present investigation emphasizes a photochemical mechanism, in analogy to the effect of electron acceptors or mediators.Abbreviations DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1, 1-dimethylurea - DNB m-dinitrobenzene - PGA 3-phosphoglycerate - PMS phenazinemethosulphate - PS I and PS II photosystems I and II  相似文献   

6.
Pechová  R.  Kutík  J.  Holá  D.  Kočová  M.  Haisel  D.  Vičánková  A. 《Photosynthetica》2003,41(1):127-136
The effect of three different concentrations of amitrole (AM), a bleaching herbicide affecting carotenogenesis, on chloroplast ultrastructure, photosynthetic pigment contents, and photochemical activity was studied in two maize genotypes differing in photosynthetic characteristics. The content of photosynthetic pigments in leaves of plants treated with low (20 M) AM concentration was similar to control plants and no damaging effect of the herbicide on the ultrastructure of either mesophyll (MC) or bundle-sheath (BSC) cell chloroplasts was observed. Higher (60 and 120 M) concentrations of AM caused a significant decrease in the content of carotenoids (especially xanthophylls), which was followed by photooxidative destruction of chlorophylls and some alterations of chloroplast ultrastructure. MC chloroplasts appeared more sensitive to the damaging effect of AM compared to BSC chloroplasts. A significant decrease in the amount of both granal and intergranal thylakoids in MC chloroplasts was observed with the increasing concentration of AM. As regards BSC chloroplasts, rapid decrease in the volume density of starch inclusions was found in plants treated with higher concentrations of AM. When 120 M AM was used, both MC and BSC chloroplasts contained just a few thylakoid membranes that were strongly altered. The changes in the ultrastructure of MC chloroplasts were accompanied by the changes in their photochemical activity. The formation of chloroplast protrusions after treatment of plants with AM as well as in control plants was also observed.  相似文献   

7.
Restoration of electron flow and oxygen-evolution quantity of Mn-depleted photosystem 2 (PS2) was performed with using synthetic manganese complexes Mn(im)6Cl2, Mn(im)2Cl2, Mn(5-Clsalgy)2, and Mn(salgy)2 instead of original manganese cluster for reconstruction of electron transport and oxygen evolution.  相似文献   

8.
Sun and shade leaves of several plant species from a neotropical forest were exposed to excessive light to evaluate the responses of photosystem I in comparison to those of photosystem II. Potential photosystem I activity was determined by means of the maximum P700 absorbance change around 810 nm (ΔA810max) in saturating far-red light. Leaf absorbance changes in dependence of increasing far-red light fluence rates were used to calculate a ‘saturation constant’, Ks, representing the far-red irradiance at which half of the maximal absorbance change (ΔA810max/2) was reached in the steady state. Photosystem II efficiency was assessed by measuring the ratio of variable to maximum chlorophyll fluorescence, Fv/Fm, in dark-adapted leaf samples. Strong illumination caused a high degree of photo-inhibition of photosystem II in all leaves, particularly in shade leaves. Exposure to 1800–2000 μ mol photons m2 s1 for 75 min did not substantially affect the potential activity of photosystem I in all species tested, but caused a more than 40-fold increase of Ks in shade leaves, and a three-fold increase of Ks in sun leaves. The increase in Ks was reversible during recovery under low light, and the recovery process was much faster in sun than in shade leaves. The novel effect of high-light stress on the light saturation of P700 oxidation described here may represent a complex reversible mechanism within photosystem I that regulates light-energy dissipation and thus protects photosystem I from photo-oxidative damage. Moreover, we show that under high-light stress a high proportion of P700 accumulates in the oxidized state, P700+. Presumably, conversion of excitation energy to heat by this cation radical may efficiently contribute to photoprotection.  相似文献   

9.
Relationship between iron chlorosis and alkalinity in Zea mays   总被引:4,自引:0,他引:4  
Mengel, K. and Geurtzen, G. 1988. Relationship between iron chlorosis and alkalinity in Zea mays . - Physiol. Plant. 72: 460–465.
Maize ( Zea mays L. cv. Anjou 21) grown in nutrient solution with Fe-EDTA and with nitrate as the sole nitrogen source showed typical Fe-chlorosis symptoms after a growth period of 14–21 days. Alkalinity in roots, stems and leaves of the chlorotic plants was high. Transferring the chlorotic plants from the nitrate-containing nutrient solution to a solution of (NH4)2SO4 resulted in a regreening of leaves within 2–3 days which was associated with a decrease in solution pH, a decrease in alkalinity of plant parts, a translocation of Fe from roots to tops and a release of Fe into the outer solution. Similar effects were obtained when Fe chlorotic plants were transferred to a dilute HO solution with pH 3.5.
Spraying chlorotic leaves with indoleacetic acid or with fusicoccin led also to a regreening of leaves without having a major effect on leaf alkalinity.
Interpretation of the experimental results is based on the assumption that nitrate as sole N source leads to a high pH level in the apoplast resulting in the precipitation of Fe compounds, probably Fe oxide hydrate. Ammonium nutrition has the reverse effect since it lowers the apoplast pH and this can result in the dissolution of Fe compounds. Application of indoleacetic acid as well as fusicoccin supposedly stimulates the proton pumps in the plasmalemma of the leaf tissue. The resulting decrease in apoplast leaf pH in the microenvironment also leads to a dissolution of Fe compounds in the apoplast and thus promotes the uptake of Fe by the symplasm.  相似文献   

10.
Changes in chlorophyll fluorescence emission from maize ( Zea mays L. cv. Northern Belle) seedlings chilled at 1.5°C in the dark for 3–30 h were compared with the ability of plants to resume growth in the immediate post-chilling period and with the development of visible symptoms of injury to the leaves. During chilling, the maximal rate of increase of the induced chlorophyll fluorescence rise. FR, was measured on secondary leaf tissue. FR decreased exponentially, at approximately the same rate in plants grown and chilled in hydroponic pots, in leaves detached from similar plants and in plants that were removed from the hydroponic pots and laid on wet filter paper adjacent to the detached leaves. The half-fall time for FR in the 3 treatments was 7.8 ± 1.3 h, 8.6 ± 0.6 h and 8.8 ± 1.0 h, respectively. Following seedling removal from 1.5°C and return to 25/15°C, relative growth rates were determined from daily measurements of plant fresh weight gain. Compared with non-chilled seedlings, plants chilled for 3 h and longer showed depressed rates of growth. Inhibition of growth in the immediate post-chilling period (0–27 h) was linearly related to the duration of the chilling period and had a high positive correlation with the decrease in chlorophyll fluorescence (linearly related to log FR) sustained during the chilling exposure. Visible symptoms of chilling injury developed during the post-chilling period on seedlings chilled for longer than 3 h. The decrease in log FR during chilling was also linearly correlated with the severity of visual symptoms of chilling injury expressed in the post-chilling period. It is concluded that the extent of chilling injury in maize can be rapidly and non-destructively assessed from measurements of chlorophyll fluorescence.  相似文献   

11.
The relationship between susceptibility to photoinhibition, zeaxanthin formation and chlorophyll fluorescence quenching at suboptimal temperatures was studied in chilling-sensitive maize and in non-acclimated and cold-acclimated Oxyria digyna , a chilling-tolerant plant of arctic and alpine habitats. In maize, zeaxanthin formation was strongly suppressed by chilling. Zeaxanthin formed during preillumination at 20°C did not protect maize leaves from photoinhibition during a subsequent high-light, low-temperature treatment, as judged from the ratios of variable to maximal fluorescence, Fv/Fm. However, such preillumination significantly increased non-photochemical quenching (qN) at low temperatures, mainly due to an enhancement of the fast-relaxing qN component (i.e., of energy-dependent quenching. qE). In O. digyna , cold-acclimation resulted in an increased zeaxanthin formation in the temperature range of 2.5–20°C. Cold-acclimation substantially decreased the susceptibility towards photoinhibition at 4°C, but qN remained nearly unchanged between 2 and 38°C, as compared to control plants. Effects of cold acclimation on photosynthesis, photochemical quenching and quantum efficiency of photosystem II were small and indicated a slight amelioration only of the function of the photosynthetic apparatus at suboptimal temperatures (2–20°Ct. I) is concluded, that the xanthophyll cycle is strongly influenced by cold acclimation, while effects on the photosynthetic carbon assimilation only play a minor role in O. digyna.  相似文献   

12.
Two C4 plants, Miscanthus x giganteus and Cyperus longus L., were grown at suboptimal growth temperatures and the relationships between the quantum efficiencies of photosynthetic electron transport through photosystem II (PSII) (PSII operating efficiency; Fq'/Fm') and CO2 assimilation (phiCO2) in leaves were examined. When M. x giganteus was grown at 10 degrees C, the ratio of the PSII operating efficiency to phiCO2 increased relative to that found in leaves grown at 14 and 25 degrees C. Similar increases in the Fq'/Fm': phiCO2 occurred in the leaves of two C. longus ecotypes when the plants were grown at 17 degrees C, compared to 25 degrees C. These elevations of Fq'/Fm': phiCO2 at low growth temperatures were not attributable to the development of anthocyanins, as has been suggested for maize, and were indicative of the operation of an alternative sink to CO2 assimilation for photosynthetic reducing equivalents, possibly oxygen reduction via a Mehler reaction, which would act as a mechanism for protection of PSII from photoinactivation and damage. Furthermore, in M. x giganteus grown at 10 degrees C, further protection of PSII was effected by a 20-fold increase in zeaxanthin content in dark-adapted leaves, which was associated with much higher levels of non-photochemical quenching of excitation energy, compared to that observed in leaves grown at 14 and 25 degrees C. These differences may explain the long growing season and remarkable productivity of this C4 plant in cool climates, even in comparison to other C4 species such as C. longus, which occur naturally in such climates.  相似文献   

13.
Measurements of CO2 and O2 gas exchange and chlorophyll a fluorescence were used to test the hypothesis that elevated atmospheric CO2 inhibits nitrate (NO3) photo‐assimilation in the C4 plant, maize (Zea mays L.). The assimilatory quotient (AQ), the ratio of net CO2 assimilation to net O2 evolution, decreases as NO3 photo‐assimilation increases so that the difference in AQ between the ammonium‐ and nitrate‐fed plants (ΔAQ) provided an in planta estimate of NO3 photo‐assimilation. In fully expanded maize leaves, NO3 photo‐assimilation was detectable only under high light and was not affected by CO2 treatments. Furthermore, CO2 assimilation and O2 evolution were higher under NO3 than ammonia (NH4+) regardless of CO2 levels. In conclusion, NO3 photo‐assimilation in maize primarily occurred at high light when reducing equivalents were presumably not limiting. Nitrate photo‐assimilation enhanced C4 photosynthesis, and in contrast to C3 plants, elevated CO2 did not inhibit foliar NO3 photo‐assimilation.  相似文献   

14.
The introduction of a more efficient means of measuring leaf photosynthetic rates under field conditions may help to clarify the relationship between single leaf photosynthesis and crop growth rates of commercial maize hybrids. A large body of evidence suggests that gross photosynthesis (AG) of maize leaves can be accurately estimated from measurements of thylakoid electron transport rates (ETR) using chlorophyll fluorescence techniques. However, before this technique can be adopted, it will first be necessary to determine how the relationship between chlorophyll fluorescence and CO2 assimilation is affected by the non-steady state PPFD conditions which predominate in the field. Also, it must be determined if the relationship is stable across different maize genotypes, and across phenological stages. In the present work, the relationship between ETR and AG was examined in leaves of three maize hybrids by making simultaneous measurements of leaf gas exchange and chlorophyll fluorescence, both under controlled environment conditions and in the field. Under steady-state conditions, a linear relationship between ETR and AG was observed, although a slight deviation from linearity was apparent at low AG. This deviation may arise from an error in the assumption that respiration in illuminated leaves is equivalent to respiration in darkened leaves. The relationship between chlorophyll fluorescence and photosynthetic CO2 assimilation was not stable during fluctuations in incident PPFD. Since even minor (e.g. 20%) fluctuations in incident PPFD can produce sustained ( > 20 s) departures from the mean relationship between ETR and AG, chlorophyll fluorometry can only provide an accurate estimate of actual CO2 assimilation rates under relatively stable PPFD conditions. In the field, the mean value of ETR / AG during the early part of the season (4.70 ± 0.07) was very similar to that observed in indoor-grown plants in the vegetative stage (4.60 ± 0.09); however, ETR / AG increased significantly over the growing season, reaching 5.00 ± 0.09 by the late grain-filling stage. Differences in ETR / AG among the three genotypes examined were small (less than 1% of the mean) and not statistically significant, suggesting that chlorophyll fluorometry can be used as the basis of a fair comparison of leaf photosynthetic rates among different maize cultivars.  相似文献   

15.
The performance of the photosynthetic apparatus was examined in the third leaves of Zea mays L. seedlings grown at near-optimal (25 °C) or at suboptimal (15 °C) temperature by measuring chlorophyll (ChI) a fluorescence parameters and oxygen evolution in different temperature and light conditions. In leaf tissue grown at 25 and 15 °C, the quantum yield of PSII electron transport (ψPSII) and the rate of O2 evolution decreased with decreasing temperature (from 25 to 4 °C) at a photon flux density of 125 μmol m?2 s?1. In leaves grown at 25 °C, the decrease of ψPSII correlated with a decrease of photochemical ChI fluorescence quenching (qp), whereas in leaves crown at 15 °C qp was largely insensitive to the temperature decrease. Compared with leaves grown at 25 °C, leaves grown at 15 °C were also able to maintain a higher fraction of oxidized to reduced QA (greater qp) at high photon flux densities (up to 2000 μmol m?2 s?1), particularly when the measurements were performed at high temperature (25 °C). With decreasing temperature and/or increasing light intensity, leaves grown at 15 °C exhibited a substantial quenching of the dark level of fluorescence F0 (q0) whereas this type of quenching was virtually absent in leaves grown at 25 °C. Furthermore, leaves grown at 15 °C were able to recover faster from photo inhibition of photosynthesis after a photoinhibitory treatment (1200 μmol m?2 s?1 at 25, 15 or 6 °C for 8 h) than leaves grown at 25 °C. The results suggest that, in spite of having a low photosynthetic capacity, Z. mays leaves grown at sub optimal temperature possess efficient mechanisms of energy dissipation which enable them to cope better with photoinhibition than leaves grown at near-optimal temperature. It is suggested that the resistance of Z. mays leaves grown at 15 °C to photoinhibition is related to the higher content of carotenoids of the xanthophyll cycle (violaxanthin + antheraxanthin + zeaxanthin) measured in these leaves than in leaves grown at 25 °C.  相似文献   

16.
The effects of Cr and Co supplied either individually or mixed together in the nutrient solution on seed germination, enzyme activities, photosynthesis, metabolic products, and yield were investigated. Cr and Co reduced germination percentage only at the highest concentration used but markedly decreased radicle growth which might be attributed to depressive effect of Cr and Co on the activity of amylases and subsequent transport of sugars to the embryo axes. Protease activity, on the other hand, increased with the metal treatment. The highest concentration (10–2 M) tested of both metals was harmful on plant growth, while the low and moderate concentrations (10–6 and 10–4 M) enhanced the contents of chlorophylls and sugars, and activity of Hill reaction. Fresh mass of the produced pods increased at low and moderate concentrations of Cr and at Cr+Co treatment, but decreased in plants treated with Co.  相似文献   

17.
Holá  D.  Langrová  K.  Kočová  M.  Rothová  O. 《Photosynthetica》2003,41(3):429-442
The activity of photosystems (PS) 1 and 2, together with the content and ratio of photosynthetic pigments, were measured in three inbred lines and two F1 hybrids of maize (Zea mays L.), grown in either optimum or low temperature (LT) conditions. The ability of chilling-stressed plants to deal with the negative effects of long-term exposure to LT and to recover the efficiency of photosynthetic apparatus after their return to optimum temperatures was examined during spring and autumn seasons. The aim was to analyse the possible differences between the rapid and gradual onset of LT on the response of young maize plants to chilling stress. The distinctive superiority of hybrids over their parental lines, found during the exposure of maize plants to LT, was not always retained after the return of chilling-stressed plants to optimum growth conditions. The response of individual genotypes to chilling stress, as well as their ability to recover the photosynthetic efficiency from the cold-induced damage, strongly depended also on the duration and the rapidity of the onset of LT.  相似文献   

18.
Inhibition of electron transport and damage to the protein subunits by visible light has been studied in isolated reaction centers of the non-sulfur purple bacterium Rhodobacter sphaeroides. Illumination by 1100 μEm−2 s−1 light induced only a slight effect in wild type, carotenoid containing 2.4.1. reaction centers. In contrast, illumination of reaction centers isolated from the carotenoidless R26 strain resulted in the inhibition of charge separation as detected by the loss of the initial amplitude of absorbance change at 430 nm arising from the P+QB → PQB recombination. In addition to this effect, the L, M and H protein subunits of the R26 reaction center were damaged as shown by their loss on Coomassie stained gels, which was however not accompanied by specific degradation products. Both the loss of photochemical activity and of protein subunits were suppressed in the absence of oxygen. By applying EPR spin trapping with 2,2,6,6-tetramethylpiperidine we could detect light-induced generation of singlet oxygen in the R26, but not in the 2.4.1. reaction centers. Moreover, artificial generation of singlet oxygen, also led to the loss of the L, M and H subunits. Our results provide evidence for the common hypothesis that strong illumination by visible light damages the carotenoidless reaction center via formation of singlet oxygen. This mechanism most likely proceeds through the interaction of the triplet state of reaction center chlorophyll with the ground state triplet oxygen in a similar way as occurs in Photosystem II. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
20.
Holá  D.  Kočová  M.  Körnerová  M.  Sofrová  D.  Sopko  B. 《Photosynthetica》1999,36(1-2):187-197
Photochemical activity of isolated mesophyll chloroplasts was measured as Hill reaction activity (HRA) and photosystem 1 (PS1) activity in three diallel crosses of maize (Zea mays L.) inbred lines and F1 hybrids. Statistically significant differences between genotypes together with positive heterotic effect in F1 generation were found for both traits studied. These differences were more pronounced when HRA or PS1 activity was expressed per leaf area unit or dry matter unit compared to the expression per chlorophyll content unit. Analysis of variance showed that both the genetic and non-genetic components of variation in the photochemical activity of isolated mesophyll chloroplasts are present in all three diallel crosses examined. The positive heterosis in F1 hybrids probably arises from non-additive genetic effects of a positive dominance type. Additive genetic effects were also statistically highly significant. We found no differences between reciprocal crosses. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号