首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The antigen receptor molecules on human T lymphocytes are noncovalently associated on the cell surface with the CD3 (T3) molecular complex. Perturbation of this complex with anti-CD3 monoclonal antibodies induces T cell activation. Previous studies have demonstrated that this process requires the participation of monocytes. In the present report, we demonstrate that purified, resting (G0 phase) T cells incubated with monoclonal anti-CD3 antibodies proliferate in response to purified interleukin 2 (IL 2), in a lymphokine dose-dependent fashion. Anti-CD3 antibody or IL 2 alone did not trigger cell division. The effect was specific for anti-CD3 antibodies because monoclonal antibodies reactive with other surface molecules (OKT4, OKT8, L368) were inactive. Furthermore, the same phenomenon was observed when anti-CD3 antibody Leu-4 (IgG1) was incubated with cells of individuals whose monocytes cannot process antibodies of the IgG1 subclass (Leu-4 nonresponders). In addition, both F(ab')2 and Fab fragments of anti-CD3 antibody OKT3 were also capable of rendering T cells receptive to the IL 2 growth signal. These data indicate that neither monocytes nor CD3 receptor cross-linking are required absolutely for resting T cell activation, provided that IL 2 is supplied exogenously. T lymphocytes treated with anti-CD3 antibodies proliferated in response to both purified mitogen-induced and recombinant IL 2. Antibodies to the IL 2 receptor (anti-Tac) inhibited the proliferation. Thus, the most likely mechanism for anti-CD3 antibody-mediated triggering is induction of IL 2 receptors.  相似文献   

2.
We have studied the relationship of valency of CD3 stimulation and modulation of the CD3 receptor complex with biochemical and proliferative responses of T cells. Anti-CD3 Fab, as well as F(ab')2 and whole antibody caused rapid modulation of the CD3 antigen, whereas anti-CD3 conjugated to Sepharose did not. In the absence of monocytes, T cells stimulated with anti-CD3 Fab, F(ab')2, or F(ab')2-Sepharose showed differences in their ability to respond to second signals given by PMA, IL 1, IL 2, or antibodies to Tp67 and Tp44. None of the anti-CD3 signals alone caused resting T cells to produce IL 2, and only the Sepharose-bound anti-CD3 F(ab')2 caused T cells to express high levels of functional IL 2 receptors. Anti-CD3 F(ab')2-Sepharose-stimulated T cells produced IL 2 and proliferated in response to each of the second signals. Because anti-CD3-Sepharose did not cause modulation of the CD3 antigen, the ability of the Sepharose-bound antibody to induce T cells to express IL 2 receptors and to respond to individual second signals may be related to lack of modulation rather than valency of binding. Anti-CD3 Fab-stimulated T cells responded to PMA but required combinations of other second signals. T cells stimulated with unmodified anti-CD3 antibody or F(ab')2 fragments responded to PMA but did not respond to any other second signals alone or in combination. Stimulations that resulted in modulation (i.e., anti-CD3 whole antibody, anti-CD3 F(ab')2, or anti-CD3 Fab fragments) caused an increase in cytoplasmic calcium levels in resting T cells but blocked proliferation of T cells in response to mitogenic lectins or CD2 stimulation. Anti-CD3 F(ab')2 on Sepharose, however, did not block T cell proliferation. Whole bivalent anti-CD3 antibody or F(ab')2 fragments, but not monovalent Fab fragments, caused a rapid translation of protein kinase C activity from cytosol to membrane in the Jurkat T cell line. Because all of these modulate the receptor, these data indicate that the functional difference between monovalent and bivalent binding to CD3 is related to antibody valency and not to antigenic modulation. The use of Fab anti-CD3 stimulation that requires combinations of second signals for proliferation allowed an analysis of the functional relationships between IL 1, anti-Tp67, and anti-Tp44.  相似文献   

3.
The murine CD4- CD8- (double negative, DN) thymocyte cell line and clones expressing T cell receptor gamma delta chains in association with CD3 complex have been established and characterized. This line and a representative clone (DN7.12.11) which appear to derive from the minor population of CD3+ DN thymocytes can be stimulated to proliferate and to produce lymphokines by anti-CD3 or anti-Thy-1 antibodies or calcium ionophore plus phorbol ester. Autocrine proliferation is dependent on binding of interleukin (IL)2 to functional IL2 receptor. Upon stimulation, these cells produce IL2 and IFN-gamma but not IL4, resembling conventional CD4+ TH1 cells in this regard. The cloned line also mediates spontaneous cytolysis against a variety of tumor targets without regard for the presence of conventional major histocompatibility complex molecules on the target cell surface. Blocking and modulation experiments suggest that target recognition by the gamma delta/CD3 complex is not involved in the spontaneous lysis, resembling natural killer (NK) cells. The results suggest that gamma delta +DN T cells are able to have mature functions such as NK-like cytotoxicity and lymphokine secretion as peripheral gamma delta +T cells. They also provide a possible role of gamma delta + DN thymocytes in establishing a intrathymic environment for differentiation and selection of alpha beta-expressing T cells.  相似文献   

4.
T cell activation may be triggered either through the T3-Ti antigen receptor complex or via an alternative macrophage-independent pathway involving the 50KD T11 sheep erythrocyte-binding glycoprotein. Monoclonal antibodies anti-T11(2) and anti-T11(3), directed at distinct epitopes of the T11 molecule, trigger mature T cells to proliferate and express their functional programs, and induce expression of IL 2 receptors on both T3+ and T3- thymocytes. We now show that a non-mitogenic anti-T3 antibody blocks activation via the T11 pathway of not only peripheral blood T cells, but also T3+ thymocytes. Anti-T3 does not affect surface expression of T11 or the rapid augmentation of T11(3) expression after incubation of cells with anti-T11(2). However, anti-T3 inhibits generation of IL 2 receptors and production of IL 2 by T lineage cells cultured with anti-T11(2) plus anti-T11(3). In contrast, modulation of the T11 molecule by a non-mitogenic anti-T11 antibody does not inhibit activation of T cells by a mitogenic anti-T3 antibody. The ability of anti-T3 to block expression of IL 2 receptors on both thymocytes and mature T cells activated by the T11 pathway suggests that a regulatory interaction may be important during T cell ontogeny to provide a mechanism for inhibiting expansion of autoreactive clones.  相似文献   

5.
The signal requirements for activation and proliferation of CD1+ thymocytes have been studied in order to define whether this immature cell population could function as mature T cells do. We found that CD1+ cells expressed high levels of CD25 antigen upon triggering with specific monoclonal antibodies (mAbs) (anti-CD3, anti-CD2, anti-CD28) in association with low doses of Phorbol-13-myristate-12-acetate (PMA). More interestingly, we described that in the presence of PMA CD1+ thymocytes proliferate upon stimulation with anti-CD28 mAb as well as with a pair of anti-CD2 mAbs, without the need of exogenous interleukin-2 (IL2), whereas they respond to anti-CD3 mAb only if exogenous IL2 was provided. Furthermore, CD1+ cells stimulated under optimal proliferative conditions, gave rise to cell populations capable of lysing natural killer (NK)-sensitive (K562) and NK-resistant (MEL 10, Daudi, EPA1) tumor target cells. These data strongly support the idea that CD1+ thymocytes, under appropriate stimulations, display some of the functional capabilities of mature T cells.  相似文献   

6.
We have investigated the role of the CD2 and the CD28 Ag-independent pathways of activation on CD3low thymocytes. We previously showed that anti-CD28 mAb synergized with anti-CD2 mAb directed against epitopes T11.1 and T11.2, in the activation of purified resting T cells or unseparated thymocytes. Proliferation induced via CD2 plus CD28 was mediated via an IL-2-dependent pathway and was not affected by prior modulation of the CD3-TCR complex. Here, we show that a subset of CD3low thymocytes, although unresponsive to CD3 activation, can be activated to proliferate through the CD2 or the CD28 pathways, in the presence of exogenous IL-2. The mitogenic combination of mAb to CD2 and CD28 induces a proliferation of thymocytes which, in absence of exogenous lymphokines, is restricted to the more mature intrathymic subpopulation, CD1a-. However, CD3low thymocytes can also be triggered through the CD2 plus CD28 activation pathways but require at least addition of exogenous IL-2 to proliferate. This study demonstrates that a fraction of immature CD3low thymocytes possesses functional CD2 and CD28 surface molecules at a time when CD3 is not yet functional.  相似文献   

7.
Some thymocytes, upon activation via the TCR complex in vitro, undergo apoptotic cell death. In this report, we examine the cell death induced in the thymus after administration of anti-CD3 or anti-TCR antibodies. We found that shortly after antibody injection, cortical thymocytes undergo apoptosis as characterized by morphologic changes and DNA fragmentation. Anti-CD3 administration led to depletion of nearly all CD4+CD8+ thymocytes, and approximately 50% of CD4+CD8- thymocytes. This depletion predominantly affected cells bearing low levels of CD3, although some depletion also occurred among cells expressing intermediate and high levels. Administration of an anti-TCR antibody also induced apoptosis, but affected significantly fewer thymocytes than anti-CD3. This effect was probably not due to different binding affinities for the two antibodies, because both antibodies show similar dose response effects in an in vitro model of activation-induced apoptosis. This work demonstrates that findings on activation-induced apoptosis in vitro can be extended to the in vivo situation, and further, that the activation of cortical thymocytes, in situ, results in apoptosis and removal of the activated cells. The possible relationships between this activation-induced cell death in immature thymocytes and the process of negative selection of autoreactive T cells is discussed.  相似文献   

8.
The mitogenic activity of anti-CD3 mouse monoclonal antibodies (mAb) in cultures of human peripheral blood mononuclear cells (PBMC) depends on the ability of the mAb to interact with CD3 molecules on the T cells, and with Fc receptors (FcR) on monocytes. Two types of FcR with distinct specificity for murine (m) IgG subclasses are involved: a 72-kDa receptor (FcRI) binds mIgG2a and a 40-kDa receptor (FcRII) binds mIgG1. In this study we examined the mitogenic activity of mIgG3 anti-CD3 mAb RIV9. In cultures of human PBMC, the mAb induced T cell proliferation and interleukin 2 production. We found that subjects, unresponsive to mIgG2a anti-CD3 (e.g., OKT3), were also RIV9 nonresponders. In contrast, nonresponders to mIgG1 anti-CD3 (e.g., anti-Leu4) had a normal response to RIV9. Our results therefore suggested that anti-CD3 mAb of the mIgG2a and mIgG3 subclass bind to the same monocytic FcR. Human monomeric IgG, which has been shown to bind to FcRI only, blocked T cell proliferation induced by mIgG2a and mIgG3 anti-CD3, but had no effect on T cell proliferation induced by mIgG1 anti-CD3. In contrast, a mAb (IV.3) to FcRII, which blocks ligand binding of the receptor, blocked the mitogenic activity of mIgG1 anti-CD3 antibodies, but had no effect on T cell proliferation induced by mIgG3 anti-CD3 or by mIgG2a anti-CD3. Binding of RIV9 to FcR of responder monocytes could be demonstrated in immunofluorescence. Monocytes from the RIV9 nonresponder subjects however were unable to bind the Fc portion of this antibody. The binding of fluorescein (FITC)-conjugated mIgG3 or FITC-conjugated mIgG2a to responder monocytes could be inhibited by human monomeric IgG and by mIgG2a and mIgG3, but not by the mAb to FcRII. The results demonstrate that mIgG3 binds to FcRI on human monocytes and that this binding is needed for the mitogenic activity of mIgG3 anti-CD3.  相似文献   

9.
T lymphocyte activation with monoclonal antibodies directed against the CD2 (T,p50) sheep red blood cell receptor antigen and against CD3 (T,p19,29) has been investigated. Co-stimulation of purified T lymphocytes with anti-CD3 (SP34) and anti-CD2 (9-1), which detects a unique epitope on the CD2 molecule, results in T cell activation and cell proliferation. Each antibody alone is unable to mediate this effect. Co-stimulation of purified T cells with two different anti-CD2 antibodies, 9-1 and 9.6, which detect two different epitopes on the CD2 molecule, are also mitogenic. In contrast, the combination of anti-CD3 (SP34) and anti-CD2 (9.6) cannot induce T cell activation. These data suggest that the CD2 epitope defined by the 9-1 antibody is functionally important for T cell activation via the CD3/Ti complex. Furthermore, it is demonstrated that anti-CD3 (SP34) induces epitopic modulation of the CD2 molecule, resulting in enhanced expression of the CD2, 9-1 epitope. This epitope modulation of the CD2 (9-1) epitope by anti-CD3 (SP34) occurs instantaneously at 4 degrees C and in the presence of NaN3. The functional interaction between CD3 and CD2 occurs in spite of any evidence of complex formation between these two molecules. These data suggest that the T cell differentiation antigens CD3 and CD2 are jointly involved in antigen-specific T cell activation. The data are consistent with a model for antigen-specific T cell activation involving both the CD3/Ti complex and subsequent activation of the CD2 complex T cell activation by co-stimulation with anti-CD3 (SP34) and anti-CD2 (9-1) is substantially enhanced by the addition of exogenous, purified interleukin 1 (IL 1). These data would suggest that the CD2 complex, as well as the putative IL 1 receptor, are involved in separate and complementary receptor-ligand interactions, resulting in the amplification of antigen-specific T cell responses.  相似文献   

10.
The mitogenic activity of human T-cell leukemia virus type I (HTLV-I) is triggering the proliferation of human resting T lymphocytes through the induction of the interleukin-2 (IL-2)/IL-2 receptor autocrine loop. This HTLV-I-induced proliferation was found to be mainly mediated by the CD2 T-cell antigen, which is first expressed on double-negative lymphoid precursors after colonization of the thymus. Thus, immature thymocytes express the CD2 antigen before that of the CD3-TCR complex. We therefore investigated the responsiveness of these CD2+CD3- immature thymocytes and compared it with that of unseparated thymocytes, containing a majority of the CD2+CD3+ mature thymocytes, and that of the CD2-CD3- prothymocytes. Both immature and unseparated thymocytes were incorporating [3H]thymidine in response to the virus, provided that they were cultivated in the presence of submitogenic doses of phytohemagglutinin. In contrast, the prothymocytes did not proliferate. Downmodulation of the CD2 molecule by incubating unseparated and immature thymocytes with a single anti-CD2 monoclonal antibody inhibited the proliferative response to HTLV-I. These results clearly underline that the expression of the CD2 molecule is exclusively required in mediating the proliferative response to the synergistic effect of phytohemagglutinin and HTLV-I. Immature thymocytes treated with a pair of anti-CD2 monoclonal antibodies were shown to proliferate in response to HTLV-I, even in the absence of exogenous IL-2. We further verified that the proliferation of human thymocytes is consecutive to the expression of IL-2 receptors and the synthesis of IL-2. These observations provide evidence that the mitogenic stimulus delivered by HTLV-I is more efficient than that provided by other conventional mitogenic stimuli, which are unable to trigger the synthesis of endogenous IL-2. Collectively, these results show that the mitogenic activity of HTLV-I is able to trigger the proliferation of cells which are at an early stage of T-cell development. They might therefore represent target cells in which HTLV-I infection could favor the initiation of the multistep lymphoproliferative process leading to adult T-cell leukemia.  相似文献   

11.
The majority of peripheral CD4+ T lymphocytes proliferate in vitro in response to anti-CD3 in presence of autologous APC. The present study describes a subpopulation of CD4+ T cells that cannot be activated and progress into cell cycle by stimulation with anti-CD3 plus APC or with mitogenic combinations of anti-CD2. The in vitro responses of these anti-CD3-unresponsive CD4+ T cells were investigated with a panel of mAb to CD2, CD3, and CD28, and found to be similar to those previously observed for mature thymocytes: only the combination of anti-CD2 plus anti-CD28 produced cell proliferation. Anti-CD3-unresponsive T cells were CD45RA+, but represented only 14 to 22% of the CD4+, CD45RA+ T cell population. Activation with anti-CD2 plus anti-CD28 mAb resulted in major changes in the cell surface phenotype and functional properties: a loss of CD45RA+ occurred and an increased expression of CD45RO, CD29, and CD58 (LFA3), as well as a gain in responsiveness to anti-CD3 and anti-CD2. This change in CD45 phenotype from CD45RA to CD45RO occurs in both the anti-CD3-responsive and in the anti-CD3-unresponsive subsets of the CD45RA+, CD4+ cells after cell proliferation. The anti-CD3-unresponsive subset may represent a pool of not yet fully differentiated peripheral T cells. The acquisition of anti-CD3 responsiveness could occur as a consequence of Ag priming or by an Ag-independent mechanism. Involvement of the CD28 Ag in this process is suggested from the present study.  相似文献   

12.
T cells can be activated to proliferate by antibodies to the T cell antigen receptor or the molecularly associated CD3 complex if monocytes are present. We have shown previously that monoclonal antibodies to the human T cell differentiation antigens CD5 (Tp67) and Tp44 each augment and prolong proliferative responses of anti-CD3-activated T cells, even in the absence of monocytes. Here we show that the functional and biochemical mechanisms of CD5 and Tp44 signal transmission are distinct. T cell proliferation is suppressed by agents that increase the concentration of intracellular cAMP. We found that antibody binding to the Tp44 surface molecule overcomes this suppression, whereas antibody binding to CD5 does not, indicating that ligand-Tp44 interaction changes T cell sensitivity to cAMP-mediated growth inhibition. The ability of anti-CD3, anti-Tp44, and anti-CD5 monoclonal antibodies to directly alter cyclic nucleotide levels in the Jurkat T cell line was examined. Anti-CD3 alone caused a rapid four- to sixfold increase in cAMP levels, but did not affect cGMP levels. However, anti-Tp44 and anti-CD5 each caused a rapid three- to fourfold increase in cGMP levels without affecting cAMP levels. In other experiments, cytoplasmic free calcium levels were measured in resting T cells after CD5 or Tp44 stimulation by using the dye indo-1 and flow cytometry. This sensitive method showed that anti-CD5 alone caused an increase in cytoplasmic calcium free levels within 3 min of antibody addition, whereas anti-Tp44 had no effect. Finally, anti-Tp44 and IL 1 each augmented proliferation of phorbol ester-stimulated lymphocytes, whereas anti-CD5 did not. The effects of IL 1 and Tp44 could be further distinguished in that the effect of anti-Tp44 was resistant to inhibition by dBcAMP whereas IL 1 was not. These data suggest that the receptor function of both Tp44 and CD5 involves changes in cyclic nucleotides levels, and that the mechanism by which anti-Tp44 and anti-CD5 antibodies affect T cell proliferative responses may be related to their selective effects on cGMP levels and cytoplasmic calcium concentrations.  相似文献   

13.
Regulation of human T lymphocyte mitogenesis by antibodies to CD3   总被引:3,自引:0,他引:3  
The inhibitory and mitogenic effects of anti-CD3 antibodies (anti-CD3) were examined in cultures of human peripheral blood T cells. Resting T cells required the presence of accessory cells (AC) or phorbol myristate acetate (PMA) to be stimulated by soluble anti-CD3 (OKT3 and 64.1). Anti-CD3 was unable to induce activation of AC-depleted T cells as determined by IL 2 receptor expression, IL 2 production, cell cycle analysis, or detectable DNA synthesis. Although T cell responses to PHA also required AC, far fewer were necessary to generate responses. Anti-CD3 inhibited PHA-stimulated T cell IL 2 production, IL 2 receptor expression and proliferation in partially AC-depleted cultures. Moreover, anti-CD3 was able to inhibit PHA responses when added to culture as late as 24 to 42 hr after the initiation of a 96-hr incubation. Increasing concentrations of PHA reduced the inhibitory effect of anti-CD3 on PHA-stimulated T cell proliferation, whereas IL 2 production remained suppressed. Anti-CD3 linked to Sepharose beads effectively inhibited PHA-stimulated T cell DNA synthesis, indicating that internalization of the CD3 molecule was not required for inhibition of PHA responses. Although inhibition of IL 2 production was a major effect of anti-CD3 in PHA-stimulated cultures, it was not the only apparent inhibitory effect because the addition of exogenous IL 2 could not prevent inhibition completely. Intact AC but not IL 1 also reduced anti-CD3-mediated inhibition of PHA responsiveness, whereas the addition of both IL 2 and AC largely prevented inhibition. Thus, anti-CD3 in the absence of adequate AC signals exerted a number of distinct inhibitory effects on mitogen-induced T cell activation. These results suggest that the CD3 molecular complex may play a role in regulating T cell responsiveness after engagement of the T cell receptor by a number of mechanisms, some of which involve inhibition of IL 2 production.  相似文献   

14.
The CD44 inhibitor Lutheran [In(Lu)]-related p80 molecule has recently been shown to be identical to the Hermes-1 lymphocyte homing receptor and to the human Pgp-1 molecule. We have determined the effect of addition of CD44 antibodies to in vitro activation assays of PBMC. CD44 antibodies did not induce PBMC proliferation alone, but markedly enhanced PBMC proliferation induced by a mitogenic CD2 antibody pair or by CD3 antibody. CD44 antibody addition had no effect upon PBMC activation induced by PHA or tetanus toxoid. CD44 antibody enhancement of CD2 antibody-induced T cell activation was specific for mature T cells as thymocytes could not be activated in the presence of combinations of CD2 and CD44 antibodies. CD44 antibody enhancement of CD2-mediated T cell triggering occurred if CD44 antibody was placed either on monocytes or on T cells. In experiments with purified monocyte and T cell suspensions, CD44 antibodies A3D8 and A1G3 augmented CD2-mediated T cell activation by three mechanisms. First, CD44 antibody binding to monocytes induced monocyte IL-1 release, second, CD44 antibodies enhanced the adhesion of T cells and monocytes in CD2 antibody-stimulated cultures, and third, CD44 antibodies augmented T cell IL-2 production in response to CD2 antibodies. Thus, ligand binding to CD44 molecules on T cells and monocytes may regulate numerous events on both cell types that are important for T cell activation. Given that recent data suggest that the CD44 molecule may bind to specific ligands on endothelial cells (vascular addressin) and within the extracellular matrix (collagen, fibronectin), these data raise the possibility that binding of T cells to endothelial cells or extracellular matrix proteins may induce or up-regulate T cell activation in inflammatory sites.  相似文献   

15.
CD4-, CD8- thymocytes were purified from thymi obtained from normal C57BL/6 mice. By flow cytometry analysis, 5 to 10% of these double negative (DN) thymocytes were found to express NK1.1 on their surface. The NK1.1+ DN thymocytes were demonstrated, by two-color fluorescence, to be CD3lo, CD5hi, CD44hi, J11d-, B220-, MEL 14-, IL2R- with 60% expressing TCR-V beta 8 as determined by the mAb F23.1. In contrast, splenic and peripheral blood NK cells were NK1.1+, CD3-, CD5-, TCR-V beta 8- with 40 to 60% being MEL 14+. Unlike peripheral NK cells, fresh DN thymocytes enriched for NK1.1+ cells were unable to kill YAC-1, the classical murine NK cell target. However, these cells were able to mediate anti-CD3 redirected lysis even when they were assayed immediately after purification, i.e., with no culture or stimulation. These data demonstrate that adult murine thymocytes contain NK1.1+ cells which are distinct, both by function and phenotype, from peripheral NK cells. These data also raise the issue of a possible NK/T bipotential progenitor cell.  相似文献   

16.
Activation of human peripheral blood T cells by the anti-CD3 antibody OKT3 has been shown to require not only cross-linking of CD3 molecules with multimeric binding of the Fc part of OKT3 to a solid support, but also a second accessory cell-provided signal. Accordingly, measurement of T cell activation in cultures of highly enriched T cells with solid-phase-bound OKT3 can be used to investigate whether other agents can replace accessory cells. In this study we examined the capacity of anti-CD5 monoclonal antibodies to provide the additional activation signal. Resting T cells were prepared by isolating E rosette-positive cells, by removing OKM1(+) and HLA-DR(+) cells by panning, and by subsequent treatment of the cells with L-leucine methyl ester to kill remaining monocytes. These T cells were unresponsive to phytohemagglutinin (PHA) or to solid-phase-bound OKT3. However, when cultured in the presence of an anti-CD5 monoclonal antibody (anti-Leu-1, OKT1, or anti-T1), a proliferative response to solid-phase-bound OKT3 (but not to soluble OKT3 or to PHA) was observed. Anti-CD5 had no functional effect by itself, but in association with solid-phase-bound OKT3 it enhanced IL 2 receptor expression and IL 2 production and it initiated T cell proliferation. T cell proliferation under these conditions could be inhibited by an IL 2 receptor blocking antibody anti-Tac, thus confirming that anti-CD5 provides the second signal for an IL 2-dependent pathway of T cell proliferation. Preincubation of T cells with anti-Leu-1 or OKT1 resulted in complete loss of CD5 antigenicity, and such CD5 modulation was sufficient to induce a proliferative response to solid-phase-bound OKT3. It is concluded that in T cell activation by solid-phase-bound OKT3 the necessary additional signal can be provided by modulation of the CD5 antigen with an anti-CD5 antibody. CD5 therefore appears to be a positive signal receptor on the T cell membrane, whose physiologic ligand still has to be determined.  相似文献   

17.
The rearrangement of TCR genes during thymic ontogeny creates a repertoire of T cell specificities that is refined to ensure the deletion of autoreactive clones and the MHC restriction of T cell responses. Signals delivered via the accessory molecules CD2, CD4, and CD8 have a crucial role in this phase of T cell differentiation. Recently, CD28 has been identified as a signal transducing molecule on the surface of most mature T cells. Perturbation of the CD28 molecule stimulates a novel pathway of T cell activation regulating the production of a variety of lymphokines including IL-2. We have studied the expression and function of CD28 during thymic ontogeny, and in resting and activated PBL. A variable percentage of resting thymocytes were CD28+ (3 to 25%, n = 8), but it was found in high density only on mature CD3+(bright) CD4/CD8 cells. Both unseparated thymocytes and isolated CD3-CD28-/dull cells proliferated when stimulated with PMA plus IL-2 or PMA plus ionomycin. PMA treatment also rapidly up-regulated CD28 expression in the CD3- subset as these cells became CD3-CD28+(bright). Despite the ability of PMA to induce high density CD28 expression in CD3- cells, CD3- thymocytes did not proliferate in response to PMA plus anti-CD28 mAb, in contrast to unseparated cells. CD3+ thymocytes stimulated with immobilized anti-CD3 mAb also failed to proliferate in culture. However, the addition of either IL-2 or anti-CD28 mAb supported proliferation, suggesting that only CD3+ cells could respond to CD28 signaling. The comitogenic effect of anti-CD3 and anti-CD28 mAb was IL-2 dependent as it was abrogated by an anti-IL-2R mAb. Interestingly, the expression of CD28 on the cell surface of CD3+ cells was also inducible, as flow cytometric analysis demonstrated a 10-fold increase in cell surface CD28 by 24 to 48 h after anti-CD3 stimulation of both CD3+ thymocytes and peripheral blood T cells. This increase was accounted for by a commensurate increase in CD28 mRNA levels. Together, these results suggest that CD28 is an inducible T cell antigen in both CD3- and CD3+ cells. In addition, stimulation of the CD28 pathway can provide a second signal to support the growth of CD3+ thymocytes stimulated through the TCR/CD3 complex, and may therefore represent a mechanism for positive selection during thymic ontogeny.  相似文献   

18.
CD5 is a 67-kDa antigen that is expressed on the membrane of the majority of human T cells, and on a subset of B cells. Previous studies have demonstrated that anti-CD5 monoclonal antibodies (mAb) can provide a helper signal for T cell activation through the TCR/CD3 complex. We now demonstrate that when CD5 is crosslinked by immobilized anti-CD5 mAb in the absence of other activating stimuli, the T cells proliferate in response to recombinant interleukin 2 (rIL2) (but not to rIL4). Four different anti-CD5 mAb (anti-Leu1, 10.2, anti-T1, and OKT1) had a similar effect. IL2 responsiveness could be induced with immobilized anti-CD5 mAb in cultures of purified T cells, but was enhanced by the addition of monocytes, by monocyte culture supernatant, or by the combination of IL1 and IL6. Staining with an anti-IL2 receptor (p55) mAb demonstrated expression of IL2 receptors on about 10% of the anti-CD5-stimulated T cells. Both virgin (CD45RA+) and memory (CD45RO+) T cells were responsive. Our data provide further evidence for the involvement of CD5 in T cell activation.  相似文献   

19.
Monoclonal antibody (MAb) GT2 defines a unique epitope on the CD2 molecule. GT2 triggers T cell mitosis in combination with any MAb directed against 9.6/T11(1) or D66, two previously defined CD2 epitopes. We have shown already that accessory cells (AC) are required for plenary T-PBL activation by any pair of Ab directed against D66 + 9.6/T11(1). In this study, we further investigated their role and found it to vary with the anti-CD2 pair used. When purified T-PBL preparation is used, the level of [3H]TdR incorporation observed with anti-(GT2 + 9.6/T11(1)) Ab was not significant; however, it did prove significant, although greatly reduced, with the other anti-CD2 pairs tested. This was due to qualitative differences in the process of T-PBL activation, and the role of AC, because: anti-(GT2 + 9.6/T11(1)) did not induce IL 2-R expression on purified T-PBL, whereas the other anti-CD2 pairs tested did; anti-(GT2 + 9.6/T11(1)) did not induce detectable IL 2 secretion from purified T-PBL, whereas the other anti-CD2 pairs tested induced a low amount; and anti-CDw18 Ab inhibited the mitogenic effect of anti-(GT2 + 9.6/T11(1)) on PBMC by preventing both IL 2-R expression and IL 2 secretion, whereas anti-CDw18 Ab enhanced the mitogenic effect of the other anti-CD2 pairs tested. Paraformaldehyde-fixed AC fully restored, and recombinant IL 1 partially restored purified T-PBL mitosis triggered by all anti-CD2 pairs tested. To induce IL 2 synthesis, the necessity to cross-link anti-CD2 Ab was demonstrated by coupling one Ab on Sepharose beads and adding the second Ab in the soluble phase: under these circumstances, anti-CD2 pairs were mitogenic solely in the presence of AC. These data can be interpreted as follows. Most anti-CD2 pairs require minimal contact between AC and T-PBL to induce plenary levels of IL 2 synthesis. When anti-(GT2 + 9.6/T11(1)) are used, additional contact is necessary, both for IL 2-R expression and IL 2 synthesis, which would include CDw18 for stabilization. We believe these differences could be related to different conformational changes on the CD2 molecule, depending on the epitope on which the antibodies bind, and could account for different signaling to T cells.  相似文献   

20.
The T cell antigen receptor is a approximately 90,000 dalton disulfide linked heterodimer that is non-covalently associated with the CD3 complex. Prior studies have demonstrated that anti-CD3 or -Ti antibodies can mimic antigen and induce cellular proliferation and the secretion of lymphokines. An early event in activation via CD3/Ti is a rapid increase in concentration of intracellular Ca2+ levels. In the present studies, we have produced a panel of monoclonal antibodies (MAb) against the Ti expressed on HPB-ALL tumor cells. All MAb immunoprecipitate a approximately 90,000 dalton disulfide linked heterodimer and induced co-modulation of Ti and CD3. On the basis of competitive binding studies, four distinct epitopes on the Ti of HPB-ALL were identified with MAb L38, L39, L41, and L42. These epitopes were additionally discriminated on the basis of reactivity with normal polyclonal T cell populations and functional effects on HPB-ALL. L39 reacted with a monomorphic epitope present on approximately 2 to 5% of peripheral blood T lymphocytes from all donors examined and was specifically mitogenic for peripheral blood T cells expressing this epitope. L39+ T cells in blood included both CD4+ and CD8+ lymphocytes. In contrast, L38, L41, and L42 failed to react with peripheral blood T cells and were not mitogenic for peripheral blood lymphocytes. Anti-Leu-4, L38, L39, and L41 MAb all induced a rapid increase in (Ca2+)i in HPB-ALL tumor cells, similar to previous findings with anti-CD3 and anti-Ti MAb against various tumor cells and peripheral blood T cells. In contrast, L42 MAb did not induce a substantial increase in (Ca2+)i. Failure of L42 to induce a substantial increased (Ca2+)i could not be attributed to the apparent titer, avidity, or isotype of the antibody. These findings suggest that induction of increased (Ca2+)i upon binding of Ti is epitope dependent. Furthermore, these data demonstrate that several distinct public and private epitopes can be identified on the T cell antigen receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号