首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Hypoxia can influence the development of pathological processes in the brain not only through the decrease of oxidative phosphorylation but also by synthesis and release of excitatory amino acids and GABA. We studied the influence of hypobaric (pO2 8.6 kPa) and normobaric hypoxia (pO2 5.27 kPa) on the transformation of U-14C glucose and 2-14C acetate into some amino acids connected with the tricarboxylic cycle. Hypobaric hypoxia and normobaric hypoxia have different effects on metabolic processes in neuronal and glial cells. The formation of the studied amino acids from U-14C glucose (neuronal compartment) was more decreased than the formation of amino acids from 2-14C acetate (glial compartment). This could be a consequence of higher sensitivity of neuronal than glial mitochondria to oxygen deficit or a result of uncoupling of amino acid formation in neurones. An unchanged synthesis of glutamine from acetate in glial cells during hypoxia may result in a protective metabolic effect.  相似文献   

2.
A. D. Hanson  J. Edelman 《Planta》1971,98(2):97-108
Summary Green carrot callus cultures when exposed to 14CO2 in a liquid medium showed ligh-dependent 14C-incorporation into sucrose, glutamine and malic acid. About 5% of total 14C fixed in a 3 h period appeared in these products in the bathing medium; this was not due to tissue damage. Kinetic studies showed that the release occurred from a metabolic and not a storage compartment. The effects of DCMU, temperature and fluoroacetate demonstrated that release from this compartment was under respiratory and not photosynthetic control.This work was supported in part by a grant from Tate & Lyle Ltd.  相似文献   

3.
Rab14 is part of the early endosomal clathrin-coated TGN microdomain   总被引:1,自引:0,他引:1  
Rab14 localizes to the Golgi/TGN and to early endosomes, but its biological function remains unclear. By structural modeling, we identified Rab14-specific residues and established a close relationship between the Rab2/Rab4/Rab14, Rab11/25 and Rab39 sub-groups within the Rab protein family. By quantitative confocal microscopy and by density centrifugation we show that Rab14 is part of the early endosomal AP-1 microdomain. Overexpression of a dominant-negative Rab14 GTP-binding mutant that solely localizes to the Golgi donor compartment accelerated EGF degradation. We suggest that the AP-1 microdomain represents the interconnecting compartment in which Rab14 vesicles cycle between early endosomes and the Golgi cisternae.  相似文献   

4.
When many ligands, polypeptidic hormones, growth factors, metabolic carriers, plasma glycoproteins, etc., bind to cell-surface receptors, ligand-receptor complexes are internalized by a process called receptor-mediated endocytosis towards the endocytic compartment. The endocytic compartment is an extensive network of anastomosing vesiculo-tubular membranes that differs biochemical and functionally from other intracellular organelles. Endosome fractions were prepared and antibodies raised against endosome membrane proteins. In addition to a detailed biochemical study of proteins and glycoproteins the antibodies were used to immunolocalize the endocytic structures in the hepatic cell. These studies aided to demonstrate the involvement of endocytic compartment not only in the sorting of proteins to specific domains of the plasma membrane but in the identification of "resident" endosome components.  相似文献   

5.
Abstract—
  • 1 Metabolism of [2-14C]pyruvate, [1-14C]acetate and [5-14C]citrate in the rat cerebral cortex slices was studied in the presence of halothane. Metabolites assayed include acetylcholine (ACh), citrate, glutamate, glutamine, γ-aminobutyrate (GABA) and aspartate. The trichloroacetic acid soluble extract, the trichloroacetic acid insoluble precipitate and its lipid extract were also studied.
  • 2 In control experiments, pyruvate preferentially labelled ACh, citrate, glutamate, GABA and aspartate. Acetate labeled ACh, but to a lesser extent than pyruvate. Acetate also labeled lipids and glutamine. Citrate labeled lipids but not ACh and served as a preferential precursor for glutamine. These data support a three-compartment model for cerebral tricarboxylic acid cycle metabolism.
  • 3 Halothane caused increases in GABA and aspartate contents and a decrease in ACh content. It has no effect on the contents of citrate, glutamate and glutamine.
  • 4 Halothane preferentially inhibited the metabolic transfer of radioactivity from pyruvate into almost all metabolites, an effect probably not related to pyruvate permeability. This is interpreted as halothane depression of the‘large metabolic compartment’ which includes the nerve endings.
  • 5 Halothane increased the metabolic transfer of radioactivity from acetate into lipids but did not alter such a transfer into the trichloracetic acid extract.
  • 6 Halothane increased the metabolic transfer of radioactivity from citrate into the trichloroacetic acid precipitate, lipids and especially glutamine. Transfer of citrate radioactivity into GABA was somewhat decreased.
  • 7 The differential effects of halothane on acetate and citrate utilization suggest that the ‘small metabolic compartment’ should be subdivided. Therefore, at least three metabolic compartments are demonstrated.
  • 8 Halothane did not interfere with the dicarboxylic acid portion of the tricarboxylic acid cycle.
  相似文献   

6.
Metabolic properties of muscle fibers   总被引:2,自引:0,他引:2  
Mammalian skeletal muscles are composed of slow (type I) and fast (type II) twitch fibers, which, as reflected by their enzyme activity patterns, are characterized by specific metabolic properties. Type I fibers are always "oxidative" but nevertheless form a spectrum. Type II fibers likewise form a spectrum but display a wider range with "oxidative" and "glycolytic" extremes. As a result, type I and type II fibers can be classified independently of myofibrillar ATPase histochemistry by their specific enzyme activity profiles. In this context, activity ratios between enzymes of anaerobic and aerobic pathways can be used as discriminative parameters. Similarly, specific ratios of enzymes catalyzing unidirectional reactions in hexose metabolism (hexokinase, phosphofructokinase, fructose-1,6-bisphosphatase) separate the two fiber populations. The histochemically defined IIA and IIB subtypes cannot be separated into distinct metabolic groups. In view of the continuum of metabolic properties, skeletal muscle is an extremely heterogeneous tissue in which each fiber represents a separate metabolic compartment.  相似文献   

7.
Germination of Bacillus anthracis spores within alveolar macrophages   总被引:16,自引:3,他引:13  
The fatal character of the infection caused by inhalation of Bacillus anthracis spores results from a complex pathogenic cycle involving the synthesis of toxins by the bacterium. We have shown using immunofluorescent staining, confocal scanning laser microscopy and image cytometry analysis that the alveolar macrophage was the primary site of B. anthracis germination in a murine inhalation infection model. Bacillus anthracis germinated inside murine macrophage-like RAW264.7 cells and murine alveolar macrophages. Germination occurred in vesicles derived from the phagosomal compartment. We have also demonstrated that the toxin genes and their trans -activator, AtxA, were expressed within the macrophages after germination.  相似文献   

8.
Ketone body kinetics in humans: a mathematical model   总被引:2,自引:0,他引:2  
A model has been developed to account for ketone body kinetics in man based on data following bolus injections of [14C]acetoacetate (A) and [14C]beta-OH butyrate (B) into normal humans in the postabsorptive state. The model consists of separate compartments for blood A and B that are linked by a tissue compartment in which rapid interconversion of the ketone bodies occurs. The probability of movement from blood into this compartment was assumed to be the same for both ketone bodies. Two slowly equilibrating tissue compartments are required to account for the slow components in the tracer data, and thus a five-compartment model is proposed. By modeling the transient tracer data with the tracee in a steady state, ketone body kinetics were defined in terms of the rapid interconversions of A and B, and the slow exchanges of carbon within the tissues. The rates of release of new A and B into blood, (UA and UB) were calculated. These rates were less than the apparent production rates, PRA and PRB, as the PR's included carbon atoms first released as the other ketone body. The exchange constants between the compartments were determined in addition to the fractional catabolic rates (FCR) and metabolic clearance rates (MCR) of A and B. The initial space of distribution was 10 L and the mean values +/- SD (n = 11), normalized to this volume, were UA = 6.4 +/- 5.0, UB = 8.8 +/- 8.0 (mumol L-1 min-1), FCRA = 0.226 +/- 0.142, FCRB = 0.188 +/- 0.124 (min-1), MCRA = 2.26 +/- 1.42, MCRB = 1.87 +/- 1.23 (L min-1) and PRA = 11.1 +/- 7.6, PRB = 12.7 +/- 10.0 (mumol L-1 min-1).  相似文献   

9.
The efficiency with which developing sunflower embryos convert substrates into seed storage reserves was determined by labeling embryos with [U-(14)C6]glucose or [U-(14)C5]glutamine and measuring their conversion to CO2, oil, protein and other biomass compounds. The average carbon conversion efficiency was 50%, which contrasts with a value of over 80% previously observed in Brassica napus embryos (Goffman et al., 2005), in which light and the RuBisCO bypass pathway allow more efficient conversion of hexose to oil. Labeling levels after incubating sunflower embryos with [U-(14)C4]malate indicated that some carbon from malate enters the plastidic compartment and contributes to oil synthesis. To test this and to map the underlying pattern of metabolic fluxes, separate experiments were carried out in which embryos were labeled to isotopic steady state using [1-(13)C1]glucose, [2-(13)C1]glucose, or [U-(13)C5]glutamine. The resultant labeling in sugars, starch, fatty acids and amino acids was analyzed by NMR and GC-MS. The fluxes through intermediary metabolism were then quantified by computer-aided modeling. The resulting flux map accounted well for the labeling data, was in good agreement with the observed carbon efficiency, and was further validated by testing for agreement with gas exchange measurements. The map shows that the influx of malate into oil is low and that flux through futile cycles (wasting ATP) is low, which contrasts with the high rates previously determined for growing root tips and heterotrophic cell cultures.  相似文献   

10.

1. 1. In this short review, previous studies regarding the modeling of lactate (La) response to exercise and its application to endurance training have been summarized.

2. 2. Additionally the result of a recent study by the present authors are shown.

3. 3. Several models for La response to step and ramp exercise are already proposed and deductions derived from them are used for practical purposes such as the prediction of race performance in middle-and long-distance runners as well as for construction of their training regimens.

4. 4. Only a limited number of models however have tried to quantify whole body La kinetics to exercise in humans concomitantly with describing physiological mechanisms underlying the observed phenomenon.

5. 5. In a recent study described further in this paper a 2 compartment model was used for the purpose of clarifying the current “La production vs degradation” controversy during La adaptation to training.

6. 6. It was determined from this investigation that the La metabolic clearance rate during recovery is enhanced by the endurance training.

7. 7. This is in accordance with another recent observation of an increased La metabolic clearance rate at high absolute work rates and all relative work rates during exercise.

Author Keywords: Lactate kinetics; training; physiological modeling  相似文献   


11.
A photoperiod-related seasonal rhythm in active period (scotophase), metabolic rate and core temperature was documented for animals held at 21.0 +/- 0.1 degrees C ambient; animals that were habituated to long nights (10:14LD) had a greater metabolic reserve than those held in summer photoperiods (14:10LD). While relative weights of gonads and sex accessory tissues of mice show typical "winter" regression, interscapular brown adipose tissue mass was unaffected by photoperiod; moreover, IBAT beta adrenergic responses under "winter" photoperiods did not differ from "summer" photoperiods in the absence of cold stimulus. Thermogenic efficiency, measured as the increment of active temperature level achieved per increment of active period metabolic effort, was highest for animals exposed to short photoperiods. Thermal conductance was reduced in animals exposed to short (10:14LD) photoperiods. Heat conservation and thermogenic response capacity was enhanced by melatonin treatment and short photoperiod.  相似文献   

12.
—(1) The fate of [U-14C]leucine was studied in rat brain in vivo from birth to five weeks of age. The major route of leucine metabolism at all ages was conversion into protein. The rate of protein synthesis was low in the newborn; it reached a peak at about 15 days and slowed down moderately later. Incorporation into brain lipids was relatively low under the experimental conditions (less than 2 per cent of the total tissue 14C). (2) The conversion of leucine-carbon into amino acids associated with the tricarboxylic acid cycle was low in the first 9 days after birth (less than 4 per cent of the acid-soluble 14C at 10 min after injection) and increased rapidly until 15 days when the level characteristic of the adult was approached (about 20 per cent of the acid-soluble 14C). The results indicated that the oxidation of acetyl-CoA derived from leucine reached the adult level at an earlier age than that derived from glucose. (3) The glutamine/glutamate specific radioactivity ratio was 0·3 in the brain of newborn animals and increased progressively; it was 1·3 and 2·4 at 15 and 35 days of age respectively. The specific radioactivity of aspartate and of GABA relative to that of glutamate was less than 1 throughout the experimental period. (4) The factors involved in the development of metabolic compartmentation in brain were analysed. It is proposed that although the experimental results show that a 'small’compartment becomes functionally manifested with maturation the primary cause is the development of the‘large’metabolic compartment. (5) Morphological correlates of the metabolic compartments in brain tissue are suggested and it is concluded that the manifestation of metabolic compartmentation is related to maturational changes in glia-neuronal relations rather than to developmental processes affecting the individual components only.  相似文献   

13.
This study was performed to evaluate the efficacy and duration of action of a new bombesin antagonist D-Tpi6,Leu13 psi (CH2NH)Leu14-bombesin (6-14) (RC-3095), given by different routes of administration, in suppressing gastrin releasing-peptide (GRP(14-27))-stimulated gastrin release in rats. First, we showed that GRP(14-27) itself was highly active when administered by different routes. GRP(14-27), given to rats at a dose of 25 micrograms/100 g b.w. significantly increased serum gastrin levels 3 and 6 min after intravenous and for more than 30 min after subcutaneous administration or pulmonary inhalation. RC-3095 was then injected subcutaneously, intravenously and also delivered by pulmonary inhalation at a dose of 10 micrograms/100 g b.w. in each case to seven male rats 2, 30, 60 or 120 min prior to i.v. administration of 5 micrograms GRP(14-27). RC-3095 administered 2 min prior to GRP(14-27) decreased the gastrin response to GRP(14-27), measured as area under the curve, by 81% in the intravenously injected group and 64% in the pulmonary inhalation group in the first 6 min. When GRP(14-27), was given 30 min after administration of RC-3095, the gastrin response was decreased by 52% in the subcutaneous group, 49% in the pulmonary inhalation group and 11% in the intravenous group during the first 6 min. RC-3095 delivered subcutaneously or by pulmonary inhalation 1 h before GRP(14-27) was also able to significantly inhibit gastrin release. Analysis of the data revealed that the bioavailability of RC-3095 given by the pulmonary inhalation route was about 69% of the s.c. route.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Glutamate and glutamine were isolated from the brains of rats given [1-(14)C]ethanol by three different routes of injection with and without carrier ethanol or acetate. Without exception, the specific radioactivity of brain glutamine was 3- to 5-fold that of brain glutamate. The route of injection had no consistent effect on the results. These results indicate that small amounts of ethanol are oxidized by rat brain in the compartment responsible for the so-called ;small metabolic pool' of brain glutamate.  相似文献   

15.
Oleuropein and its hydrolysis products are olive phenolic compounds that have antimicrobial effects on a variety of pathogens, with the potential to be utilized in food and pharmaceutical products. While the existing research is mainly focused on individual genes or enzymes that are regulated by oleuropein for antimicrobial activities, little work has been done to integrate intracellular genes, enzymes and metabolic reactions for a systematic investigation of antimicrobial mechanism of oleuropein. In this study, the first genome-scale modeling method was developed to predict the system-level changes of intracellular metabolism triggered by oleuropein in Staphylococcus aureus, a common food-borne pathogen. To simulate the antimicrobial effect, an existing S. aureus genome-scale metabolic model was extended by adding the missing nitric oxide reactions, and exchange rates of potassium, phosphate and glutamate were adjusted in the model as suggested by previous research to mimic the stress imposed by oleuropein on S. aureus. The developed modeling approach was able to match S. aureus growth rates with experimental data for five oleuropein concentrations. The reactions with large flux change were identified and the enzymes of fifteen of these reactions were validated by existing research for their important roles in oleuropein metabolism. When compared with experimental data, the up/down gene regulations of 80% of these enzymes were correctly predicted by our modeling approach. This study indicates that the genome-scale modeling approach provides a promising avenue for revealing the intracellular metabolism of oleuropein antimicrobial properties.  相似文献   

16.
The cellular distribution of free amino acids was estimated in primary cultures (14 days in vitro) composed principally of cerebellar interneurones or cerebellar and forebrain astrocytes. In cultured neural cells, the overall concentration of amino acids resembled that found in brain at the corresponding age in vivo. In the two neural cell types, there were marked differences in the distribution of amino acids, in particular, those associated with the metabolic compartmentation of glutamate. In neuronal cell cultures, the concentrations of glutamate, aspartate, and gamma-aminobutyric acid were, respectively, about three, four, and seven times greater than in astrocytes. By contrast, the amount of glutamine was approximately 65% greater in astroglial cell cultures than in interneurone cultures. An unexpected finding was a very high concentration of glycine in astrocytes derived from 8-day-old cerebellum, but the concentrations of both serine and glycine were greater in nerve cell cultures than in forebrain astrocytes. The essential amino acids threonine, valine, isoleucine, leucine, tyrosine, phenylalanine, histidine, lysine, and arginine were all present in the growth medium, and small cellular changes in the contents of some of these amino acids may relate to differences in their influx and efflux during culturing and washing procedures. The present results, together with our previous findings, provide further support for the model assigning the "small" compartment of glutamate to glial cells and the "large" compartment to neurones, and also underline the metabolic interaction between these two cell types in the brain.  相似文献   

17.

Introduction

Microbial cells secrete many metabolites during growth, including important intermediates of the central carbon metabolism. This has not been taken into account by researchers when modeling microbial metabolism for metabolic engineering and systems biology studies.

Materials and Methods

The uptake of metabolites by microorganisms is well studied, but our knowledge of how and why they secrete different intracellular compounds is poor. The secretion of metabolites by microbial cells has traditionally been regarded as a consequence of intracellular metabolic overflow.

Conclusions

Here, we provide evidence based on time-series metabolomics data that microbial cells eliminate some metabolites in response to environmental cues, independent of metabolic overflow. Moreover, we review the different mechanisms of metabolite secretion and explore how this knowledge can benefit metabolic modeling and engineering.
  相似文献   

18.
Male CBA mice were exposed to propene, unlabelled or 14C-labelled, by inhalation, or to 14C-labelled propylene oxide by intraperitoneal injection. 2-Hydroxypropyl adducts to guanine-N-7 in DNA of various organs and to N-terminal valine and histidine-N pi in hemoglobin were measured. The adduct levels observed show that propylene oxide is the major primary metabolic product of propene. A direct comparison of propylene oxide with the homologous compound ethylene oxide on the basis of adduct levels introduced (in DNA and in hemoglobin) at equimolar injected amounts, shows that propylene oxide is 6-10 times less effective than ethylene oxide.  相似文献   

19.
Transmission of energetic signals to membrane sensors, such as the ATP-sensitive K+ (KATP) channel, is vital for cellular adaptation to stress. Yet, cell compartmentation implies diffusional hindrances that hamper direct reception of cytosolic energetic signals. With high intracellular ATP levels, KATP channels may sense not bulk cytosolic, but rather local submembrane nucleotide concentrations set by membrane ATPases and phosphotransfer enzymes. Here, we analyzed the role of adenylate kinase and creatine kinase phosphotransfer reactions in energetic signal transmission over the strong diffusional barrier in the submembrane compartment, and translation of such signals into a nucleotide response detectable by KATP channels. Facilitated diffusion provided by creatine kinase and adenylate kinase phosphotransfer dissipated nucleotide gradients imposed by membrane ATPases, and shunted diffusional restrictions. Energetic signals, simulated as deviation of bulk ATP from its basal level, were amplified into an augmented nucleotide response in the submembrane space due to failure under stress of creatine kinase to facilitate nucleotide diffusion. Tuning of creatine kinase-dependent amplification of the nucleotide response was provided by adenylate kinase capable of adjusting the ATP/ADP ratio in the submembrane compartment securing adequate KATP channel response in accord with cellular metabolic demand. Thus, complementation between creatine kinase and adenylate kinase systems, here predicted by modeling and further supported experimentally, provides a mechanistic basis for metabolic sensor function governed by alterations in intracellular phosphotransfer fluxes.  相似文献   

20.

Background

Xenobiotics represent an environmental stress and as such are a source for antibiotics, including the isoquinoline (IQ) compound IQ-143. Here, we demonstrate the utility of complementary analysis of both host and pathogen datasets in assessing bacterial adaptation to IQ-143, a synthetic analog of the novel type N,C-coupled naphthyl-isoquinoline alkaloid ancisheynine.

Results

Metabolite measurements, gene expression data and functional assays were combined with metabolic modeling to assess the effects of IQ-143 on Staphylococcus aureus, Staphylococcus epidermidis and human cell lines, as a potential paradigm for novel antibiotics. Genome annotation and PCR validation identified novel enzymes in the primary metabolism of staphylococci. Gene expression response analysis and metabolic modeling demonstrated the adaptation of enzymes to IQ-143, including those not affected by significant gene expression changes. At lower concentrations, IQ-143 was bacteriostatic, and at higher concentrations bactericidal, while the analysis suggested that the mode of action was a direct interference in nucleotide and energy metabolism. Experiments in human cell lines supported the conclusions from pathway modeling and found that IQ-143 had low cytotoxicity.

Conclusions

The data suggest that IQ-143 is a promising lead compound for antibiotic therapy against staphylococci. The combination of gene expression and metabolite analyses with in silico modeling of metabolite pathways allowed us to study metabolic adaptations in detail and can be used for the evaluation of metabolic effects of other xenobiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号