首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pH dependence of the transient aerobic kinetics of cytochromes c and a has been investigated with cytochrome oxidase reconstituted in phospholipid vesicles in the absence and presence of an uncoupler and an ionophore. The cytochrome a reduction level immediately after the burst phase was 60-80% and was not significantly changed by the addition of uncoupler and/or ionophore. The coupled rate of ferro-cytochrome c oxidation increases linearly with decreasing pH in the range 8.4-5.4. The increase in rate on uncoupling becomes less with decreasing pH and low cytochrome c concentration, being almost zero at pH 5.4. The coupled rate is increased by a lowering of the outside pH when the inside pH is constant. Varying the inside pH with a constant outside pH of 7.4 has little effect on the rate. It is suggested that the electrochemical potential has two separate effects on the coupled rate: the pH gradient mainly slows down the intramolecular electron transfer, but the membrane potential also lowers the second-order rate constant for the reaction with cytochrome c. The results are interpreted in terms of a model in which protonation of an acid-base group with a pKa of 6.4 from the inside increases the catalytic constant. Protonation from the outside, on the other hand, leads to an intrinsic uncoupling, because the protonated enzyme in the output state can return to the input state. This has no adverse physiological effect, since it becomes significant only at pH values well below 7.  相似文献   

2.
Cyanide binding to a cytochrome c peroxidase (CcP) variant in which the distal histidine has been replaced by a leucine residue, CcP(H52L), has been investigated as a function of pH using spectroscopic, equilibrium, and kinetic methods. Between pH 4 and 8, the apparent equilibrium dissociation constant for the CcP(H52L)/cyanide complex varies by a factor of 60, from 135 microM at pH 4.7 to 2.2 microM at pH 8.0. The binding kinetics are biphasic, involving bimolecular association of the two reactants, followed by an isomerization of the enzyme/cyanide complex. The association rate constant could be determined up to pH 8.9 using pH-jump techniques. The association rate constant increases by almost 4 orders of magnitude over the pH range investigated, from 1.8 x 10(2) M(-1) s(-1) at pH 4 to 9.2 x 10(5) M(-1) s(-1) at pH 8.6. In contrast to wild-type CcP, where the binding of HCN is the dominant binding pathway, CcP(H52L) preferentially binds the cyanide anion. Above pH 8, cyanide binding to CcP(H52L) is faster than cyanide binding to wild-type CcP. Cyanide dissociates 4 times slower from the mutant protein although the pH dependence of the dissociation rate constant is essentially identical for CcP(H52L) and CcP. Isomerization of the CcP(H52L)/cyanide complex is observed between pH 4 and 8 and stabilizes the complex. The isomerization rate constant has a similar magnitude and pH dependence as the cyanide dissociation rate constant, and the two reactions are coupled at low cyanide concentrations. This isomerization has no counterpart in the wild-type CcP/cyanide complex.  相似文献   

3.
The pH dependence of the oxidation-state marker line of hemoproteins is investigated in cytochrome c peroxidase with Raman difference spectroscopy. The frequency is sensitive to ionization of a group on the protein that regulates catalytic activity of the resting ferriheme enzyme. The oxidation-state marker line shows a transition with pK of 5.5 in good agreement with other spectroscopic measurements and kinetic measurements of binding of peroxide, and other ligands to the native enzyme. The shift of 0.8 cm-1 to higher frequency at pH 4.5 relative to the pH 6.4 value is interpreted in terms of a substantial decrease in pi-electron density in the porphyrin ring. Charge density in the pi-system is highest at maximal activity, as would be expected if donor-acceptor interactions with residues of the protein stabilize the oxidized Fe(IV) reaction intermediate. Evidence of additional heme-linked ionizations with pK values near 7.5 is found; this alkaline transition involves deprotonation of several groups of the protein, conversion of iron from high to low spin, and, possibly, denaturation of the protein.  相似文献   

4.
Equilibria and kinetics of cyanide binding to canine myeloperoxidase were studied. Spectral results support the presence of two heme binding sites; an isosbestic point at 444 nm and a linear Scatchard plot suggest that the binding affinity of cyanide to the two subunits of the enzyme is the same. The dissociation constant is 0.53 microM. The pH dependence of the apparent second order rate constant indicates the presence of an acid-base group on the enzyme with a pKa of 3.8 +/- 0.1. The protonated form of cyanide binds to the basic enzyme with a rate constant of (4.3 +/- 0.3) x 10(6) M-1 s-1.  相似文献   

5.
Spinach plastocyanin was selectively modified using tetranitromethane which incorporates a nitro group ortho to the hydroxyl group of tyrosine 83 (Anderson, G.P., Draheim, J.E. and Gross, E.L. (1985) Biochim. Biophys. Acta 810, 123-131). This tyrosine residue has been postulated to be part of the cytochrome f binding site on plastocyanin. Since the hydroxyl moiety of nitrotyrosine 83 is deprotonated above its pK of 8.3, it provides a useful modification for studying the effect of an extra negative charge on the interaction of plastocyanin with cytochrome f. No effect on cytochrome f oxidation was observed at pH 7 under conditions in which the hydroxyl moiety is protonated. However, the rate of cytochrome f oxidation increased at pH values greater than 8, reaching a maximum at pH 8.6 and decreasing at still higher pH values. The increase was half-maximal at pH 8.3 which is the pK for the hydroxyl moiety on nitrotyrosine 83. In contrast, the rate of cytochrome f oxidation for control plastocyanin was independent of pH from pH 7 to 8.6. These results show that increasing the negative charge on plastocyanin at Tyr-83 increases the ability to react with cytochrome f, supporting the hypothesis that cytochrome f interacts with plastocyanin at this location. In contrast, the reaction of Ntyr-83 plastocyanin with mammalian cytochrome c was independent of pH, suggesting that its mode of interaction with plastocyanin is different from that of cytochrome f. A comparison of the effects of Ntyr-83 modification of plastocyanin with the carboxyl- and amino-group modifications reported previously suggests that plastocyanin binds to cytochrome f in such a way that electrons could be donated to plastocyanin at either of its two binding sites.  相似文献   

6.
The pH dependence of the conformation of cytochrome a in bovine cytochrome c oxidase has been studied by second derivative absorption spectroscopy. At neutral pH, the second derivative spectra of the cyanide-inhibited fully reduced and mixed valence enzyme display two Soret electronic transitions, at 443 and 451 nm, associated with cytochrome a. As the pH is lowered these two bands collapse into a single transition at approximately 444 nm. pH titration of the cyanide-inhibited mixed valence enzyme suggests that the transition from the two-band to one-band spectrum obeys the Henderson Hasselbalch relationship for a single protonation event with a transition pKa of 6.6 +/- 0.1. No pH dependence is observed for the spectra of the fully reduced unliganded or CO-inhibited enzyme. Tryptophan fluorescence spectra of the enzyme indicate that no major disruption of protein structure occurs in the pH range 5.5-8.5 used in this study. Resonance Raman spectroscopy indicates that the cytochrome a3 chromophore remains in its ferric, cyanide-bound form in the mixed valence enzyme throughout the pH range used here. These data indicate that the transition observed by second derivative spectroscopy is not due simply to pH-induced protein denaturation or disruption of the cytochrome a3 iron-CN bond. The pH dependence observed here is in good agreement with those observed earlier for the midpoint reduction potential of cytochrome a and for the conformational transition associated with energy transduction in the proton pumping model of Malmstr?m (Malmstr?m, B. G. (1990) Arch. Biochem. Biophys. 280, 233-241). These results are discussed in terms of a model for allosteric communication between cytochrome a and the binuclear ligand binding center of the enzyme that is mediated by ionization of a single group within the protein.  相似文献   

7.
The pH dependence of the steady-state kinetic parameters of cytochrome oxidase has been determined in the pH range 5.4-8.4 with the enzyme in detergent solution at high ionic strength. The catalytic constant increases continuously with decreasing pH, whereas the specificity constant for reduced cytochrome c is essentially unchanged. The effect of pH on the aerobic transient kinetics has also been investigated in two types of experiments in a stopped-flow apparatus. In one series, a 20-fold molar excess of reduced cytochrome c was the only reducing substrate, whereas in the other an excess of ascorbate was used together with a mediator and varying concentrations of cytochrome c. In both sets the time course of the reduction levels of cytochrome c, cytochrome a, and CuA was monitored at specific wavelengths. In the first type of experiment, the reoxidation of cytochrome a was slower than cytochrome c oxidation. In the second type, four kinetic phases were observed, including a long steady state. The time courses, including these features, were simulated on the basis of a mechanistic model for cytochrome oxidase as a proton pump. In this model the enzyme exists in two conformations, E1 and E2. The intramolecular electron transfer from the primary electron acceptors to the dioxygen-reducing site is rapid in E2 only. The transition from E1 to E2 is triggered by the reduction of cytochrome a and CuA. For the conversion to be rapid, the enzyme must also be doubly protonated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The effects of cyanide on membrane-associated and purified hydrogenase from Azotobacter vinelandii were characterized. Inactivation of hydrogenase by cyanide was dependent on the activity (oxidation) state of the enzyme. Active (reduced) hydrogenase showed no inactivation when treated with cyanide over several hours. Treatment of reversibly inactive (oxidized) states of both membrane-associated and purified hydrogenase, however, resulted in a time-dependent, irreversible loss of hydrogenase activity. The rate of cyanide inactivation was dependent on the cyanide concentration and was an apparent first-order process for purified enzyme (bimolecular rate constant, 23.1 M-1 min-1 for CN-). The rate of inactivation decreased with decreasing pH. [14C]cyanide remained associated with cyanide-inactivated hydrogenase after gel filtration chromatography, with a stoichiometry of 1.7 mol of cyanide bound per mol of inactive enzyme. The presence of saturating concentrations of CO had no effect on the rate or extent of cyanide inactivation of hydrogenases. The results indicate that cyanide can cause a time-dependent, irreversible inactivation of hydrogenase in the oxidized, activatable state but has no effect when hydrogenase is in the reduced, active state.  相似文献   

9.
In media of low ionic strength, membraneous cytochrome c oxidase, isolated cytochrome c oxidase, and proteoliposomal cytochrome c oxidase each bind cytochrome c at two sites, one of low affinity (1 microM greater than Kd' greater than 0.2 microM) and readily reversible and the other of high affinity (0.01 microM greater than Kd) and weakly reversible. When cytochrome c occupies both sites, including the low affinity site, the maximal turnover measured polarographically with ascorbate and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) is independent of TMPD concentration, and lies between 250 and 400 s-1 (30 degrees C, pH 7.4) for fully activated systems. The apparent affinity of the enzyme for cytochrome c is, however, TMPD dependent. When cytochrome c occupies only the high-affinity site, the maximal turnover is closely dependent upon the concentration of TMPD, which, unlike ascorbate, can reduce bound cytochrome c. As TMPD concentration is increased, the maximal turnover approaches that seen when both sites as occupied. The lower activity of isolated cytochrome aa3 is due to the presence of inactive or inaccessible enzyme molecules. Incorporation of isolated enzyme into phospholipid vesicles restores full activity to all the subsequently accessible cytochrome aa3 molecules. Negatively charged (asolectin) vesicles show a higher cytochrome c affinity at the low-affinity sites than do the other enzyme preparations. A model for the cytochrome c-cytochrome aa3 complexes is put forward in which both sites, when occupied, are fully catalytically competent, but in which occupation of the "tight" site by a catalytically functional cytochrome c molecule is required for overall oxidation of cytochrome c via the "loose" site.  相似文献   

10.
The kinetics of electron transfer between cytochrome-c oxidase and ruthenium hexamine has been characterized using the native enzyme or its cyanide complex either solubilized by detergent (soluble cytochrome oxidase) or reconstituted into artificial phospholipid vesicles (cytochrome oxidase-containing vesicles). Ru(NH3)2+6 (Ru(II] reduces oxidized cytochrome a, following (by-and-large) bimolecular kinetics; the second order rate constant using the cyanide complex of the enzyme is 1.5 x 10(6) M-1 s-1, for the enzyme in detergent, and slightly higher for COV. In the case of COV the kinetics are not affected by the addition of ionophores. Upon mixing fully reduced cytochrome oxidase with oxygen (in the presence of excess reductants), the oxidation leading to the pulsed enzyme is followed by a steady state phase and (eventually) by complete re-reduction. When the concentrations of dioxygen and oxidase are sufficiently low (micromolar range), the time course of oxidation can be resolved by stopped flow at room temperature, yielding an apparent bimolecular rate constant of 5 x 10(7) M-1 s-1. After exhaustion of oxygen and end of steady state, re-reduction of the pulsed enzyme by the excess Ru(II) is observed; the concentration dependence shows that the rate of re-reduction is limited at 3 s-1 in detergent; this limiting value is assigned to the intramolecular electron transfer process from cytochrome a-Cua to the binuclear center. Using the reconstituted enzyme, the internal electron transfer step is sensitive to ionophores, increasing from 2-3 to 7-8 s-1 upon addition of valinomycin and carbonyl cyanide m-chlorophenylhydrazone. This finding indicates for the first time an effect of the electrochemical potential across the membrane on the internal electron transfer rate; the results are compared with expectations based on the hypothesis formulated by Brunori et al. (Brunori, M., Sarti, P., Colosimo, A., Antonini, G., Malatesta, F., Jones, M.G., and Wilson, M.T. (1985) EMBO J. 4, 2365-2368), and their bioenergetic relevance is discussed with reference to the proton pumping activity of the enzyme.  相似文献   

11.
The inhibition of cytochrome c oxidase by cyanide, starting either with the resting or the pulsed enzyme, was studied by rapid-freeze quenching followed by quantitative e.p.r. It is found that a partial reduction of cytochrome oxidase by transfer of 2 electron equivalents from ferrocytochrome c to cytochrome a and CuA will induce a transition from a closed to an open enzyme conformation, rendering the cytochrome a3-CuB site accessible for cyanide binding, possibly as a bridging ligand. A heterogeneity in the enzyme is observed in that an e.p.r. signal from the cytochrome a3 3+-HCN complex is only found in 20% of the molecules, whereas the remaining cyanide-bound a3-CuB sites are e.p.r.-silent.  相似文献   

12.
Rate constants of cyanide binding to 'fast' oxidase have been measured in the fully-oxidised (O), peroxy (P) and ferryl (F) states at pH 8.0. Values of 2.2, 8 and 10 M-1 s-1, respectively, were obtained. Thus, none of these states appears to exhibit a rate that would identify it as the species responsible for the extremely rapid cyanide binding observed during turnover. On the other hand, with 'oxidised' enzyme as prepared, containing a very small fraction of one-electron-reduced (E state) oxidase, a corresponding fraction of enzyme exhibited spectral changes consistent with cyanide binding with a rate constant in excess of 10(4) M-1 s-1. Evidence is presented suggesting that mediation of electron transfer from one-electron-reduced, cyanide-liganded enzyme to free, ferric oxidase, rather than a global protein conformational change of the enzyme, is responsible for the greatly enhanced cyanide binding rates seen in the presence of cytochrome c or poly(L-lysine). Inter-oxidase electron exchange in 'oxidised' enzyme can result in a complicated dependence of the binding rate on cyanide concentration. We have demonstrated that this may give rise to a saturation of the rate of cyanide binding.  相似文献   

13.
(1) The reaction of the resting form of oxidised cytochrome c oxidase from ox heart with dithionite has been studied in the presence and absence of cyanide. In both cases, cytochrome a reduction in 0.1 M phosphate (pH 7) occurs at a rate of 8.2.10(4) M-1.s-1. In the absence of cyanide, ferrocytochrome a3 appears at a rate (kobs) of 0.016 s-1. Ferricytochrome a3 maintains its 418 nm Soret maximum until reduced. The rate of a3 reduction is independent of dithionite concentration over a range 0.9 mM-131 mM. In the presence or cyanide, visible and EPR spectral changes indicate the formation of a ferric a3/cyanide complex occurs at the same rate as a3 reduction in the absence of cyanide. A g = 3.6 signal appears at the same time as the decay of a g = 6 signal. No EPR signals which could be attributed to copper in any significant amounts could be detected after dithionite addition, either in the presence or absence of cyanide. (2) Addition of dithionite to cytochrome oxidase at various times following induction of turnover with ascorbate/TMPD, results in a biphasic reduction of cytochrome a3 with an increasing proportion of the fast phase of reduction occurring after longer turnover times. At the same time, the predominant steady state species of ferri-cytochrome a3 shifts from high to low spin and the steady-state level of reduction of cytochrome a drops indicating a shift in population of the enzyme molecules to a species with fast turnover. In the final activated form, oxygen is not required for fast internal electron transfer to cytochrome a3. In addition, oxygen does not induce further electron uptake in samples of resting cytochrome oxidase reduced under anaerobic conditions in the presence of cyanide. Both findings are contrary to predictions of certain O-loop types of mechanism for proton translocation. (3) A measurement of electron entry into the resting form of cytochrome oxidase in the presence of cyanide, using TMPD or cytochrome c under anaerobic conditions, shows that three electrons per oxidase enter below a redox potential of around +200 mV. An initial fast entry of two electrons is followed by a slow (kobs approximately 0.02 s) entry of a third electron.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Reduced ferredoxin: CO2 oxidoreductase (CO2-reductase) from Clostridium pasteurianum catalyzes the reduction of CO2 to formate at the expense of reduced ferredoxin, an isotopic exchange between CO2 and formate in the absence of ferredoxin, and the oxidation of formate to CO2 with oxidized ferredoxin. The three activities were found to be equally affected by monovalent anions known to be ligands to transition metals: The enzyme was reversibly inhibited by azide (Ki = 0.004mM), cyanate (Ki = 0.3 mM), thiocyanate (Ki = 1mM), nitrite (Ki = 0.4mM), nitrate (Ki = 6mM), chlorate (Ki = 3mM), fluoride (Ki = 5mM), and by chloride, bromide, iodide (Ki greater than 5mM). There was no observable effect of pH on the inhibition constants. The enzyme was not inhibited by carbon monoxide. The enzyme was irreversibly inactivated by low concentrations (10muM) of cyanide. The rate of inactivation increased with increasing pH with an inflection point near pH 9.5. Reduced ferredoxin and formate rather than oxidized ferredoxin or CO2 protected the enzyme from inactivation by cyanide. The enzyme was protected by azide and cyanate from inactivation. In the presence of high concentrations of the monovalent anions the rate of inactivation by heat (55 degrees C), by molecular oxygen, and by cyanide was decreased by a factor of more than 100. Half maximal protection was observed at the Ki concentrations of the two reversible inhibitors. The data are interpreted to indicate that a transition metal of weak "a class" character and a disulfide are catalytically significant groups of CO2-reductase from C. pasteurianum.  相似文献   

15.
The apparent bimolecular rate constant for the oxidation of dicyano-bis(1,10 phenanthroline) iron(II) by compound II of cytochrome c peroxidase (ferrocytochrome c; hydrogen-peroxide oxidoreductase EC 1.11.1.5) has been measured over the pH range 2.5-11.0 at 0.1 M ionic strength, 25 degrees C, by the stopped-flow technique. An ionizable group in the enzyme, with a pKa of 4.5, strongly influences the electron transfer rate between the ferrous complex and the oxidized site in the enzyme. The electron transfer is fastest when the group is protonated, with a rate constant of 2.9 - 10-5 M--1 - s-1. The rate constantdecreases over three orders of magnitude when the proton dissociates. The apparent bimolecular rate constant for the oxidation of the ferrous complex by compound I of cytochrome c peroxidase was determined between pH 3.5 and 6. Under all conditions where this rate constant could be measured it was about three times larger than that for the oxidation by compound II.  相似文献   

16.
(1) The reaction of the resting form of oxidised cytochrome c oxidase from ox heart with dithionite has been studied in the presence and absence of cyanide. In both cases, cytochrome a reduction in 0.1 M phosphate (pH 7) occurs at a rate of 8.2 · 104 M−1 · s−1. In the absence of cyanide, ferrocytochrome a3 appears at a rate (kobs) of 0.016 s−1. Ferricytochrome a3 maintains its 418 nm Soret maximum until reduced. The rate of a3 reduction is independent of dithionite concentration over a range 0.9 mM–131 mM. In the presence or cyanide, visible and EPR spectral changes indicate the formation of a ferric a3/cyanide complex occurs at the same rate as a3 reduction in the absence of cyanide. A g = 3.6 signal appears at the same time as the decay of a g = 6 signal. No EPR signals which could be attributed to copper in any significant amounts could be detected after dithionite addition, either in the presence or absence of cyanide. (2) Addition of dithionite to cytochrome oxidase at various times following induction of turnover with ascorbate/TMPD, results in a biphasic reduction of cytochrome a3 with an increasing proportion of the fast phase of reduction occurring after longer turnover times. At the same time, the predominant steady state species of ferri-cytochrome a3 shifts from high to low spin and the steady-state level of reduction of cytochrome a drops indicating a shift in population of the enzyme molecules to a species with fast turnover. In the final activated form, oxygen is not required for fast internal electron transfer to cytochrome a3. In addition, oxygen does not induce further electron uptake in samples of resting cytochrome oxidase reduced under anaerobic conditions in the presence of cyanide. Both findings are contrary to predictions of certain O-loop types of mechanism for proton translocation. (3) A measurement of electron entry into the resting form of cytochrome oxidase in the presence of cyanide, using TMPD or cytochrome c under anaerobic conditions, shows that three electrons per oxidase enter below a redox potential of around +200 mV. An initial fast entry of two electrons is followed by a slow (kobs ≈ 0.02 s) entry of a third electron. Above +200 mV, the number of electrons taken up in the initial fast phase drops as a redox center (presumably CuA) titrates with an apparent mid-point potential of +240 mV. The slow phase of reduction remains at the more positive redox values. (4) The results are interpreted in terms of an initial fast reduction of cytochrome a (and CuA at redox values more negative than +240 mV) followed by a slow reduction of CuB. CuB reduction is proposed to spin-uncouple cytochrome a3 to form a cyanide sensitive center, and trigger a conformational change to an activated form of the enzyme with faster intramolecular electron transfer.  相似文献   

17.
Initial velocities for the cytochrome c peroxidase-catalyzed oxidation of ferrocytochrome c by hydrogen peroxide have been measured as functions of both the ferrocytochrome c (0.27-104 microM) and hydrogen peroxide (0.25-200 microM) concentrations at 25 degrees C, 0.01 M ionic strength, and pH 7 in a cacodylate/KNO3 buffer system Eadie-Hofstee plots of the initial velocity as a function of ferrocytochrome c concentration at constant hydrogen peroxide are nonlinear. A mechanism is proposed which includes random addition of the two substrates to the enzyme and a single catalytically active cytochrome c binding site. The mechanism is consistent with prior studies on cytochrome c peroxidase and fits the steady state kinetic data well.  相似文献   

18.
The reaction of cyanide with cytochrome aa3 in intact mitochondria is known to differ significantly from the reaction with the isolated enzyme. To examine the cyanide reaction with cytochrome aa3 in situ, we studied the spectral characteristics and the reaction kinetics of cyanide with reduced brain cytochrome aa3 in an isolated perfused rat head preparation. Anaesthetized rats underwent bilateral carotid-arterial cannulation. The head (skull intact, muscle removed) was perfused with a crystalloid solution containing Na2S2O4, and the animal was then decapitated. By means of reflectance spectrophotometry the reaction of cyanide with cytochrome aa3 was continuously monitored with the use of the 590 nm-575 nm, 610 nm-575 nm and 590 nm-610 nm wavelength pairs. We found that: the kinetics of the absorbance change at 590 nm and 610 nm were similar, with almost identical apparent rate constants, suggesting that these spectral changes are the results of the formation of a single complex; the difference spectrum obtained on addition of cyanide to the fully reduced preparation showed a peak at 588 nm and a trough at 610 nm, consistent with spectral characteristics of the cyanide-ferrocytochrome aa3 complex in isolated enzyme and isolated mitochondria in vitro; this observation underscores the accuracy of monitoring the effects of inhibitors of mitochondrial function on cytochrome redox reactions in situ; the half-maximal (K0.5) effect was approx. 50 microM, significantly lower than that in vitro. The lower apparent K0.5 for cyanide in this preparation in situ may be due to a difference in the pH of the two systems. This approach provides the means to study the inhibitors of mitochondrial function in intact brain under a physiological environment.  相似文献   

19.
K L Kim  D S Kang  L B Vitello  J E Erman 《Biochemistry》1990,29(39):9150-9159
The steady-state kinetics of the cytochrome c peroxidase catalyzed oxidation of horse heart ferrocytochrome c by hydrogen peroxide have been studied at both pH 7.0 and pH 7.5 as a function of ionic strength. Plots of the initial velocity versus hydrogen peroxide concentration at fixed cytochrome c are hyperbolic. The limiting slope at low hydrogen peroxide give apparent bimolecular rate constants for the cytochrome c peroxidase-hydrogen peroxide reaction identical with those determined directly by stopped-flow techniques. Plots of the initial velocity versus cytochrome c concentration at saturating hydrogen peroxide (200 microM) are nonhyperbolic. The rate expression requires squared terms in cytochrome c concentration. The maximum turnover rate of the enzyme is independent of ionic strength, with values of 470 +/- 50 s-1 and 290 +/- 30 s-1 at pH 7.0 and 7.5, respectively. The limiting slope of velocity versus cytochrome c concentration plots provides a lower limit for the association rate constant between cytochrome c and the oxidized intermediates of cytochrome c peroxidase. The limiting slope varies from 10(6) M-1 s-1 at 300 mM ionic strength to 10(8) M-1 s-1 at 20 mM ionic strength and extrapolates to 5 x 10(8) M-1 s-1 at zero ionic strength. The data are discussed in terms of both a two-binding-site mechanism and a single-binding-site, multiple-pathway mechanism.  相似文献   

20.
The oxidase cho of Methylobacillus flagellatus KT was purified to homogeneity by nondenaturing gel electrophoresis, and the kinetic properties and substrate specificity of the enzyme were studied. Ascorbate and ascorbate/N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) were oxidized by cbo with a pH optimum of 8.3. When TMPD served as electron donor for the oxidase cho, the optimal pH (7.0 to 7.6) was determined from the difference between respiration rates in the presence of ascorbate/TMPD and of only ascorbate. The kinetic constants, determined at pH 7.0, were as follows: oxidation by the enzyme of reduced TMPD at pH 7.0 was characterized by KM = 0.86 mM and Vmax = 1.1 mumol O2/(min mg protein), and oxidation of reduced cytochrome c from horse heart was characterized by KM = 0.09 mM and Vmax = 0.9 mumol O2/(min mg protein) Cyanide inhibited ascorbate/TMPD oxidase activity (Ki = 4.5-5.0 microM). The soluble cytochrome cH (12 kDa) partially purified from M. flagellatus KT was found to serve as the natural electron donor for the oxidase cbo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号