首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Originating from its DNA sequence, a computational model of the Edg1 receptor has been developed that predicts critical interactions with its ligand, sphingosine 1-phosphate. The basic amino acids Arg(120) and Arg(292) ion pair with the phosphate, whereas the acidic Glu(121) residue ion pairs with the ammonium moiety of sphingosine 1-phosphate. The requirement of these interactions for specific ligand recognition has been confirmed through examination of site-directed mutants by radioligand binding, ligand-induced [(35)S]GTPgammaS binding, and receptor internalization assays. These ion-pairing interactions explain the ligand specificity of the Edg1 receptor and provide insight into ligand specificity differences within the Edg receptor family. This computational map of the ligand binding pocket provides information necessary for understanding the molecular pharmacology of this receptor, thus underlining the potential of the computational method in predicting ligand-receptor interactions.  相似文献   

2.
The effects of radiofrequency fields on human health are not well understood, and public concern about negative health effects has been rising. The aim of this study was to examine the relationship between workers exposed to electromagnetic fields and their reproductive health. We obtained data using a questionnaire in a cross-sectional study of naval military men, response rate 63% (n = 1487). We asked the respondents about exposure, lifestyle, reproductive health, previous diseases, work and education. An expert group categorized the work categories related to electromagnetic field exposure. We categorized the work categories "tele/communication," "electronics" and "radar/sonar" as being exposed to electromagnetic fields. Logistic regression adjusted for age, ever smoked, military education, and physical exercise at work showed increased risk of infertility among tele/communication odds ratio (OR = 1.72, 95% confidence interval 1.04-2.85), and radar/sonar odds ratio (OR = 2.28, 95% confidence interval 1.27-4.09). The electronics group had no increased risk. This study shows a possible relationship between exposure to radiofrequency fields during work with radiofrequency equipment and radar and reduced fertility. However, the results must be interpreted with caution.  相似文献   

3.
Experimental evidence has been published from isolated guinea pig muscle in vitro, and from direct ligand binding to receptors from T. californica, indicating that two agonist ions react with the nicotinic receptor by exchanging for one magnesium ion. It is the basis of the ion exchange receptor pair model, in which two acetylcholine ions exchange for one magnesium ion in contact with and between a pair of negatively charged receptor groups about 4 A apart. In the resting state the electrostatic attraction between the negatively charged receptor groups and the Mg2+ ion exerts a binding force. This binding force is opposed by the quantum mechanical repulsions of the electron clouds of the charged groups and ions in contact, together with the mutual repulsion of the pair of receptor oxyanions. When the Mg2+ ion is replaced by two acetylcholine ions the quaternary heads of the latter are positioned so that they form two mutually repelling ACh+ receptor group dipoles. As the Mg2+ ion leaves, its rehydration energy contributes to the sum of the electron cloud repulsions and the ACh+ receptor group dipole repulsions, causing the receptor groups to be forced apart activating the receptor macromolecule. The subsequent decrease in ACh+ concentration results in the reestablishment of the resting state. The coulombic electrostatic energy, the Born repulsion energy, the London attraction energy and the oxyanion ACh+ dipole repulsion energies have been calculated and shown to be consistent with the model. The displacement of the Mg2+ by two ACh+ ions makes several hundred kcals of energy available for receptor group separation and receptor activation.  相似文献   

4.
Gonzalez J  Rambhadran A  Du M  Jayaraman V 《Biochemistry》2008,47(38):10027-10032
The structural investigations using the soluble ligand binding domain of the AMPA subtype of the glutamate receptor have provided invaluable insight into the mechanistic pathway by which agonist binding to this extracellular domain mediates the formation of cation-selective channels in this protein. These structures, however, are in the absence of the transmembrane segments, the primary functional component of the protein. Here, we have used a modified luminescence resonance energy transfer based method to obtain distance changes due to agonist binding in the ligand binding domain in the presence of the transmembrane segments. These distance changes show that the cleft closure conformational change observed in the isolated ligand binding domain upon binding agonist is conserved in the receptor with the channel segments, thus establishing that the isolated ligand binding domain is a good model of the domain in the receptor containing the transmembrane segments.  相似文献   

5.
Agonist binding to glutamate receptor ion channels occurs within an extracellular domain (S1S2) that retains ligand affinity when expressed separately. S1S2 is homologous to periplasmic binding proteins, and it has been proposed that a Venus flytrap-style cleft closure triggers opening of glutamate receptor ion channels. Here we compare the kinetics of S1S2-agonist binding to those of the periplasmic binding proteins and show that the reaction involves an initial rapid association, followed by slower conformational changes that stabilize the complex: "docking" followed by "locking." The motion detected here reflects the mechanism by which the energy of glutamate binding is converted into protein conformational changes within S1S2 alone. In the intact channel, these load-free conformational changes are harnessed and possibly modified as the agonist binding reaction is used to drive channel opening and subsequent desensitization. Using mutagenesis, key residues in each step were identified, and their roles were interpreted in light of a published S1S2 crystal structure. In contrast to the Venus flytrap proposal, which focuses on motion between the two lobes as the readout for agonist binding, we argue that smaller, localized conformational rearrangements allow agonists to bridge the cleft, consistent with published hydrodynamic measurements.  相似文献   

6.
Recent hydrogen-deuterium exchange experiments have highlighted tightening and loosening of protein structures upon ligand binding, with changes in bonding (DeltaH) and order (DeltaS) which contribute to the overall thermodynamics of ligand binding. Tightening and loosening show that ligand binding respectively stabilises or destabilises the internal structure of the protein, i.e. it shows positive or negative cooperativity between ligand binding and the receptor structure. In the case of membrane-bound receptors, such as G protein-coupled receptors (GPCRs) and ligand gated ion channel receptors (LGICRs), most binding studies have focussed on association/dissociation constants. Where these have been broken down into enthalpic and entropic contributions, the phenomenon of "thermodynamic discrimination" between antagonists and agonists has often been noted; e.g. for a receptor where agonist binding is predominantly enthalpy driven, antagonist binding is predominantly entropy driven and vice versa. These data have not previously been considered in terms of the tightening, or loosening, of receptor structures that respectively occurs upon positively, or negatively, cooperative binding of ligand. Nor have they been considered in light of the homo- and hetero-oligomerisation of GPCRs and the possibility of ligand-induced changes in oligomerisation. Here, we argue that analysis of the DeltaH and DeltaS of ligand binding may give useful information on ligand-induced changes in membrane-bound receptor oligomers, relevant to the differing effects of agonists and antagonists.  相似文献   

7.
In researches with participation of volunteers bioeffects of short-term non-thermal radiofrequency electromagnetic field (RF EMF) exposure were studied. The basic form of brain's reaction was the amplification of energy in a-range in electroencephalogram (EEG) spectra. Dependence of these changes, not only due to the changes of the exposure parameters, but also due to personal EEG typological features was shown. Moderate degree of the alpha frequencies domination in the background promoted development of reaction of a brain to the RF EMF exposure. To a lesser degree it was shown at hyperactivity of this range and, practically, was absent in the conditions of theta- or beta2-range domination in the EEG background with the open and closed eyes. The combination of RF EMF exposure and monotonous activity has authentically strengthened result, keeping the basic form of reaction (energy amplification in the alpha range of EEG spectrum) and dependence on EEG typological features.  相似文献   

8.
The binding of asialoglycoproteins to their liver cell receptor results in internalization of the ligand-receptor complex. These complexes rapidly appear in intracellular compartments termed endosomes whose acidification results in ligand-receptor dissociation. Ligand and receptor subsequently segregate: ligand is transported to lysosomes and is degraded while receptor recycles to the cell surface. The proton ionophore monensin prevents acidification of endosomes and reversibly inhibits this acid-dependent dissociation of ligand from receptor. The present study determined the effect of monensin treatment of short-term cultured rat hepatocytes on cell-surface-receptor content, determined both by their binding activity and immunologically, following continuous endocytosis of asialoorosomucoid. Inclusion of 5 microM monensin in the incubation medium reduced the number of immunologically detectable cell-surface receptors by 20% in the absence of ligand. During continuous endocytosis of asialoorosomucoid, inclusion of monensin resulted in a 30-40% reduction of cell-surface receptor detectable either by ligand binding or immunologically. These results suggest that the reduced liver-cell-surface content of receptor in monensin is due to intracellular trapping of ligand-receptor complexes. The reduction of surface receptor during monensin incubation in the absence of ligand suggests that "constitutive recycling" of plasma membrane components also requires intracellular acidification.  相似文献   

9.
The structures, energetic and thermodynamic parameters of model crown ethers with different donor, cavity and electron donating/ withdrawing functional group have been determined with ab initio MP2 and density functional theory in gas and solvent phase. The calculated values of binding energy/ enthalpy for lithium ion complexation are marginally higher for hard donor based aza and oxa crown compared to soft donor based thia and phospha crown. The calculated values of binding enthalpy for lithium metal ion with 12C4 at MP2 level of theory is in good agreement with the available experimental result. The binding energy is altered due to the inductive effect imparted by the electron donating/ withdrawing group in crown ether, which is well correlated with the values of electron transfer. The role of entropy for extraction of hydrated lithium metal ion by different donor and functional group based ligand has been demonstrated. The HOMO-LUMO gap is decreased and dipole moment of the ligand is increased from gas phase to organic phase because of the dielectric constant of the solvent. The gas phase binding energy is reduced in solvent phase as the solvent molecules weaken the metal-ligand binding. The theoretical values of extraction energy for LiCl salt from aqueous solution in different organic solvent is validated by the experimental trend. The study presented here should contribute to the design of model host ligand and screening of solvent for metal ion recognition and thus can contribute in planning the experiments.  相似文献   

10.
M D Ward  D A Hammer 《Cell biophysics》1992,20(2-3):177-222
Many cell types modulate growth, differentiation, and motility through changes in cell substrate adhesion, including regulation of focal contact formation. Clustering of cell surface adhesion receptors is an essential early step in the development of focal contacts, and thus may influence cell physiology. In this paper, we present a theoretical framework to examine how cell surface chemistry affects receptor clustering. Our one-dimensional tape-peeling model couples the equations of mechanical equilibrium for a cell membrane with kinetic receptor-ligand binding relations. We considered two distinct model scenarios: Adhesion mediated by multiple receptor-ligand interactions of different length and specific binding of a single receptor type occurs in the presence of van der Waals attraction and nonspecific repulsion. In each case, nonuniform (wave-like) membrane morphologies are observed in certain parameter ranges that support the clustering of adhesion receptors. The formation of these morphologies is described in terms of a balance of membrane stresses; when cell-surface potential as a function of separation distance is symmetric between two potential energy minima, nonuniform morphologies are obtained. Increases in the chemical binding energy between receptor and ligand (e.g., increases in ligand density) or decreases in the membrane rigidity result in smaller wavelengths for nonuniform interfaces. Additionally, we show wave-like geometries appear only when the mechanical compliance of receptor-ligand bonds is within an intermediate range, and examine how the mobility of "repellers"--glycocalyx molecules that exert a nonspecific repulsive force--influences membrane morphology. We find fully mobile repellers always redistribute to prevent nonuniform morphologies.  相似文献   

11.
The ligand binding domain (LBD) of the nicotinic acetylcholine receptor has served as a prototype for understanding molecular recognition in the family of neurotransmitter-gated ion channels. During the past fifty years, studies progressed from fundamental electrophysiological analyses of ACh-evoked ion flow, to biochemical purification of the receptor protein, pharmacological measurements of ligand binding, molecular cloning of receptor subunits, site-directed mutagenesis combined with functional analysis and recently, atomic structural determination. The emerging picture of the nicotinic receptor LBD is a specialized pocket of aromatic and hydrophobic residues formed at interfaces between protein subunits that changes conformation to convert agonist binding into gating of an intrinsic ion channel.  相似文献   

12.
Four discontinuous extracellular sequence domains have been proposed to form the ligand binding sites of the ligand-gated ion channel receptor superfamily. In this study, we investigated the role of 12 contiguous residues of the inhibitory glycine receptor that define the proposed "loop A" ligand binding domain. Using the techniques of site-directed mutagenesis and patch-clamp electrophysiology, four of the 12 residues were shown to have impaired ligand binding. Three mutants, 193A, A101H, and N102A, resulted in significant (17-44-fold) increases in the agonist EC50 values as compared with the wild-type glycine receptor, whereas Hill coefficients, ImaX values, and antagonist affinity remained largely unaffected. Consideration of receptor efficacy values indicates that these residues are involved in ligand binding rather than channel activation. A fourth mutant, W94A, failed to give rise to any glycine-activated currents, although cell-surface expression was observed, suggesting that this residue may also be involved in agonist binding. These data provide the most extensive characterization of the loop A ligand binding domain available to date and define two new residue locations, Ile93 and Asn102, as contributing to the four-loop model of ligand binding.  相似文献   

13.
The conformation adopted by a ligand on binding to a receptor may differ from its lowest-energy conformation in solution. In addition, the bound ligand is more conformationally restricted, which is associated with a configurational entropy loss. The free energy change due to these effects is often neglected or treated crudely in current models for predicting binding affinity. We present a method for estimating this contribution, based on perturbation theory using the quasi-harmonic model of Karplus and Kushick as a reference system. The consistency of the method is checked for small model systems. Subsequently we use the method, along with an estimate for the enthalpic contribution due to ligand-receptor interactions, to calculate relative binding affinities. The AMBER force field and generalized Born implicit solvent model is used. Binding affinities were estimated for a test set of 233 protein-ligand complexes for which crystal structures and measured binding affinities are available. In most cases, the ligand conformation in the bound state was significantly different from the most favorable conformation in solution. In general, the correlation between measured and calculated ligand binding affinities including the free energy change due to ligand conformational change is comparable to or slightly better than that obtained by using an empirically-trained docking score. Both entropic and enthalpic contributions to this free energy change are significant.  相似文献   

14.
The affinity of AMD3100, a symmetrical nonpeptide antagonist composed of two 1,4,8,11-tetraazacyclotetradecane (cyclam) rings connected through a 1,4-dimethylene(phenylene) linker to the CXCR4 chemokine receptor was increased 7, 36, and 50-fold, respectively, by incorporation of the following: Cu(2+), Zn(2+), or Ni(2+) into the cyclam rings of the compound. The rank order of the transition metal ions correlated with the calculated binding energy between free acetate and the metal ions coordinated in a cyclam ring. Construction of AMD3100 substituted with only a single Cu(2+) or Ni(2+) ion demonstrated that the increase in binding affinity of the metal ion substituted bicyclam is achieved through an enhanced interaction of just one of the ring systems. Mutational analysis of potential metal ion binding residues in the main ligand binding crevice of the CXCR4 receptor showed that although binding of the bicyclam is dependent on both Asp(171) and Asp(262), the enhancing effect of the metal ion was selectively eliminated by substitution of Asp(262) located at the extracellular end of TM-VI. It is concluded that the increased binding affinity of the metal ion substituted AMD3100 is obtained through enhanced interaction of one of the cyclam ring systems with the carboxylate group of Asp(262). It is suggested that this occurs through a strong concomitant interaction of one of the oxygen's directly with the metal ion and the other oxygen to one of the nitrogens of the cyclam ring through a hydrogen bond.  相似文献   

15.
The group of leukocyte integrins CD11a-c/CD18 coordinate disparate adhesion reactions in the immune system through a regulated process of ligand recognition. The participation of the receptor divalent ion binding site(s) in this mechanism of ligand binding has been investigated. As compared with other divalent cations, Mn2+ ions have the unique property to dramatically stimulate the adhesive functions of the leukocyte integrin CD11b/CD18 (Mac-1), expressed on myelo-monocytic cells. This is reflected in a three- to fivefold increased early monocyte adhesion (less than 20 min) to resting, unperturbed endothelial cells, and increased association of CD11b/CD18 with its soluble ligands fibrinogen and factor X. CD11b/CD18 ligand recognition in the presence of Mn2+ ions is specific, time and concentration dependent, and inhibited by anti-CD11b mAb. At variance with Ca(2+)-containing reactions where CD11b/CD18 functions as an inducible receptor activated by adenine nucleotides or chemoattractants, Mn2+ ions induce per se a constitutive maximal ligand binding capacity of CD11b/CD18, that is not further modulated by cell stimulation. Rather than quantitative changes in surface density, Mn2+ ions increase the affinity of CD11b/CD18 for its complementary ligands up to 10-fold, as judged by Scatchard plot analysis of receptor:ligand interaction under these conditions. Furthermore, monocyte exposure to Mn2+ ions induces the expression of activation-dependent neo-antigenic epitopes on CD11b/CD18, selectively recognized by mAb 7E3. These data suggest that in addition to cell-activating stimuli, favorable engagement of divalent ion binding site(s) can provide an alternative pathway to rapidly regulate the receptor affinity of leukocyte integrins.  相似文献   

16.
Thymosin alpha 1 induces the loss of PNA binding ability by subpopulation of thymic cells. This loss is probably due to an endocytic process. Nevertheless this disappearance is not a permanent one, suggesting a recycling of the PNA binding molecule. The cells that modulate their PNA binding sites after exposure to Thymosin alpha 1 are a small proportion of the total PNA+ thymocytes, indicating that not all thymocytes are susceptible to the thymic hormone Thymosin alpha 1. Conversely the exposure of thymocytes to Thymosin alpha 1 induces the disappearance of the binding sites for this ligand without further recycling, behavior expected for the receptor of a regulatory ligand. These results also indicate that the Thymosin alpha 1 and the PNA binding sites are on different molecules on the surface of the PNA+ thymocytes.  相似文献   

17.
Gamma-aminobutyric type A receptor (GABAAR) is a member of the Cys-loop family of pentameric ligand gated ion channels (pLGICs). It has been identified as a key target for many clinical drugs. In the present study, we construct the structure of human 2α12γ2 GABAAR using a homology modeling method. The structures of ten benzodiazepine type drugs and two non-benzodiazepine type drugs were then docked into the potential benzodiazepine binding site on the GABAAR. By analyzing the docking results, the critical residues His102 (α1), Phe77 (γ2) and Phe100 (α1) were identified in the binding site. To gain insight into the binding affinity, molecular dynamics (MD) simulations were performed for all the receptor–ligand complexes. We also examined single mutant GABAAR (His102A) in complexes with the three drugs (flurazepam, eszopiclone and zolpidem) to elucidate receptor–ligand interactions. For each receptor–ligand complex (with flurazepam, eszopiclone and zolpidem), we calculated the average distance between the Cα of the mutant residue His102A (α1) to the center of mass of the ligands. The results reveal that the distance between the Cα of the mutant residue His102A (α1) to the center of flurazepam is larger than that between His102 (α1) to flurazepam in the WT type complex. Molecular mechanic-generalized Born surface area (MM-GBSA)-based binding free energy calculations were performed. The binding free energy was decomposed into ligand-residue pairs to create a ligand-residue interaction spectrum. The predicted binding free energies correlated well (R 2?=?0.87) with the experimental binding free energies. Overall, the major interaction comes from a few groups around His102 (α1), Phe77 (γ2) and Phe100 (α1). These groups of interaction consist of at least of 12 residues in total with a binding energy of more than 1 kcal mol?1. The simulation study disclosed herein provides a meaningful insight into GABAAR–ligand interactions and helps to arrive at a binding mode hypothesis with implications for drug design.  相似文献   

18.
19.
MARCO is a trimeric class A scavenger receptor of macrophages and dendritic cells that recognizes polyanionic particles and pathogens. The distal, scavenger receptor cysteine-rich (SRCR) domain of the extracellular part of this receptor has been implicated in ligand binding. To provide a structural basis for understanding the ligand-binding mechanisms of MARCO, we have determined the crystal structure of the mouse MARCO SRCR domain. The recombinant SRCR domain purified as monomeric and dimeric forms, and their structures were determined at 1.78 and 1.77 A resolution, respectively. The monomer has a compact globular fold with a twisted five-stranded antiparallel beta-sheet and a long loop covering a single alpha-helix, whereas the dimer is formed via beta-strand swapping of two monomers, thus containing a large eight-stranded beta-sheet. Calculation of the surface electrostatic potential revealed that the beta-sheet region with several arginines forms a basic cluster. Unexpectedly, an acidic cluster was found in the long loop region. In the monomer, the acidic cluster is involved in metal ion binding. Studies with cells expressing various SRCR domain mutants showed that all of the arginines of the basic cluster are involved in ligand binding, suggesting a cooperative binding mechanism. Ligand binding is also dependent on the acidic cluster and Ca2+ ions whose depletion appears to affect ligand binding at least by modulating the electrostatic potential or relative domain orientation. We propose that the SRCR domain dimerization can contribute to the recognition of large ligands by providing a means for the MARCO receptor oligomerization.  相似文献   

20.
Currently, it is thought that inhalational anesthetics cause anesthesia by binding to ligand-gated ion channels. This is being investigated using four-alpha-helix bundles, small water-soluble analogues of the transmembrane domains of the "natural" receptor proteins. The study presented here specifically investigates how multiple alanine-to-valine substitutions (which each decrease the volume of the internal binding cavity by 38 A(3)) affect structure, stability, and anesthetic binding affinity of the four-alpha-helix bundles. Structure remains essentially unchanged when up to four alanine residues are changed to valine. However, stability increases as the number of these substitutions is increased. Anesthetic binding affinities are also affected. Halothane binds to the four-alpha-helix bundle variants with 0, 1, and 2 substitutions with equivalent affinities but binds to the variants with 3 and 4 more tightly. The same order of binding affinities was observed for chloroform, although for a particular variant, chloroform was bound less tightly. The observed differences in binding affinities may be explained in terms of a modulation of van der Waals and hydrophobic interactions between ligand and receptor. These, in turn, could result from increased four-alpha-helix bundle binding cavity hydrophobicity, a decrease in cavity size, or improved ligand/receptor shape complementarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号