首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Summary The muscle fibers of brown and red chromatophores in the skin of the squid, Loligo opalescens, respond to motor nerve stimulation with non-propagating excitatory postsynaptic potentials (e.p.s.p.'s) of fluctuating amplitude. Depending on the strength of stimulation several size classes of e.p.s.p.'s are found, indicating polyneuronal innervation. Facilitation and summation are minimal even though the reversal potential of the e.p.s.p.'s is close to zero.Acetylcholine (ACh) and 5-hydroxytryptamine (5-HT) have no effect on membrane characteristics of the muscle fiber, but ACh greatly augments the spontaneous quantal release of transmitter [increase in the frequency of miniature postsynaptic potentials (m.p.s.p.'s)] and thereby causes tonic contraction (miniature tetanus). 5-HT reduces the frequency of miniature potentials and abolishes tonic contraction. Inhibition of cholinesterase by eserine does not affect the amplitude or time course of e.p.s.p.'s and of m.p.s.p.'s. High concentrations of cholinergic blocking agents (atropine, banthine) reduce the postsynaptic effects of nerve stimulation in some cases. The natural transmitter substance of the motoneurones may not be ACh. The action of 5-HT appears to be intracellular.Neighboring muscle fibers are electrically coupled through low resistance pathways. These are most likely provided by the close junctions that form part of the myo-muscular junctions. The specific membrane resistance of the regular muscle fiber membrane was found to range from 1,056 to 1,320 Ohm×cm2, that of the close junctions ranges from 12.8 to 22.6 Ohm×cm2. The area occupied by close junctions is small, however, and only 10% of the current injected into one cell passes into the next. Some of the e.p.s.p.'s observed in a given muscle fiber most likely represent the electrotonic spread of the e.p.s.p.'s of the neighbor fibers. Of the six classes of e.p.s.p.'s observed in some muscle fibers, only two may originate in these fibers themselves.Chromatophores in aged preparations often exhibit pulsations. These are caused by spike potentials arising within muscle fibers whose membranes have become electrically excitable. Each spike is preceded by a generator depolarization. The electrical coupling of neighboring muscle cells permits conduction of the spike potentials throughout the set of muscle fibers of a pulsating chromatophore. Altered conditions within such preparations also lead to tonic contractions and contractures that are not necessarily accompanied by electrical activity. Several arguments are presented in support of the hypothesis that the tonic condition of nerve terminals (characterized by enhanced spontaneous transmitter release) and of muscle fibers (characterized by inability to relax) is due to an abnormal condition of intracellular calcium (lack of Ca-binding by sarcoplasmic reticulum or other storage sites).No evidence could be found for an inhibitory innervation of the chromatophore muscles. The nerve-induced relaxation of tonically contracted muscle fibers is caused by the action of motoneurones.Preliminary experiments on muscle fibers of the anterior byssus retractor muscle of Mytilus support the hypothesis that the tonic behavior (catch) of other molluscan muscles is due to mechanisms similar to those found in the chromatophore muscles.This investigation was supported by Public Health Service Grant No. NB 04145 from the National Institute of Neurological Diseases and Blindness. We are grateful to the director of the Friday Harbor Laboratories, Prof. R. L. Fernald for providing space and facilities for this investigation.Supported by a Training Grant GM 1194 from the National Institute of General Medical Sciences.  相似文献   

2.
The effects of c-AMP, phosphodiesterase inhibitors (caffeine and theophylline) and vinblastine on spontaneous transmitter release was investigated at locust neuromuscular junctions. c-AMP, theophylline, caffeine, and vinblastine caused facilitation of transmitter release. None of these drugs had any effect on the amplitude of miniature excitatory postsynaptic potentials (min. E.P.S.P.'s), or on the resting membrane potential, but vinblastine increased the proportion of 'large' min. E.P.S.P.'s. The effect of theophylline (but not c-AMP and caffeine) on min. E.P.S.P. frequency was found to be calcium dependent. The effects of these drugs on the locust glutamatergic synapse are compared with their actions at other synapses.  相似文献   

3.
Michael R. Blatt 《Planta》1987,170(2):272-287
The membrane electrical characteristics of stomatal guard cells in epidermal strips from Vicia faba L. and Commelina communis L. were explored using conventional electrophysiological methods, but with double-barrelled microelectrodes containing dilute electrolyte solutions. When electrodes were filled with the customary 1–3 M KCl solutions, membrane potentials and resistances were low, typically decaying over 2–5 min to near-30 mV and <0.2 k·cm2 in cells bathed in 0.1 mM KCl and 1 mM Ca2+, pH 7.4. By contrast, cells impaled with electrodes containing 50 or 200 mM K+-acetate gave values of-182±7 mV and 16±2 k·cm2 (input resistances 0.8–3.1 G, n=54). Potentials as high as (-) 282 mV (inside negative) were recorded, and impalement were held for up to 2 h without appreciable decline in either membrane parameter. Comparison of results obtained with several electrolytes indicated that Cl- leakage from the microelectrode was primarily responsible for the decline in potential and resistance recorded with the molar KCl electrolytes. Guard cells loaded with salt from the electrodes also acquired marked potential and conductance responses to external Ca2+, which are tentatively ascribed to a K+ conductance (channel) at the guard cell plasma membrane.Measurements using dilute K+-acetate-filled electrodes revealed, in the guard cells, electrical properties common to plant and fungal cell membranes. The cells showed a high selectivity for K+ over Na+ (permeability ratio PNa/PK=0.006) and a near-Nernstian potential response to external pH over the range 4.5–7.4 (apparent PH/PK=500–600). Little response to external Ca2+ was observed, and the cells were virtually insensitive to CO2. These results are discussed in the context of primary, charge-carrying transport at the guard cell plasma membrane, and with reference to possible mechanisms for K+ transport during stomatal movements. They discount previous notions of Ca2+-and CO2-mediated transport control. It is argued, also, that passive (diffusional) mechanisms are unlikely to contribute to K+ uptake during stomatal opening, despite membrane potentials which, under certain, well-defined conditions, lie negative of the potassium equilibrium potential likely prevailing.Abbreviations and symbols EGTA ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - Mes 2-(N-morpholino) propanesulfornic acid - E equilibrium potential - Gm membrane conductance - Rin input resistance - Vm membrane potential  相似文献   

4.
Intracellular potentials were measured in beetroot tissue during the steady-state uptake of K+ from various solutions. In solutions containing bicarbonate, the membrane potential becomes up to 70 mv more negative than the estimated equilibrium potential for K+. The uptake of K+ from such solutions is correlated with variations in the potential, both when the bicarbonate concentration is changed and also when the metabolic activity of the tissue is changed by washing in water for various periods. However, the estimated permeability to K+ varies from 0.4 x 10-7 to 1.5 x 10-7 cm·sec-1. It is postulated that the change of potential arises from the metabolic transport of HCO3- into the cell or H+ outwards, and that the associated uptake of K+ is partly or entirely by passive diffusion across the cell membrane. In contrast, K+ uptake from KCl solutions is not accompanied by any significant change in the membrane potential, which remains relatively close to the K+ equilibrium potential. In solutions containing both KHCO3 and KCl, it appears that an amount of K+ equal to the influx of Cl- is taken up independently of the potential, while the component of K+ uptake which is not balanced by Cl- uptake is related to the potential in the manner described. These results suggest that K+ uptake is linked to Cl- uptake in an electrically neutral active transport process.  相似文献   

5.
Effects of drugs on resting potential, membrane resistance, and excitatory and inhibitory postsynaptic potentials (e.p.s.p.'s and i.p.s.p.'s) of lobster muscle fibers were studied using intracellular microelectrodes Acetylcholine, d-tubocurarine, strychnine, and other drugs of respectively related actions on vertebrate synapses were without effects even in 1 per cent solutions (10- w/v). Gamma-aminobutyric acid (GABA) acted powerfully and nearly maximally at 10-7 to 10-6 w/v. Membrane resistance fell two- to tenfold, the resting potential usually increasing slightly. This combination of effects, which indicates activation of inhibitory synaptic membrane, was also produced by other short chain ω-amino acids and related compounds that inactivate depolarizing axodendritic synapses of cat. The conductance change, involving increased permeability to Cl-, by its clamping action on membrane potential shortened as well as decreased individual e.p.s.p.'s. Picrotoxin in low concentration (ca. 10-7 w/v) and guanidine in higher (ca. 10-3 w/v) specifically inactivate inhibitory synapses. GABA and picrotoxin are competitive antagonists. The longer chain ω-amino acids which inactivate hyperpolarizing axodendritic synapses of cat are without effect on lobster neuromuscular synapse. However, one member of this group, carnitine (β-OH-GABA betaine), activated the excitatory synapses, a decreased membrane resistance being associated with depolarzation. The pharmacological properties of lobster neuromuscular synapses and probably also of other crustacean inhibitory synapses appear to stand in a doubly inverted relation to axodendritic synapses of cat.  相似文献   

6.
Summary In response to mechanical stimuli the protozoan,Stentor coeruleus, contracts in an all-or-none fashion and simultaneously reverses the direction of its ciliary beat. These behaviors have previously been shown to be correlated with the presence of a mechanoreceptor potential and all-or-none action potential (Wood 1970, 1973a). In the studies reported below the ionic bases of the resting, receptor and action potentials ofStentor were determined by use of intracellular microelectrodes penetrating animals chilled to 8.5–10 °C. The resting potential is most dependent on the extracellular concentration of KCl but some dependence on CaCl2 concentration was also observed. If allowance is made for the large increases in membrane conductance observed in solutions containing 2–8 mM KCl it is found that the resting potential data are well described by a modified form of the Goldman equation whereP Ca/P K = 0.068 andP Cl/P K = 0.072. The intracellular ionic activities (K i + = 13.1 mM, Cl i = 9.9 mM, Ca i + = 0 mM) which provide the best fit of this equation to the resting potential data are in close agreement with the intracellular concentration values measured by flame microspectrophotometry (Ki=12.4 mM, Cli = 9.4 mM) except in the case of Cai where most of the intracellular concentration is presumed to be bound. 65 to 75 mV action potentials are produced by suprathreshold depolarizations but contractions were not generally seen in these chilled animals, only ciliary reversals. The action potential peak varies with CaCl2 concentration with a slope of 12.6 mV/10 fold change but varies only slightly with KCl or Cl concentration. These peak potentials are well described by assuming that theP Ca/P k = 7.9 andP Cl/P K=1.0 at the time of the action potential peak. Depolarizing receptor potentials and brief inward receptor currents were observed for all forms of punctate and gross bodily mechanical stimulation employed. No evidence was found for any form of hyperpolarizing mechanoreceptor potentials as observed in some other ciliates. The reversal potential of the mechanoreceptor current varied with CaCl2 concentration in a manner similar to that of the action potential peak. As in the case of the action potential both theP Ca/P k andp cl/p k ratios appear to increase as a result of mechanical stimulation to 9.3–15 and 1.2–1.95 respectively. Mechanoreceptor currents are voltage dependent being increased when the membrane is depolarized above resting potential and decreased when the membrane is hyperpolarized. In general the electrophysiological characteristics ofStentor appear similar to those ofParamecium andStylonychia, but its resting membrane appears more selectively permeable to K+, it produces only depolarizing receptor potentials when mechanically stimulated and the initial action potential elicited by depolarizing current pulses can be all-or-none even in culture medium.  相似文献   

7.
In pot experiments with Solanum tuberosum L. (cv Saturna) the application of KCl as compared to K2SO4 delayed tuber development. The solute composition of leaves of the KCl treated plants was significantly lower in K+ and NO3 -, but higher in Mg2+, Ca2+ and Cl-. Since the solute potential in the KCl treated plants was more negative and associated with a higher water content, a higher turgor pressure can be assumed. This could explain the enhanced shoot growth observed with KCl. Application of K2SO4, on the other hand, accelerated the development of tubers. This might result from a less competitive shoot sink in K2SO4 treated plants and a stimulated phloem loading and translocation of assimilates by higher concentrations of leaf-K.  相似文献   

8.
IT is generally accepted that botulinum toxin entirely blocks transmitter release from motor nerve terminals without affecting nerve conduction or the sensitivity of the muscle membrane to acetylcholine. In particular, it has been reported that with both acute and chronic intoxication with type A botulinum, miniature end-plate potentials (m.e.p.p.s.) disappear completely from a muscle at about the time that transmission is blocked1,2. The action of botulinum toxin has been reinvestigated following acute application of toxin to the rat diaphragm in vitro and chronic paralysis of rat soleus muscle following a single intramuscular injection of toxin; miniature potentials have been observed to persist following blockade of neuromuscular transmission.  相似文献   

9.
The effect of Cl? on SO4?2 efflux was studied in both Cl?-containing and Cl?-free ascites tumor cells loaded with 35SO4?2 to test the hypothesis that Cl?-SO4?2 exchange is mediated by the same mechanism responsible for SO4?2-self exchange. The addition of Cl?-free, 35SO4?2 loaded cells to a SO4?2-free, Cl? medium results in: (1) SO4?2 efflux that is dependent on the extracellular Cl? concentration (Km = 4.85 mM; ke = 0.048 min?1 at 50 mM Cl?) and (2) net Cl?-uptake that exceeds SO4?2 loss. Both SITS (4-acetamido-4′-isothiocyanostilbene-2,2′-disulfonate) and ANS (1-anilino-8-napthalene sulfonate) inhibit SO4?2 efflux but are without effect on Cl? uptake. The addition of Cl?-containing, 35SO4?2 loaded cells to a SO4?2-free, C1? medium results in: (1) a slight gain in cellular Cl? and (2) k efor SO4?2 efflux identical to that for Cl?-free cells. The results are compatible with the suggestion that: (1) Cl? interacts with a membrane component responsible for transmembrane SO4?2 movement; (2) Cl? interaction stimulates the rate of unidirectional SO4?2 efflux from cells initially free of Cl? as well as the rate of SO4?2 turnover in cells maintained in the steady state with respect to Cl? and SO4?2; and (3) in the case of cells initially free of Cl?, the Cl?-SO4?2 pathway represents only a small fraction of the total unidirectional Cl?-influx the remainder being compatible with the electroneutral accumulation of NaCl and KCl.  相似文献   

10.
The mechanisms of three types of hyperpolarizing electrogenesis in hamster submandibular ganglion cells were analyzed with intracellular microelectrodes. These included (1) spike-induced hyperpolarizing afterpotential (S-HAP), (2) spontaneous transient hyperpolarizing potential (HP), and (3) the hyperpolarizing (H) phase of postsynaptic potential (PSP). Most of these hyperpolarizing potentials were due to conductance increases and reversed polarity at membrane potential (Em) between ?70 and ?85 mV, which was close to the K-equilibrium potential. The average resting potential of ganglion cells was ?53 mV. Action potential overshoot increased slightly in high [Ca2+]0 and decreased in low [Ca2+]0. In most neurons action potentials were completely suppressed by 10?7 M tetrodotoxin (TTX). The S-HAP has an initial component due to delayed rectification and a late component. The late component is enhanced by increasing [Ca2+]0, or by applying Ca-ionophore (A23187), TEA, caffeine, or dibutyryl cyclic (DBc-) AMP; it is suppressed by decreasing [Ca2+]0, or by applying Mn2+. Perfusion with Cl?-free saline reduced membrane potential slightly but did not modify the S-HAP. Depolarizing pulses also induced hyperpolarizing afterpotential (D-HAP), similar to the S-HAP. Spontaneous transient HPs occurred in some neurons at irregular intervals. HPs were insensitive to TTX but were suppressed by Mn2+. Caffeine induced low frequency rhythmic HPs in many neurons, often alternating with periods of repetitive spiking. The PSP was a monophasic depolarizing (D-) potential in some neurons, but in others the D-phase was followed by a small H-phase. Perfusion with A23187, caffeine or DBc-AMP increased the H-phase of the PSP. Perfusion with K+-free saline or treatment with 10?5M ouabain did not abolish the H-phase of PSPs. These membrane potential-dependent phenomena appear to be induced mainly by Ca-mediated K-conductance increases. This mechanism contributes to the regulation of low-frequency repetitive firing in submandibular ganglion cells.  相似文献   

11.
Electrical properties of the muscle fiber membrane were studied in the barnacle, Balanus nubilus Darw. by using intracellular electrode techniques. A depolarization of the membrane does not usually produce an all-or-none spike potential in the normal muscle fiber even though a mechanical response is elicited. The intracellular injection of Ca++-binding agents (K2SO4 and K salt of EDTA solution, K3 citrate solution, etc.) renders the fiber capable of initiating all-or-none spikes. The overshoot of such a spike potential increases with increasing external Ca concentration, the increment for a tenfold increase in Ca concentration being about 29 mv. The threshold membrane potential for the spike and also for the K conductance increase shifts to more positive membrane potentials with increasing [Ca++]out. The removal of Na ions from the external medium does not change the configuration of the spike potential. In the absence of Ca++ in the external medium, the spike potential is restored by Ba++ and Sr++ but not by Mg++. The overshoot of the spike potential increases with increasing [Ba++]out or [Sr++]out. The Ca influx through the membrane of the fiber treated with K2SO4 and EDTA was examined with Ca45. The influx was 14 pmol per sec. per cm2 for the resting membrane and 35 to 85 pmol per cm2 for one spike. From these results it is concluded that the spike potential of the barnacle muscle fiber results from the permeability increase of the membrane to Ca++ (Ba++ or Sr++).  相似文献   

12.
An effect of internal citrate ions on excitation-contraction coupling in skeletal muscle is described. The threshold for contraction was measured in rat extensor digitorum longus, (EDL), and soleus muscle fibers using a two microelectrode voltage clamp technique with either KCl-filled or K3 citrate-filled current electrodes. Contraction thresholds were stable for many minutes with KCl current electrodes. In contrast, thresholds fell progressively towards the resting membrane potential, by as much as -15 mV over a period of 10 to 20 min of voltage-clamp with citrate current electrodes. In addition, prepulse inhibition was suppressed, subthreshold activation enhanced and steady-state inactivation shifted to more negative potentials. Fibers recovered slowly from these effects when the citrate electrode was withdrawn and replaced with a KCl electrode. The changes in contraction threshold suggest that citrate ions act on the muscle activation system at an intracellular site, since the citrate permeability of the surface membrane is probably very low. An internal citrate concentration of 5 mM was calculated to result from citrate diffusion out of the microelectrode into the recording area for 20 min. 5 mM citrate added to an artificial cell lowered the free calcium concentration from 240 to 31 microM. It is suggested that citrate modifies excitation-contraction coupling either by acting upon an anion-dependent step in activation or by reducing the free calcium and/or free magnesium concentration in the myoplasm.  相似文献   

13.
Using a newly developed, extracellular vibrating electrode, we studied the ionic composition of the current pulses which traverse the developing Pelvetia embryo. External Na+, Mg2+, or SO42?, are not needed for the first 20 min of pulsing. In fact, lowering external Na+ or Mg2+ (or K+) actually stimulates pulsing. Since tracer studies show that Ca2+ entry is speeded by Na+, Mg2+, or K+ reduction, these findings suggest that Ca2+ entry triggers pulsing. A sevenfold reduction in external Cl? raises pulse amplitudes by 60%. Moreover, Cl? is the only major ion with an equilibrium potential near the pulse reversal potential. These facts suggest that Cl? efflux carries much of the “inward” current. We propose a model for pulsing in which increased Ca2+ within the growing tip opens Cl? channels. The resulting Cl? efflux slightly depolarizes the membrane and thus drives a balancing amount of K+ out. Thus, the pulses release KCl and serve to relieve excess turgor pressure. By letting Ca2+ into the growing tip, they should also strengthen the transcytoplasmic electrical field which is postulated to pull growth components toward this tip.  相似文献   

14.
Sorghum bicolor L. Moench, RS 610, was grown in liquid media salinized with NaCl, KCl, Na2SO4, K2SO4 or with variable mixtures of either NaCl/KCl or Na2SO4/K2SO4 at osmotic potentials ranging from 0 to -0.8 MPa. The purpose was to study the effects of different types and degrees of salinity in growth media on growth and solute accumulation. In 14-day-old plants the severity of leaf growth inhibition at any one level of osmotic potential in the medium increased according to the following order: NaCl < Na2SO4 < KCl = K2SO4. Inhibition of growth by mixtures of Na+ and K+ salts was the same as by K+ salts alone. Roots responded differently. Root growth was not affected by Na+ salts in the range of 0 to -0.2 MPa while it was stimulated by K+ salts. The major cation of leaves was K+ because S. bicolor is a Na+-excluder, while Na+ was the major cation in roots except at low Na+/K+ ratios in media. Anions increased in tissues linearly in relation to total monovalent cation, but not with a constant anion/cation ratio. This ratio increased as the cation concentrations in tissues increased. Sucrose in leaf tissue increased 75 fold in Chloride-plants (plants growing in media in which the only anion of the salinizing salts was Cl?) and 50 fold in Sulphate-plants (the only anion of the salinizing salts was SO42-). Proline increased 60 and 18 fold in Chloride- and Sulphate-plants, respectively, as growth media potentials decreased from 0 to -0.8 MPa. The concentrations of both sucrose and proline were directly proportional to the amount of total monovalent cation in the tissue. Sucrose concentrations began increasing when total monovalent cations exceeded 100 μmol (g fresh weight)?1 (the monovalent cation level in non-stressed plants), but proline did not start accumulating until monovalent cation concentrations exceeded 200 μmol (g fresh weight)?1. Therefore, sucrose seemed to be the solute used for osmotic adjustment under mild conditions of saline stress while proline was involved in osmotic adjustment under more severe conditions of stress. Concentrations of inorganic phosphate, glucose, fructose, total amino acids and malic acid fluctuated in both roots and leaves in patterns that could be somewhat correlated with saline stress and, sometimes, with particular salts in growth media. However, the changes measured were too small (at most a 2–3 fold increase) to be of importance in osmotic adjustment.  相似文献   

15.
Spontaneous synaptic potentials and their relation to the end-plate potential (e.p.p.) are studied. It has been suggested earlier that the e.p.p. at a single nerve-muscle junction is built up statistically of small all-or-none units which are identical in size with the spontaneous miniature end-plate potentials (m.e.p.p.'s). In this paper, a more general theory is developed which takes into account latency fluctuations of the unit components. A general equation for e.p.p. amplitude probability distribution is derived. This probability distribution is a function of the latency distribution, m.e.p.p.'s pulse shape, m.e.p.p.'s amplitude distribution, and the mean quantal content. The time course of transmitter release, or latency distribution, is derived from a histogram of synaptic delays in a frog muscle, but obtained equations can be used for other distribution functions as well.  相似文献   

16.
The membrane potentials of sea urchin (Hemicentrotus pulcherrimus) eggs before and after fertilization and their changes during the membrane elevation induced by intracellular electrical stimulation were recorded in solutions of various ionic compositions. Upon fertilization, the membrane potential (?10 mV) depolarized and reversed polarity by a few mV, then gradually returned to a new steady level ranging between ?50 and ?60 mV. The activation potential is closely associated with a transient increase in the membrane permeability. The potential of the unfertilized egg is hyperpolarized by monovalent anions (Br?, Cl? and NO3?) and depolarized slightly by K+. In contrast, the membrane of the fertilized egg is markedly depolarized by K+. Suppression of depolarization associated with an increase of the membrane permeability was recorded in Na-free medium (Tris-HCl). The selective increase in permeability to monovalent anions is thought to alternate with the selective increase in permeability to K+through the mediation of a transient increase of Na+-permeability at the time of fertilization. No causal relationship between the membrane elevation and the depolarization was established because the breakdown of the cortical granules occurs without depolarization or an increase in membrane permeability.  相似文献   

17.
Binomial parameters of transmitter secretion were calculated on the basis of analysis of synaptic potentials in the frog sartorius muscle. Negative values of the parameter p were found in some synapses. This happened most often in low Ca2+ concentrations and with low amplitude of miniature end-plate potentials. The results were interpreted in terms of a model assuming spatial heterogeneity of probability of transmitter quantum release at different release points. Simulation of transmitter secretion by computer showed that the appearance of negative values of the parameter p and incorrect estimates of n experimentally are connected with the form of distribution of probability of transmitter quantum release in the synapse and with the amplitude of miniature potentials.S. V. Kurashov Kazan' Medical Institute, Ministry of Health of the RSFSR. Translated from Neirofiziologiya, Vol. 16, No. 2, pp. 182–189, March–April, 1984.  相似文献   

18.
The effects of K fertiliser (160 kg ha-1) applied with Cl- or SO4 2- as the accompanying anion on the K nutrition of kiwifruit (Actinidia deliciosa var. deliciosa) were assessed in a field experiment, using vines with varying degrees of K deficiency. Leaf K concentrations in spring were significantly higher for vines receiving KCl, compared to those receiving K2SO4. This effect did not interact significantly with the degree of K deficiency, and persisted for about 6 weeks. Subsequently there was no significant difference between the leaf K concentrations for the vines receiving KCl or K2SO4. Applying K as KCl increased the leaf Cl concentration, especially in spring, while applying K as K2SO4 had no significant effect on the leaf S concentration at that time. These results implied a greater requirement for organic acid anions for K+ uptake from K2SO4 than from KCl, and the importance of organic acid anions for K+ uptake from different sources of K fertiliser is discussed. This transient effect of the accompanying anion on leaf K status was associated with large effects on flowering, and fruit yields were about 28% higher for plants receiving KCl rather than K2SO4.The effects on growth and tissue nutrient composition of varying the concentrations of Cl-, NO3 -, SO4 2- and H2PO4 - around the roots of kiwifruit vines were examined in a solution culture experiment. For H2PO4 -, plant growth was very similar over a wide range of rates of addition. For the other anions, the range between deficiency and toxicity was clearly delineated. For Cl- and NO3 -, toxicity was associated with high tissue concentrations of Cl and N, respectively, and was consistent with competition for uptake between Cl- and NO3 -. However, for SO4 2-, toxicity was associated with only a small increase in the tissue S concentration relative to that associated with maximum growth, and appeared to result more from effects on uptake of other anions and cations rather than from direct effects of high tissue S concentrations.It is concluded that the sensitivity of kiwifruit to the anion accompanying K+ in fertiliser may be related to the unusually high requirement for Cl previously reported for this species.  相似文献   

19.
Inhibitory miniature synaptic potentials in rat motoneurons   总被引:5,自引:0,他引:5  
In the newborn rat spinal cord, spontaneous potentials were recorded, with KCl electrodes, from motoneurons in the presence of tetrodotoxin (10(-6) g ml-1) to abolish nerve impulses. These potentials occurred at low frequencies (less than 2 Hz), and their mean amplitude was a fraction of 1 mV. An increase of osmolarity with sucrose or an increase of extracellular K+, increased the frequency of miniature synaptic potentials. The amplitude of the spontaneous potentials was increased by intracellular injection of Cl-. Strychnine (2-25 microM) completely abolished the spontaneous potentials. It is suggested that these potentials are produced by the spontaneous release of packages of inhibitory transmitter at synapses on motoneurons.  相似文献   

20.
The effects of a variety of chemically diverse, reversibly acting inhibitors have been measured on both Cl? and SO42? equilibrium exchange across the human red cell membrane. The measurements were carried out under the same conditions (pH 6.3, 8°C) and in the same medium for both the Cl? and SO24 tracer fluxes. Under these conditions the rate constant for Cl?-Cl? exchange is about 20 000 times larger than that for SO42?-SO42? exchange. Despite this large difference in the rates of transport of the two anions, eight different reversibly acting inhibitors have virtually the same effect on the Cl? and SO42? transport. The proteolytic enzyme papain also has the same inhibitory effect on both the Cl? and SO42? self-exchange. In addition, the slowly penetrating disulfonate 2-(4′-aminophenyl)-6-methylbenzenethiazol-3′,7-disulfonic acid (APMB) is 5-fold more effective from the outer than from the inner membrane surface in inhibiting both Cl? and SO42? self-exchange. We interpret these results as evidence that the rapidly penetrating monovalent anion Cl? and the slowly penetrating divalent anion SO42? are transported by the same system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号