首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The induction of apoptosis by cell cycle regulator molecules under conditions optimal for exponential growth was examined in rat pheochromocytoma PC12 cells by overexpression of cyclins and cyclin-dependent kinases (cdks). By flow cytometry and by immunofluorescence, only cells overexpressing cdk4 or cyclin D1 underwent apoptosis, which was not associated with G1-arrest. Cdk4 kinase activity was significantly higher in cdk4-, or cyclin D1-expressing cells. Furthermore, induction of apoptosis by cdk4 was abrogated by co-transfection of p16(INK4), or dominant negative cdk4. These results suggest that upregulation of cdk4 kinase activity is a primary and critical mediator of apoptosis in PC12 cells under physiological conditions.  相似文献   

2.
The activation of conditional alleles of Myc induces both cell proliferation and apoptosis in serum-deprived RAT1 fibroblasts. Entry into S phase and apoptosis are both preceded by increased levels of cyclin E- and cyclin D1-dependent kinase activities. To assess which, if any, cellular responses to Myc depend on active cyclin-dependent kinases (cdks), we have microinjected expression plasmids encoding the cdk inhibitors p16, p21 or p27, and have used a specific inhibitor of cdk2, roscovitine. Expression of cyclin A, which starts late in G1 phase, served as a marker for cell cycle progression. Our data show that active G1 cyclin/cdk complexes are both necessary and sufficient for induction of cyclin A by Myc. In contrast, neither microinjection of cdk inhibitors nor chemical inhibition of cdk2 affected the ability of Myc to induce apoptosis in serum-starved cells. Further, in isoleucine-deprived cells, Myc induces apoptosis without altering cdk activity. We conclude that Myc acts upstream of cdks in stimulating cell proliferation and also that activation of cdks and induction of apoptosis are largely independent events that occur in response to induction of Myc.  相似文献   

3.
Many mechanisms either activate or inhibit the cdks and thereby either promote or arrest progression through the mitotic cell cycle. Since the signal transduction pathways emanating from extracellular mitogens and the agents controlling these pathways are complicated there may yet be novel mechanisms of cell cycle regulation remaining to be elucidated. In this article we outline the different techniques used to study the cell cycle and its regulation. These include: establishing that the cell cycle is arrested by propidium iodide staining followed by FACS analysis or by measuring 3H-thymidine incorporation into DNA; measuring the amount of cyclin/cdk associated kinase activity; assessing the steady-state expression profiles of cyclins, cdks and ckis by immunoblotting; and investigating the formation of complexes between these proteins by coimmunoprecipitations. Caveats and advantages of each technique are discussed. Following this paradigm yielded the discovery of the cell cycle inhibitors p27Kip1 and p21Cip1 and could very well lead to the discovery or novel cell cycle regulatory mechanisms.  相似文献   

4.
5.
Uterine decidualization, characterized by stromal cell proliferation, and differentiation into specialized type of cells (decidual cells) with polyploidy, during implantation is critical to the pregnancy establishment in mice. The mechanisms by which the cell cycle events govern these processes are poorly understood. The cell cycle is tightly regulated at two particular checkpoints, G1-S and G2-M phases. Normal operation of these phases involves a complex interplay of cyclins, cyclin-dependent kinases (cdks) and cdk inhibitors (CKIs). We previously observed that upregulation of uterine cyclin D3 at the implantation site is tightly associated with decidualization in mice. To better understand the role of cyclin D3 in this process, we examined cell-specific expression and associated interactions of several cell cycle regulators (cyclins, cdks and CKIs) specific to different phases of the cell cycle during decidualization in mice. Among the various cell cycle molecules examined, coordinate expression and functional association of cyclin D3 with cdk4 suggest a role for proliferation and, that of cyclin D3 with p21 and cdk6 is consistent with the development of polyploidy during stromal cell decidualization.  相似文献   

6.
The isolation of plant genes homologous to cdk and cyclin components from yeast and animals proves the existence of a basic cell cycle machinery in all eukaryotes. cdk and cyclin expression has been shown to be involved in the spatial and temporal control of cell division in a variety of developmental processes. In plants, cell division and development are closely interlinked processes that are regulated by phytohormones. cdks and cyclins were found to be under control of phytohormones underscoring their integral role in mediating different developmental pathways. Furthermore, studies on cdk and cyclin expression not only correlate with actual cell cycle activity but also with cell division competence providing a working model to understand regeneration capacity at the molecular level.  相似文献   

7.
8.
Molecules that bind to tubulin and disrupt tubulin dynamics are known as microtubule targeting agents. Treatment with a microtubule targeting agent leads to cell cycle arrest followed by apoptosis. Tubulin inhibitors have been highly effective in the clinical treatment of a variety of tumors and are being investigated for treatment of several other diseases. Currently, all FDA approved microtubule inhibitors bind to β-tubulin. Given the overall success of tubulin-binding agents in anticancer chemotherapy, α-tubulin is an attractive and unexplored target. Herein, we will discuss pironetin, the only compound known to bind α-tubulin, with particular focus on the known biological properties, the total syntheses, exploration of its structure-activity relationship, and future directions.  相似文献   

9.
Cyclin-dependent kinase (cdks) are key components of the engine that drives the cell proliferation cycle in all eukaryotes. These kinases are related to p34(cdc2) and associate with regulatory subunits belonging to the cyclin family. To understand how cdks promote cell cycle progression, it will be important to identify their physiological substrates and to determine how phosphorylation influences the functions of these substrates. This article discusses recent progress as well as some of the problems related to the quest for cdk substrates.  相似文献   

10.
D cyclins (D1, D2 and D3) and their catalytic subunits (cyclin-dependent kinases cdk4 and cdk6) have a facilitating, but nonessential, role in cell cycle entry. Tissue-specific functions for D-type cyclins and cdks have been reported; however, the biochemical properties of these kinases are indistinguishable. We report that an F box protein, Fbxo7, interacted with cellular and viral D cyclins and distinguished among the cdks that bind D-type cyclins, specifically binding cdk6, in vitro and in vivo. Fbxo7 specifically regulated D cyclin/cdk6 complexes: Fbxo7 knockdown decreased cdk6 association with cyclin and its overexpression increased D cyclin/cdk6 activity and E2F activity. Fbxo7 interacted with p27, but its enhancement of cyclin D/cdk6 activity was p21/p27 independent. Fbxo7 overexpression transformed murine fibroblasts, rendering them tumorigenic in athymic nude mice. Transformed phenotypes were dependent on cdk6, as knockdown of cdk6 reversed them. Fbxo7 was highly expressed in epithelial tumors, but not in normal tissues, suggesting that it may have a proto-oncogenic role in human cancers.  相似文献   

11.
12.
Herpes simplex virus (HSV) establishes productive (lytic) infections in nonneuronal cells and nonproductive (latent) infections in neurons. It has been proposed that HSV establishes latency because quiescent neurons lack cellular factors required for productive infection. It has been further proposed that these putative factors are induced following neuronal stress, as a requirement for HSV reactivation. To date, the identity of these putative cellular factors remains unknown. We have demonstrated that cyclin-dependent kinase (cdk) 1, 2, or 7 is required for HSV replication in nonneuronal cells. Interestingly, cdks 1 and 2 are not expressed in quiescent neurons but can be induced in stressed neurons. Thus, cdks may be among the cellular proteins required for HSV reactivation whose neuronal expression is differentially regulated during stress. Herein, we determined that neuronal expression of nuclear cdk2, cdk4, and cyclins E and D2 (which activate cdks 2 and 4, respectively) was induced following explant cultivation, a stressful stimulus that induces HSV reactivation. In contrast, neuronal expression of cdk7 and cytoplasmic cdk4 decreased during explant cultivation, whereas cdk3 was detected in the same small percentage of neurons before and after explant cultivation and cdks 1, 5, and 6 were not detected in neuronal cell bodies. HSV-1 reactivated specifically in neurons expressing nuclear cdk2 and cdk4, and an inhibitor specific for cdk2 inhibited HSV-1 reactivation. We conclude that neuronal levels of cdk2 are among the factors that determine the outcome of HSV infections of neurons.  相似文献   

13.
Expression of cyclins and cdks throughout murine carcinogenesis.   总被引:6,自引:0,他引:6  
The overexpression and/or amplification of cell cycle regulating genes is an important factor in the progression of cancer. Recent attention has been focused on several cyclin and cdks genes whose expression were increased in many types of tumor. In this study, we investigated the expression kinetics of cyclins A, B, D1, E and cdks 1, 2, 4, 6 by RT-PCR coupled with densitometry and correlated to the growth fraction (percentage of S cells). This analysis was performed using an experimental murine leukemic model, generated by in vivo administration of murine clonogenic cells Wehi-3b injected into balb-c mice. Differential expression of cyclins and cdks was observed between normal and tumoral cells with different patterns of expression between G1 and G2M cyclins-cdks. G1 cyclins cdks expression was significantly increased in tumor cells when compared to normal cells. In the same manner, G2M cyclins cdks expression was only observed in tumor cells at a lower level than for G1 cyclins cdks, but not detected in normal cells. These differences correlated with the growth fraction for both the G1 cyclins cdks (r = 0.91, 0.94, 0.85, 0.90 and 0.96 for cyclin D1, cyclin E, cdk2, cdk4 and cdk6, respectively) and the G2M cyclins cdks (r = 0.96, 0.97 and 0.93 for cyclins A, B and cdkl respectively). Analysis of cyclins cdks expression kinetics during tumoral progression shows that cyclins A, B and cdkl were expressed from the 12th day on of disease, increased until the death of the animals and correlated with the growth fraction (r = 0.94, 0.95 and 0.97 for cyclins A, B and cdk1 respectively) (n = 20). Overexpression of other cyclins cdks were observed, from the 6th day on for cyclin D1, the 12th day for cdk2 and cdk4, the 15th day for cdk6 and the 20th day for cyclin E. These increases persisted during tumoral progression and correlated with the growth fraction (r = 0.85, 0.94, 0.93, 0.96, and 0.98 for cyclin D1, cyclin E, cdk2, cdk4 and cdk6, respectively) (n = 20). Our results demonstrated that G1 and G2-M cyclins cdks mRNA levels were increased at approximately the same time of maximal tumor growth. Only cyclin D1 overexpression occured at the initiation of tumoral development, and could therefore be considered as an early marker of cell proliferation.  相似文献   

14.
Iron (Fe) is essential for cellular metabolism e.g., DNA synthesis and its depletion causes G1/S arrest and apoptosis. Considering this, Fe chelators have been shown to be effective anti-proliferative agents. In order to understand the anti-tumor activity of Fe chelators, the mechanisms responsible for G1/S arrest and apoptosis after Fe-depletion have been investigated. These studies reveal a multitude of cell cycle control molecules are regulated by Fe. These include p53, p27Kip1, cyclin D1 and cyclin-dependent kinase 2 (cdk2). Additionally, Fe-depletion up-regulates the mRNA levels of the cdk inhibitor, p21CIP1/WAF1, but paradoxically down-regulates its protein expression. This effect could contribute to the apoptosis observed after Fe-depletion. Iron-depletion also leads to proteasomal degradation of p21CIP1/WAF1 and cyclin D1 via an ubiquitin-independent pathway. This is in contrast to the mechanism in Fe-replete cells, where it occurs by ubiquitin-dependent proteasomal degradation. Up-regulation of p38 mitogen-activated protein kinase (MAPK) after Fe-depletion suggests another facet of cell cycle regulation responsible for inhibition of proliferation and apoptosis induction. Elucidation of the complex effects of Fe-depletion on the expression of cell cycle control molecules remains at its infancy. However, these processes are important to dissect for complete understanding of Fe-deficiency and the development of chelators for cancer treatment.  相似文献   

15.
16.
Several gamma-herpesviruses encode proteins related to the mammalian cyclins, regulatory subunits of cyclin-dependent kinases (cdks) essential for cell cycle progression. We report a 2.5 A crystal structure of a full-length oncogenic viral cyclin from gamma-herpesvirus 68 complexed with cdk2. The viral cyclin binds cdk2 with an orientation different from cyclin A and makes several novel interactions at the interface, yet it activates cdk2 by triggering conformational changes similar to cyclin A. Sequences within the viral cyclin N-terminus lock part of the cdk2 T-loop within the core of the complex. These sequences and others are conserved amongst the viral and cellular D-type cyclins, suggesting that this structure has wider implications for other cyclin-cdk complexes. The observed resistance of this viral cyclin-cdk complex to inhibition by the p27(KIP:) cdk inhibitor is explained by sequence and conformational variation in the cyclin rendering the p27(KIP:)-binding site on the cyclin subunit non-functional.  相似文献   

17.
The p13suc1/p9CKShs proteins bind tightly to the cyclin-dependent kinases cdk1 and cdk2. The distantly related protein, p15cdk-BP, binds cdk4/6, cdk5 and cdk8. We now show that immobilized p15cdk-BP binds both an HMG-I kinase and a 35-kDa protein that cross-reacts with anti-PSTAIRE antibodies (PSTAIRE is a totally conserved motif located in subdomain III of cdk). This 'cdkX' and the HMG-I kinase also bind to an immobilized inhibitor of cdks (HD). Several properties clearly distinguish cdkX, and its associated HMG-I kinase, from known anti-PSTAIRE cross-reactive cdks: (a) cdkX migrates, in SDS/PAGE, in a position intermediate between prophase phosphorylated cdk1 and metaphase dephosphorylated cdk1; (b) in contrast with cdk1, cdkX and associated HMG-I kinase activity do not decrease following successive depletions on p9CKShs1-sepharose; (c) cdkX and associated HMG-I kinase activity, but not cdk1, decrease following depletions on immobilized inhibitor; (d) cdkX is expressed during the early development of sea urchin embryos; in contrast with cdk1/cyclin B kinase, the p15cdk-BP-bound HMG-I kinase is active throughout the cell cycle; compared with cdk1 it is active later in development; (e) p15cdk-BP-bound HMG-I kinase is essentially insensitive to powerful inhibitors of cdk such as purvalanol, roscovitine, olomoucine, p21cip1 and p16INK4A; HD is only moderately inhibitory. Altogether these results suggest the existence of a new cdk1-related kinase, possibly involved in the regulation of early development. The presence of this kinase in all organisms investigated so far, from plants to mammals, calls for its definitive identification.  相似文献   

18.
19.
20.
Endothelial cells (ECs) are quiescent in normal blood vessels, but undergo rapid bursts of proliferation after vascular injury, hypoxia or induced by powerful angiogenic cytokines like fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF). Deregulated proliferation of ECs facilitates angiogenic processes and promotes tumor growth. In dividing cells, cell cycle-associated protein kinases, which are referred as cyclin-dependent kinases (cdks), regulate proliferation, differentiation, senescence, and apoptosis. Cyclin-dependent kinase-5 (cdk5) is expressed in neuronal cells and plays an important role in neurite outgrowth, of neuronal migration and neurogenesis, its functions in non-neuronal cells are unclear. Here, we show for the first time that the cdk5 is expressed at high levels in proliferating bovine aortic endothelial (BAE) cells, by contrast insignificant low levels of cdk5 expression in quiescent BAE cells. In addition, bFGF up-regulates cdk5 expression in a dose-dependent fashion. Interestingly, temporal expression data suggests that cdk5 expression is very low between 24-48 h, but high level of cdk5 expression was detected during 60-72 h. This later time corresponds to the time of completion of one cell cycle (doubling of cell population) of BAE cell culture. Angiostatin (AS), a powerful inhibitor of angiogenesis inhibits ECs proliferation in dose-dependent manner with concomitant down-regulation of cdk5 expression. The role of cdk5 in ECs, proliferation and apoptosis was confirmed by selective inhibition of cdk5 expression by the purine derivative roscovitine, which inhibits bFGF-stimulated BAE cells proliferation and induces apoptosis in dose-specific manner. By contrast, the roscovitine analog olomoucine, which is a specific inhibitor of cdk4, but not of cdk5 failed to affect ECs proliferation and apoptosis. These data suggest for the first time that neuron specific protein cdk5 may have significant role in the regulation of ECs proliferation, apoptosis, and angiogenesis and extends beyond its role in neurogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号