首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human diploid fibroblasts (HDF) rarely, if ever, undergo spontaneous transformation to an immortalized cell type. Here we report the immortalization of an HDF cell line following transduction with cyclin A2 or cdk1 human genes via retroviral vectors. Fluorescence in situ hybridization (FISH) studies using the retroviral vector as a probe indicate that these cell lines are monoclonal. No telomerase activity could be detected in these cell lines, and the telomere length in the immortalized cells was observed to be 10-20 kb longer than that in low-passage cells from the parental fibroblast line. Cytogenetic studies revealed that the immortal lines share common chromosomal aberrations. FISH studies with a probe for p53 revealed loss of one copy of this gene which was associated with reduced steady-state levels of both p53 and p53-regulated p21(WAF1/Sdi1/CIP1) messages in both quiescent and proliferating immortalized cultures relative to the parental cells. Additional FISH studies with probes for p16(INK4a) and Rb, carried out after the immortalized cells proliferated in excess of 100 population doublings, also revealed loss of one copy of these genes in both cell lines. These cell lines, together with the well-characterized parental cells, could provide useful research material for the study of the mechanisms of immortalization and of regulation of proliferative senescence in HDF.  相似文献   

2.
Normal human somatic cells have a finite life span and undergo replicative senescence after a limited number of cell divisions. Erosion of telomeric DNA has emerged as a key factor in senescence, which is antagonized during cell immortalization and transformation. To clarify the involvement of telomerase in the immortalization of keratinocytes, catalytic subunit of telomerase (hTERT) expression was restored in normal human esophageal epithelial cells (EPC2). EPC2-hTERT cells overcame senescence and were immortalized without p16INK4a genetic or epigenetic alterations. p16INK4a was expressed at moderate levels and remained functional as evidenced by induction with UV treatment and binding to cyclin-dependent kinase 4 and 6. There were no mutations in the p53 gene, and p53 was functionally intact. Importantly, senescence could be activated in the immortalized EPC2-hTERT cells by overexpression of oncogenic H-ras or p16INK4a. Furthermore, the EPC2-hTERT cells yielded basal cell hyperplasia in an innovative organotypic culture system in contrast to a normal epithelium from parental cells. These comprehensive results indicate that the expression of telomerase induces immortalization of normal human esophageal keratinocytes without inactivation of p16INK4a/pRb pathway or abrogation of the p53 pathway.  相似文献   

3.
4.
In primary mouse embryo fibroblasts (MEFs), oncogenic Ras induces growth arrest via Raf/MEK/extracellular signal-regulated kinase (ERK)-mediated activation of the p19ARF/p53 and INK4/Rb tumor suppressor pathways. Ablation of these same pathways causes spontaneous immortalization in MEFs, and oncogenic transformation by Ras requires ablation of one or both of these pathways. We show that Kinase Suppressor of Ras 1 (KSR1), a molecular scaffold for the Raf/MEK/ERK cascade, is necessary for RasV12-induced senescence, and its disruption enhances primary MEF immortalization. RasV12 failed to induce p53, p19ARF, p16INK4a, and p15INK4b expression in KSR1-/- MEFs and increased proliferation instead of causing growth arrest. Reintroduction of wild-type KSR1, but not a mutated KSR1 construct unable to bind activated ERK, rescued RasV12-induced senescence. On continuous culture, deletion of KSR1 accelerated the establishment of spontaneously immortalized cultures and increased the proportion of cultures escaping replicative crisis. Despite enhancing escape from both RasV12-induced and replicative senescence, however, both primary and immortalized KSR1-/- MEFs are completely resistant to RasV12-induced transformation. These data show that escape from senescence is not necessarily a precursor for oncogenic transformation. Furthermore, these data indicate that KSR1 is a member of a unique class of proteins whose deletion blocks both senescence and transformation.  相似文献   

5.
With increasing frequency during serial passage in culture, primary human keratinocytes express p16(INK4A) (p16) and undergo senescence arrest. Keratinocytes engineered to express hTERT maintain long telomeres but typically are not immortalized unless, by mutation or other heritable event, they avoid or greatly reduce p16 expression. We have confirmed that keratinocytes undergo p16-related senescence during growth in culture, whether in the fibroblast feeder cell system or in the specialized K-sfm medium formulation, and that this mechanism can act as a barrier to immortalization following hTERT expression. We have characterized the p16-related arrest mechanism more precisely by interfering specifically with several regulators of cell cycle control. Epidermal, oral mucosal, corneal limbal, and conjunctival keratinocytes were transduced to express a p16-insensitive mutant cdk4 (cdk4(R24C)), to abolish p16 control, and/or a dominant negative mutant p53 (p53DD), to abolish p53 function. Expression of either cdk4(R24C) or p53DD alone had little effect on life span, but expression of both permitted cells to divide 25 to 43 population doublings (PD) beyond their normal limit. Keratinocytes from a p16(+/-) individual transduced to express p53DD alone displayed a 31-PD life span extension associated with selective growth of variants that had lost the wild-type p16 allele. Cells in which both p53 and p16 were nonfunctional divided rapidly during their extended life span but experienced telomere erosion and ultimately ceased growth with very short telomeres. Expression of hTERT in these cells immortalized them. Keratinocytes engineered to express cdk4(R24C) and hTERT but not p53DD did not exhibit an extended life span. Rare immortal variants exhibiting p53 pathway defects arose from them, however, indicating that the p53-dependent component of keratinocyte senescence is telomere independent. Mutational loss of p16 and p53 has been found to be a frequent early event in the development of squamous cell carcinoma. Our results suggest that such mutations endow keratinocytes with extended replicative potential which may serve to increase the probability of neoplastic progression.  相似文献   

6.
7.
Under standard culture conditions, normal human mammary epithelial cells (HMECs) divide a limited number of times before proliferation ceases in a growth-arrested state referred to as selection. Cells that have undergone spontaneous loss of p16(INK4a) expression due to hypermethylation of the p16(INK4a) CpG island emerge from selection and proliferate for an extended, but limited, period before senescence. Here we show, as expected, that selection was bypassed by expression of SV40 large T-antigen proteins containing an intact pRb-binding domain in preselection cells. These cells were immortalized with high efficiency (seven of nine separate cultures). Also as expected, postselection cells were immortalized by expression of the human papillomavirus-16 E6 oncoprotein (four of four cultures), which inactivates p53 protein. In contrast, we found that expression of SV40 large T-antigen protein, which also inactivates p53, was poorly maintained in postselection cultures due to its growth-suppressive effects; consequently, these cells became immortalized at low efficiency (one of 11 cultures). Reexpression of p16(INK4a) in postselection HMECs by the demethylating agent, 5-azacytidine, or transfection of a p16(INK4a) expression plasmid did not restore the ability of these cells to undergo SV40-induced transformation. Postselection HMECs are a widely used in vitro model system, but these observations indicate they have undergone changes in gene expression in addition to loss of p16(INK4a) expression.  相似文献   

8.
Individuals with germ line mutations in the p53 gene, such as Li-Fraumeni syndrome (LFS), have an increased occurrence of many types of cancer, including an unusually high incidence of breast cancer. This report documents that normal breast epithelial cells obtained from a patient with LFS (with a mutation at codon 133 of the p53 gene) spontaneously immortalized in cell culture while the breast stromal fibroblasts from this same patient did not. Spontaneous immortalization of human cells in vitro is an extremely rare event. This is the first documented case of the spontaneous immortalization of breast epithelial cells from a patient with LFS in culture. LFS patient breast stromal fibroblasts infected with a retroviral vector containing human papillomavirus type 16 E7 alone were able to immortalize, whereas stromal cells obtained from patients with wild-type p53, similarly infected with human papillomavirus type 16 E7, did not. The present results indicate a protective role of normal pRb-like functions in breast stromal fibroblasts but not in breast epithelial cells and reinforces an important role of wild-type p53 in the regulation of the normal growth and development of breast epithelial tissue.  相似文献   

9.
Telomere attrition in primary human fibroblasts induces replicative senescence accompanied by activation of the p53 and p16(INK4a)/RB tumor suppressor pathways. Although the contribution of p53 and its target, p21, to telomere-driven senescence have been well established, the role of p16(INK4a) is controversial. Attempts to dissect the significance of p16(INK4a) in response to telomere shortening have been hampered by the concomitant induction of p16(INK4a) by cell culture conditions. To circumvent this problem, we studied the role of p16(INK4a) in the cellular response to acute telomere damage induced by a dominant negative allele of TRF2, TRF2(Delta B Delta M). This approach avoids the confounding aspects of culture stress because parallel cultures with and without telomere damage can be compared. Telomere damage generated with TRF2(Delta B Delta M) resulted in induction of p16(INK4a) in the majority of cells as detected by immunohistochemistry. Inhibition of p16(INK4a) with shRNA or overexpression of BMI1 had a significant effect on the telomere damage response in p53-deficient cells. While p53 deficiency alone only partially abrogated the telomere damage-induced cell cycle arrest, combined inhibition of p16(INK4a) and p53 led to nearly complete bypass of telomere-directed senescence. We conclude that p16(INK4a) contributes to the p53-independent response to telomere damage.  相似文献   

10.
Telomere attrition in primary human fibroblasts induces replicative senescence accompanied by activation of the p53 and p16(INK4a)/RB tumor suppressor pathways. Although the contribution of p53 and its target, p21, to telomere-driven senescence have been well established, the role of p16(INK4a) is controversial. Attempts to dissect the significance of p16(INK4a) in response to telomere shortening have been hampered by the concomitant induction of p16(INK4a) by cell culture conditions. To circumvent this problem, we studied the role of p16(INK4a) in the cellular response to acute telomere damage induced by a dominant negative allele of TRF2, TRF2(Delta B Delta M). This approach avoids the confounding aspects of culture stress because parallel cultures with and without telomere damage can be compared. Telomere damage generated with TRF2(Delta B Delta M) resulted in induction of p16(INK4a) in the majority of cells as detected by immunohistochemistry. Inhibition of p16(INK4a) with shRNA or overexpression of BMI1 had a significant effect on the telomere damage response in p53-deficient cells. While p53 deficiency alone only partially abrogated the telomere damage-induced cell cycle arrest, combined inhibition of p16(INK4a) and p53 led to nearly complete bypass of telomere-directed senescence. We conclude that p16(INK4a) contributes to the p53-independent response to telomere damage.  相似文献   

11.
Adenovirus (Ad) E1A induces apoptosis in cells expressing wild-type p53, and stable transformation by Ad E1A requires the co-introduction of an anti-apoptotic gene such as Ad E1B 19K. Thus, cells immortalized by Ad E1A alone might have lost functional p53. In order to analyze the p53 in rat cells expressing Ad E1A, we established rat cell lines by transfecting primary rat embryo fibroblast (REF) and baby rat kidney (BRK) cells with cloned Ad5 E1A. By using a yeast functional assay, we analyzed p53 in six primary REF and three BRK cell lines immortalized by Ad5 E1A as well as five spontaneously immortalized rat cell lines (REF52, NRK, WFB, Rat-1 and 3Y1). The yeast functional assay revealed that all of the spontaneously and Ad5 ElA-immortalized rat cell lines except for 3Y1 expressed wild-type p53. All of the Ad5 E1A-immortalized rat cell lines contained p53 detectable by immunoprecipitation. Recombinant adenovirus expressing rat p53 cloned from a REF cell line immortalized by Ad5 E1A, as well as that expressing murine wild-type p53, induced apoptosis in p53-null cells in collaboration with E1A. Thus, it is suggested that the mutation of p53 appears to be not frequent in the spontaneous immortalization of primary rat cells, and that the functional loss of wild-type p53 is not a prerequisite of E1A-mediated immortalization.  相似文献   

12.
Jin X  Lee JS  Kwak S  Jung JE  Kim TK  Xu C  Hong Z  Li Z  Kim SM  Whang KY  Hong KC  You S  Choi YJ  Kim H 《Molecules and cells》2006,21(2):206-212
We have established in culture a spontaneously immortalized bovine embryonic fibroblast (BEF) cell line that has lost p53 and p16(INK4a) functions. MyoD is a muscle-specific regulator capable of inducing myogenesis in a number of cell types. When the BEF cells were transduced with MyoD they differentiated efficiently to desmin-positive myofibers in the presence of 2% horse serum and 1.7 nM insulin. The myogenic differentiation of this cell line was more rapid and obvious than that of C2C12 cells, as judged by morphological changes and expression of various muscle regulatory factors. To confirm that lack of the p53 and p16(INK4a) pathway does not prevent MyoD-mediated myogenesis, we established a cell line transformed with SV40LT (BEFV) and introduced MyoD into it. In the presence of 2% horse serum and 1.7 nM insulin, the MyoD-transduced BEFV cells differentiated like the MyoD-transduced BEFS cells, and displayed a similar pattern of expression of muscle regulatory proteins. Taken together, our results indicate that MyoD overexpression overcomes the defect in muscle differentiation associated with immortalization and cell transformation caused by the loss of p53 and Rb functions.  相似文献   

13.
Expression of exogenous wild-type (wt) p53 in different leukemia cell lines can induce growth arrest, apoptotic cell death, or cell differentiation. The hematopoietic cell lines that have been used so far to study wt p53 functions have in common the characteristic of not expressing endogenous p53. However, the mechanisms involved in the transformation of these cells are different, and the cells are at different stages of tumor progression. It can be postulated that each type of neoplastic cell offers a particular environment in which p53 might generate different effects. To test this hypothesis, we introduced individual oncogenes into untransformed, interleukin-3 (IL-3)-dependent myeloid precursor 32D cells to have a single transforming agent at a time. The effects induced by wt p53 overexpression were subsequently evaluated in each oncogene-expressing 32D derivative. We found that in not fully transformed, v-ras-expressing 32D cells, as already shown for the parental 32D cells, overexpression of the wt p53 gene caused no phenotypic changes and no reduction of the proliferative rate as long as the cells were maintained in their normal culture conditions (presence of IL-3 and serum). An accelerated rate of apoptosis was observed after IL-3 withdrawal. In contrast, in transformed, IL-3-independent 32D cells, wt p53 overexpression induced different effects. The v-abl-transformed cells manifested a reduction in growth rate, while the v-src-transformed cells underwent monocytic differentiation. These results show that the phenotype effects of wt p53 action(s) can vary as a function of the cellular environment.  相似文献   

14.
Inactivation of the ARF-p53 tumor suppressor pathway leads to immortalization of murine fibroblasts. The role of this pathway in immortalization of human epithelial cells is not clear. We analyzed the functionality of the p14(ARF)-p53 pathway in human mammary epithelial cells (MEC) immortalized by human papillomavirus 16 (HPV16) E6, the p53 degradation-defective E6 mutant Y54D, or hTERT. E6-MEC or E6Y54D-MEC maintains high-level expression of p14(ARF). Late-passage hTERT-immortalized MEC express p53 but down-regulate p14(ARF). Enforced expression of p14(ARF) induces p53-dependent senescence in hTERT-MEC, while both E6-MEC and E6Y54D-MEC are resistant. We show that E6Y54D inhibits p14(ARF)-induced activation of p53 without inactivation of the p53-dependent DNA damage response. Hence, p53 degradation and inhibition of p14(ARF) signaling to p53 are independent functions of HPV16 E6. Our observations imply that long-term proliferation of MEC requires inactivation of the p14(ARF)-p53 pathway.  相似文献   

15.
Summary The study of in vitro cell transformation is valuable for understanding the multistep carcinogenesis of human cells. The difficulty in inducing neoplastic transformation of human cells by treatment with chemical or physical agents alone is due to the difficulty in immortalizing normal human cells. Thus, the immortalization step is critical for in vitro neoplastic transformation of human cells. We transfected a mutant p53 gene (mp53: codon 273Arg-His) into normal human fibroblasts and obtained two G418-resistant mp53-containing clones. These clones showed an extended life span but ultimately senesced. However, when they were treated with either 4-nitroquinoline 1-oxide or X rays, they were immortalized. The immortalized cells showed both numerical and structural chromosome abnormalities, but they were not tumorigenic. The expression of mutant but not wild type p53 was detected in the immortalized cells by RT-PCR. Expression of p21, which is located downstream of p53, was remarkably reduced in the immortalized cells, resulting in increased cdk2 and cdc2 kinase activity. However, there was no significant difference between the normal and immortalized human cells in expression of another tumor suppressor gene, p16. These findings indicate that the p53-p21 cascade may play an important role in the immortalization of human cells.  相似文献   

16.
Immortalized cells frequently have disruptions of p53 activity and lack p53-dependent nucleotide excision repair (NER). We hypothesized that telomerase immortalization would not alter p53-mediated ultraviolet light (UV)-induced DNA damage responses. DNA repair proficient primary diploid human fibroblasts (GM00024) were immortalized by transduction with a telomerase expressing retrovirus. Empty retrovirus transduced cells senesced after a few doublings. Telomerase transduced GM00024 cells (tGM24) were cultured continuously for 6 months (>60 doublings). Colony forming ability after UV irradiation was dose-dependent between 0 and 20J/m2 UVC (LD50=5.6J/m2). p53 accumulation was UV dose- and time-dependent as was induction of p48(XPE/DDB2), p21(CIP1/WAF1), and phosphorylation on p53-S15. UV dose-dependent apoptosis was measured by nuclear condensation. UV exposure induced UV-damaged DNA binding as monitored by electrophoretic mobility shift assays using UV irradiated radiolabeled DNA probe was inhibited by p53-specific siRNA transfection. p53-Specific siRNA transfection also prevented UV induction of p48 and improved UV survival measured by colony forming ability. Strand-specific NER of cyclobutane pyrimidine dimers (CPD) within DHFR was identical in tGM24 and GM00024 cells. CPD removal from the transcribed strand was nearly complete in 6h and from the non-transcribed strand was 73% complete in 24h. UV-induced HPRT mutagenesis in tGM24 was indistinguishable from primary human fibroblasts. These wide-ranging findings indicate that the UV-induced DNA damage response remains intact in telomerase-immortalized cells. Furthermore, telomerase immortalization provides permanent cell lines for testing the immediate impact on NER and mutagenesis of selective genetic manipulation without propagation to establish mutant lines.  相似文献   

17.
To test hypotheses on the origins of p53 mutations in human tumors, novel strategies are needed for generating mutation spectra experimentally. To this end we developed an assay employing Hupki (Human p53 knock-in) mouse embryonic fibroblasts (HUFs). Here we examine p53 mutations induced by aristolochic acid I (AAI)), the carcinogen probably responsible for Chinese herbal nephropathy. Six immortalized cultures (cell lines) from 18 HUF primary cultures exposed at passage 1 for 48 h to 50 microM AAI harbored p53 mutations in the human DNA binding domain sequence of the Hupki p53 tumor suppressor gene. The most frequently observed mutation was A to T transversion, corroborating our previous mutation study with AAI, and consistent with the presence of persistent AAI-adenine adducts found both in DNA of exposed patients and in DNA of AAI-exposed HUF cells. One of the mutations was identical in position (codon 139) and base change (A to T on the non-transcribed strand) to the single p53 mutation that has thus far been characterized in a urothelial tumor of a nephropathy patient with documented AAI exposure. Of the seven p53 mutations identified thus far in >60 HUF cell lines that immortalized spontaneously (no carcinogen treatment), none were A:T to T:A transversions. In addition, no A to T substitutions were identified among the previously reported set of 18 mutations in HUF cell lines derived from B(a)P treatment in which transversions at G:C base pairs predominated.  相似文献   

18.
19.
Limits on the proliferative potential of cultured normal human cells may be consequences of pathways that exist to suppress tumorigenicity. Human mammary epithelial cells (HMEC) employ several mechanisms to prevent unlimited growth. One mechanism may be activated by stress, and is associated with upregulated expression of p16(INK4a). In serum-free medium, some HMEC arise spontaneously which do not express p16. These "post-selection" HMEC are capable of long-term proliferation, but ultimately cease growth when their telomeres become very short. As they approach a growth plateau, termed agonescence, post-selection HMEC populations accumulate chromosome abnormalities. In contrast to the crisis exhibited by cells lacking functional p53, agonescent cells can be maintained as viable cultures. Although transduction of hTERT, the catalytic subunit of telomerase, into post-selection cells can, by itself, efficiently produce immortality and avoid agonescence, the errors that produce telomerase reactivation during carcinogenesis are not known. The block to endogenous telomerase reactivation in HMEC is extremely stringent. However, if one predisposing error is present, the probability greatly increases that additional error(s) required for immortalization may be generated by genomic instability encountered during agonescence. In p53(+) HMEC immortalized after chemical carcinogen exposure, the events involved in overcoming agonescence can be temporally separated from activation of telomerase. We have used the term "conversion" to describe the gradual process that leads to telomerase activation, telomere length stabilization, decreased p57 (KIP2) expression, and increased ability to grow uniformly well in the presence or absence of TGF beta. In the presence of active p53, conversion may represent a rate-limiting step in immortal transformation.  相似文献   

20.
We show here that histone deacetylase inhibitors (HDACIs) sodium dibutyrate (SDB) and trichostatin A (TSA) induce a phenotype that has similarities to replicative senescence in human fibroblasts. There was no evidence that SDB accelerated a constitutive cell division counting mechanism as previously suggested because cells pretreated with SDB for three mean population doublings (MPDs) exhibited a similar overall proliferative life span to controls once SDB was withdrawn. SDB-treated cells upregulated the cell cycle inhibitors p21(WAF1) and p16(INK4A), but not p14(ARF), in the same sequential order as in senescence and the cells developed biochemical markers of senescence. However, the mechanism of senescence did not involve telomere dysfunction and there was no evidence for any posttranslational modification of p53. The expression of human papillomavirus (HPV) 16 E6 in human fibroblasts or targeted disruption of the p53 and p21(WAF) genes only weakly antagonized HDACI-induced senescence. However, expression of the E7 gene, which inhibits the function of pRb, cooperated with E6 to block SDB-induced senescence completely and human cells deficient in p16(INK4A) (but not p14(ARF)) were also resistant to SDB-induced senescence, suggesting that the p16(INK4A)/pRb pathway is the major mediator of HDACI-induced senescence in human cells. However, p53-/- mouse fibroblasts were resistant to HDACI-induced senescence, identifying p53 as the major pathway to senescence in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号