首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The i.v. injection of parental T cells into F1 hybrid mice can result in a graft-vs-host (GVH)-induced immune deficiency that is Ag nonspecific and of long duration. The effect of the GVH reaction (GVHR) on the host's immune system depends on the class of F1 MHC Ag recognized by the donor cells. To determine the role of different subsets of donor-derived T cells in the induction of GVHR, donor spleen cells were negatively selected by anti-T cell mAb and C, and the cells were injected into F1 mice that differed from the donor by both class I and II MHC Ag or by class I or class II MHC only. The induction of GVHR across class I + II differences was found to require both L3T4+ and Lyt-2+ parental cells. Induction of GVHR across a class II difference required only L3T4+ parental T cells in the combination tested [B6-into-(B6 x bm12)F1]. In contrast, B6 Lyt-2+ cells were sufficient to induce GVHR across a class I difference in (B6 x bm1)F1 recipients. In addition, a direct correlation was observed between the cell types required for GVH induction and the parental T cell phenotypes detected in the spleens of the GVH mice. The number of parental cells detected in the unirradiated F1 hosts was dependent upon the H-2 differences involved in the GVHR. Induction of a class I + class II GVHR resulted in abrogation of both TNP-self and allogeneic CTL responses. In contrast, induction of a class II GVHR resulted in only a selective loss of TNP-self but not of allogeneic CTL function. Unexpectedly, the induction of a class I GVHR also resulted in the selective loss of the TNP-self CTL response. Thus, these class I and class II examples of GVH both result in the selective abrogation of L3T4+ Th cell function. The data are discussed in terms of respective roles of killer cells and/or suppressor cells in the induction of host immune deficiency by a GVHR, and of the selective deficiency in host Th cell function induced by different classes of GVHR.  相似文献   

2.
The reactivity of Lyt-2+ or L3T4+ T cells stimulated with either mutant class I or class II MHC alloantigens was studied. Whereas stimulation with class I MHC antigens induced only Lyt-2+ T cells to proliferate and to secrete IL 2, stimulation with class II MHC alloantigens induced L3T4+ but not Lyt-2+ T cells. When the frequencies of precursors of IL 2-secreting T lymphocytes (IL 2TL-p) were determined by limiting dilution analyses, class I MHC-reactive Lyt-2+ T cells displayed frequencies (f = 1/200) as high in magnitude as those within class II MHC-reactive L3T4+ (f = 1/100). Clonally developing IL 2TL of either T cell subset were antigen-specific, as shown in split-culture experiments. Whereas L3T4+ helper TL could be induced to specific IL 2 secretion over a long time period (days 3 to 9), Lyt-2+ TL showed a marked time optimal on day 4; thereafter, the number of TL colonies inducible to secrete IL 2 decreased steadily. IL 2 production and IL 2TL-p frequencies of unseparated T responder cells were not the numerical superposition of the two individual T cell subsets (Lyt-2+ + L3T4+); the latter finding is likely to reflect regulatory influences of Lyt-2+ T cells on IL 2-secreting L3T4+ T cells.  相似文献   

3.
Our study investigates the effect of a prior graft-vs-host (GVH) reaction on the subsequent ability of irradiated, bone marrow-re-populated mice to develop T cell function. The results indicate that such GVH-bone marrow transplanted (BMT) mice do not generate CTL responses to trinitrophenyl-modified syngeneic cells (TNP-self), but do generate strong CTL activity to H-2 alloantigens. This selective deficiency in TNP-self CTL response potential appeared as early as 10 days after GVH, and required both L3T4+ and Lyt-2+ donor T cells. The in vitro addition of either soluble Th factors or L3T4-enriched spleen cells from normal mice circumvented the defect in the TNP-self response in GVH-BMT mice. These results indicate that T effector function was not defective, and instead suggest a Th defect. Cell depletion and antibody-blocking, as well as IL-2 production experiments, indicate that the Th defect was selective for L3T4+ Th population and not for Lyt-2+ Th population. This defect in L3T4 Th function is not accounted for by the approximate twofold reduction in L3T4 cell numbers in GVH-BMT mice, because IL-2 production and CTL generation to L3T4-dependent Ag were at least eightfold below control levels. Rather, defective L3T4 Th function appears to be the consequence of a GVH-induced defect in thymic maturation because the defect was corrected in vivo by a neonatal parental thymus graft before irradiation and bone marrow transplantation. This system may be useful for elucidating the role of the thymus in the maturation of Th cells. Our findings raise the possibility that impaired development of T cell function occurring in marrow grafted patients who have undergone a GVH reaction could be partly due to a GVH-induced thymic defect.  相似文献   

4.
CD4 Th cells are critical to the development of coordinated immune responses to infections and tumors. Th cells are activated through interactions of the TCR with MHC class II complexed with peptide. T cell activation is dependent on the density of MHC peptide complexes as well as the duration of interaction of the TCR with APCs. In this study, we sought to determine whether MHC class II peptides could be modified with amino acid sequences that facilitated uptake and presentation with the goal of improving Th cell activation in vitro and in vivo. A model epitope derived from the murine folate receptor α, a self- and tumor Ag, was modified at its carboxyl terminus with the invariant chain-derived Ii-Key peptide and at its N terminus with a peptide that enhances uptake of Ag by APC. Modification of a peptide resulted in enhanced generation of high-avidity murine folate receptor α T cells that persisted in vivo and homed to sites of Ag deposition. The nesting approach was epitope and species independent and specifically excluded expansion of CD4 regulatory T cells. The resulting Th cells were therapeutic, enhanced in vivo helper activity and had an increased ability to resist tolerizing immune microenvironments. In addition to improved immunoadjuvants, this epitope modification strategy may be useful for enhancing ex vivo and in vivo generation of Th cells for preventing and treating diseases.  相似文献   

5.
Three bovine serum albumin-specific Lyt-2+ T suppressor (Ts) cell clones from CBA/J mice have been analyzed with regard to expression of L3T4 molecules. All three Ts-cell clones can be stained with monoclonal antibodies (mAb) to L3T4. Tested for the two clones restricted to recognition of Ek determinants, antigen-specific proliferation on antigen-presenting cells, but not the proliferation induced by conditioned medium can be inhibited by L314-specific mAb. In a similar way, Ts-cell cytolytic effector functions can be blocked by L3T4-specific mAb. Thus L3T4 structures seem to play a role in Ts-cell functions. Furthermore, the data support the view that L3T4 expression can be a property of class II-restricted T cells irrespective of their Lyt phenotype.  相似文献   

6.
Studies were performed to attempt to define the T cell subset responsible for resistance to Toxoplasma gondii. A temperature-sensitive mutant (ts-4) strain of T. gondii was used for immunization because it causes infection but does not persist in the host. Immunization with this strain induced marked resistance against lethal challenge infection with virulent strains of T. gondii in mice. The resistance could be transferred to normal recipient mice by i.v. injection of spleen cells from ts-4-immunized mice. Marked inhibition of cyst formation in the recipient mice was also noted. The protective activity of immune spleen cells was removed by pretreatment of the spleen cells with anti-Thy-1.2 and C, indicating that T cells are responsible for the observed protection. Pretreatment of immune spleen cells with anti-Lyt-2.2 and C completely ablated their protective effect; pretreatment with anti-Lyt-1.2 or anti-L3T4 and C had lesser effects on their ability to transfer resistance. The effect of anti-Lyt-1.2 was the same as that obtained with anti-L3T4. This suggested that one T cell subset that is partially responsible for protection has both Lyt-1.2 and L3T4 markers on the cell surface. These results indicate that there are substantial roles for both the Lyt-2+ and Lyt-1+, L3T4 T cell subsets in dual regulation of resistance against toxoplasma infection and that Lyt-2+ T cells are the principal mediator of the resistance.  相似文献   

7.
Murine allogeneic cytolytic T lymphocytes (CTLs), including long-term bulk CTL lines, were induced in I-region-incompatible combinations of strains in vitro in order to study the phenotypes of class II major histocompatibility complex (MHC) antigen-specific CTLs, as well as the possible functional involvement of accessory cell interaction molecules such as Lyt-2 and L3T4. This report shows that class II-specific allogeneic CTL populations consist of two types of T cells. Lyt-2+L3T4- (2+4-) and Lyt-2-L3T4+ (2-4+), in variable proportions depending on the strain combination, that in vitro bulk CTL lines with each of these phenotypes can be established, that the killing function of 2-4+ CTL is sensitive to the blocking effect of anti-L3T4 antibodies, suggesting functional involvement of this molecule in the CTL-target interaction, that anti-Lyt-2 antibodies fail to block killing by 2+4- cells, suggesting that such CTLs do not utilize this molecule in their killing function, and that while I-A-specific CTLs of both phenotypes are detectable, 2-4+ cells could not be detected among I-E-specific CTL populations.  相似文献   

8.
9.
The mAb F23.1, specific for V beta 8-related determinants on the TCR, was used to study the requirements for TCR cross-linking and for accessory cells (AC) in the induction of proliferation or IL-2 responsiveness in L3T4+ (CD4+) and Lyt-2+ (CD8+) T cells. T cells were exposed in vitro to soluble native F23.1 antibody, to heteroconjugates composed of the Fab fragments of F23.1 linked to Fab fragments of antibodies specific for Ia determinants on AC, or to F23.1 immobilized on an insoluble matrix. Soluble F23.1 antibody-induced proliferation in naive T cells only in the presence of both AC and exogenous IL-2, and these responses were confined to Lyt-2+ T cells. In contrast, heteroconjugates capable of crosslinking F23.1+ TCR to AC surface Ia determinants were capable of inducing proliferation in both L3T4+ and Lyt-2+ T cells in the absence of added lymphokine. Moreover, binding to and presumably multi-valent crosslinking of the TCR by immobilized F23.1 was sufficient to induce proliferation in both Lyt-2+ and L3T4+ T cells in the absence of AC or exogenous IL-2. Further, it was found that the conditions necessary for T cell growth factor secretion paralleled closely those required for induction of T cell proliferation in the absence of added lymphokine, suggesting that production of endogenous lymphokine might be the limiting process for triggering of T cell proliferation. Taken together, these findings suggest that under optimal conditions of TCR cross-linking, TCR occupancy and cross-linking is sufficient to deliver all of the signals necessary to initiate proliferation in naive populations of both L3T4+ and Lyt-2+ T cells. However, when conditions for TCR signaling are suboptimal, as may be the case for normal Ag-mediated stimulation, a role for second signals delivered by AC or exogenous lymphokines can become critical for T cell activation.  相似文献   

10.
The role of L3T4+ and Lyt-2+ T cells in protective immunity to Nippostrongylus brasiliensis (Nb) was studied in BALB/c mice that were depleted of either the L3T4+ or Lyt-2+ T cell population by injection with rat mAb specific for the appropriate determinant. Host responses to Nb infection including spontaneous elimination of adult worms, development of intestinal mucosal mast cell hyperplasia and the generation of a polyclonal IgE response were all completely blocked by 0.5 mg anti-L3T4 antibody administered simultaneously with Nb inoculation. However, administration of 0.5 mg of anti-Lyt-2 antibody at the same time and 7 days after inoculation with Nb had no effect on any of these responses. Injection of anti-L3T4 antibody as late as 9 days after Nb inoculation interfered with spontaneous cure of Nb infection and anti-L3T4 antibody injection 11 days after Nb inoculation inhibited serum IgE levels measured on day 13 by 50%. In addition, administration of anti-L3T4 antibody at the time of the peak serum IgE response, 13 days after Nb inoculation, accelerated the decline in serum IgE levels. Injection of previously Nb-infected mice with anti-L3T4 antibody at the time of a second Nb inoculation prevented the development of a secondary IgE response but did not affect immunity to Nb infection based on finding no adult worms in the intestines of these mice. These data indicate that 1) L3T4+ T cells are required for spontaneous cure of Nb infection, development of intestinal mucosal mast cell hyperplasia, and the generation and persistence of an IgE response during primary infection with Nb and 2) L3T4+ T cells are required for a considerable time after inoculation for optimal development of these responses. However, L3T4+ T cells are not required for all protective responses in immune mice. In contrast, our data indicate that considerable depletion of the Lyt-2+ T cell population has no significant effect on either worm expulsion or the generation of serum IgE responses.  相似文献   

11.
The present study investigates the effects of i.v. presensitization with class II H-2-disparate allogeneic cells on various L3T4+ T cell functions including the capability of rejecting the corresponding allogeneic skin graft. C57BL/6 (B6) mice were i.v. presensitized with class II H-2 disparate B6-C-H-2bm12 (bm12) spleen cells. Such presensitization did not affect the bm12-specific L3T4+ T cell-mediated proliferative and interleukin 2 (IL-2)-producing capacities. A single cell suspension of (B6 x bm12)F1 spleen cells was depleted of APC by two round-passages over Sephadex G-10 columns. This APC-depleted fraction of (B6 x bm12)F1 cells failed to stimulate B6 responding cells in mixed lymphocyte reactions (MLR). The addition of recombinant IL-1 to the MLR restored anti-bm12 MLR responses, indicating that APC-depleted (B6 x bm12)F1 cells bear bm12 alloantigens but are unable to stimulate B6 anti-bm12 L3T4+ T cells. A single i.v. administration of APC-depleted (B6 x bm12)F1 cells into B6 mice resulted in almost complete abrogation of the capacity of recipient B6 lymphoid cells to give anti-bm12 MLR and IL2 production. This suppression was bm12 alloantigen-specific and attributed to the elimination or functional impairment of anti-bm12 T cell clones rather than the induction of suppressor cells. The tolerance was also observed in graft-rejection responses. The strikingly prolonged survival of bm12 skin grafts was produced when grafts were implanted into B6 mice which had been presensitized with APC-depleted, but not with untreated (B6 x bm12)F1 spleen cells. These results indicate that allo-class II H-2 antigen-reactive L3T4+ T cells are rendered tolerant by i.v. presensitization with APC-depleted fraction of the corresponding allogeneic cells.  相似文献   

12.
The nonobese diabetic mouse is a model of spontaneous type I diabetes mellitus. It is possible to induce diabetes in young, irradiated nonobese diabetic mice by using adoptive transfer of splenocytes or splenic T cells obtained from diabetic donors. This study demonstrates that the induction of diabetes in the adoptive transfer system is dependent on both the L3T4+ and Lyt-2+ subsets of T cells. Neither of these T cell subsets alone mediates the development of severe insulitis or diabetes when adoptively transferred to young, irradiated recipients. In addition, we show that both the L3T4+ and Lyt-2+ subsets must be obtained from diabetic donors in order to transfer diabetes; neither subset can be replaced with cells obtained from young, nondiabetic donors.  相似文献   

13.
The Lyt phenotype of cytotoxic T cells generated in the primary H-2 response was investigated kinetically. The cytotoxicity generated in the early stage of culture was abolished by treatment with alpha Lyt-1,2,3, and complement (C), whereas that generated in the late stage was only partially eliminated by alpha Lyt-1, but was abolished by alpha Lyt-2, 3, and C. This suggested late expansion of the Lyt-1-2+3+ population. Lack of Lyt-1 antigen was confirmed with cells that were depleted of Lyt-1+ from primary culture and then stimulated in the secondary response by elimination of cytotoxicity and by direct Lyt typing. Results indicated that the response of proliferative and cytotoxic T cells of the Lyt-1+2+3+ phenotype in the early stage of culture was followed by activation of Lyt-1-2+3+ T cells. Cytotoxic T cells in the late stage were shown to be a mixture of Lyt-1+2+3+ and Lyt-1-2+3+ cells. This was confirmed with cytotoxic T cells from secondary culture and uncloned long-term T cell lines.  相似文献   

14.
15.
16.
17.
In the presence of pokeweed mitogen (PWM), T helper (TH) cell clones can induce differentiation of a very high proportion of normal B lymphocytes into plasmocytes. This property can be used to test TH cell function regardless of clonal specificity. We have investigated the role of L3T4 surface antigen in this new assay. Only TH cell clones expressing the L3T4 antigen have effector activity in this PWM-dependent helper assay; L3T4- TH cell variants are inactive. The involvement of L3T4 antigen is further shown by the ability of anti-L3T4 monoclonal antibody to inhibit the PWM-dependent polyclonal B cell differentiation induced by L3T4+ TH cell clones. This inhibition is not the consequence of arrested TH cell activation, nor of a lack of appropriate B cell stimulation by TH cell lymphokines. We show that PWM focuses TH cells on the B cell hybridoma LB15-13, and that anti-L3T4 mAb prevents the T-B cell clustering mediated by PWM. Thus, by a mechanism comparable with the one described for concanavalin A in the cytotoxicity assay, PWM acts by bridging TH cells and B cells; the T cell surface antigen L3T4 is involved in this process.  相似文献   

18.
Murine T lymphocytes recognize nominal Ag presented by class I or class II MHC molecules. Most CD8+ T cells recognize Ag presented in the context of class I molecules, whereas most CD4+ cells recognize Ag associated with class II molecules. However, it has been shown that a proportion of T cells recognizing class I alloantigens express CD4 surface molecules. Furthermore, CD4+ T cells are sufficient for the rejection of H-2Kbm10 and H-2Kbm11 class I disparate skin grafts. It has been suggested that the CD4 component of an anti-class I response can be ascribed to T cells recognizing class I determinants in the context of class II MHC products. To examine the specificity and effector functions of class I-specific HTL, CD4+ T cells were stimulated with APC that differed from them at a class I locus. Specifically, a MLC was prepared involving an allogeneic difference only at the Ld region. CD4+ clones were derived by limiting dilution of bulk MLC cells. Two clones have been studied in detail. The CD4+ clone 46.2 produced IL-2, IL-3, and IFN-gamma when stimulated with anti-CD3 mAb, whereas the CD4+ clone 93.1 secreted IL-4 in addition to IL-2, IL-3, and IFN-gamma. Cloned 46.2 cells recognized H-2Ld directly, whereas recognition of Ld by 93.1 apparently was restricted by class II MHC molecules. Furthermore, cytolysis by both clones 46.2 and 93.1 was inhibited by the anti-CD4 mAb GK1.5. These results demonstrate that CD4+ T cells can respond to a class I difference and that a proportion of CD4+ T cells can recognize class I MHC determinants directly as well as in the context of class II MHC molecules.  相似文献   

19.
The cellular basis for allograft rejection derives from the strong T cell response to cells bearing foreign MHC. While it was originally assumed that alloreactive T cells focus their recognition on the polymorphic residues that differ between syngeneic and allogeneic MHC molecules, studies with MHC class I-restricted CTL have shown that MHC-bound peptides play a critical role in allorecognition. It has been suggested that alloreactive T cells depend more strongly on interactions with the MHC molecule than with the associated peptide, but there is little evidence to support this idea. Here we have studied the alloreactive and self-restricted response directed against the class II H2-Ab molecule bound with a single peptide, Ep, derived from the H2-Ealpha chain. This MHC class II-peptide combination was a poor target and stimulator of alloreactive CD4+ T cell responses, indicating that MHC-bound peptides are as important for alloreactive CD4+ T cells as they are for alloreactive CTL. We also generated alloreactive T cells with exquisite specificity for the Ab/Ep complex, and compared their reactivity with self-restricted T cells specific for the same Ab/Ep complex. Our results showed that peptide-specific alloreactive T cells, as compared with self-restricted T cells, were more sensitive to peptide stimulation, but equally sensitive to amino acid substitutions in the peptide. These findings indicate that alloreactive and self-restricted T cells interact similarly with their MHC/peptide ligand.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号