首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analysis was made of the micro-distribution patterns of five phylogenetically closely related species belonging to the genus Iberobathynella, a group of subterranean aquatic crustaceans (Syncarida, Parabathynellidae). The two-step model of colonization and speciation seems to provide a valid explanation for the current distribution of a large number of stygobiontic taxa of marine origin (thalassoid). However, with respect to the Iberobathynella, only the colonization of the subterranean environment at the mesoscale level can be explained. The second phase of the model, marine regression, can only explain the colonization of the region by the ancestor; the subsequent evolution and speciation at a smaller scale remain to be explained. Local geological constraints – Upper Triassic gypsiferous mudstone deposits plus faults and thrusting linked to the Alpine Orogeny – are responsible for the appearance of local palaeogeographic phenomena. These may have been the vicariant processes responsible for the geographical and genetic isolation of the ancestral populations of this group, which eventually led to clade divergence. Together with small-scale passive dispersion (11 dispersal events) and local extinction, these processes could be responsible for the current distribution of the five sister taxa inhabiting the caves of the Sierra de la Collada, Spain. A plausible palaeogeographical scenario is offered to explain their present distribution, that clearly came about through chance events.  相似文献   

2.
3.
4.
Aim To analyse the worldwide distribution patterns of hagfishes using panbiogeographical track analysis, and to attempt to correlate these patterns with the tectonic history of the ocean basins. Location Atlantic and Pacific oceans. Method The distributions of 47 out of 70 species of hagfish (in the genera Eptatretus, Myxine, Nemamyxine, Neomyxine, and Paramyxine) were studied by the panbiogeographical method of track analysis. The analysis was performed using distributional data obtained from the collections included in the Ocean Biogeographic Information System (OBIS, http://www.iobis.org ) and FishBase ( http://www.fishbase.org ), with additional records from the literature. Individual tracks were obtained for each species by plotting localities and connecting them by minimum‐spanning trees. Generalized tracks were determined from the spatial overlap between individual tracks. Results Six generalized tracks were found: in the Gulf of Mexico, Caribbean Sea, South‐eastern Atlantic, Western Pacific, North‐eastern Pacific and South‐eastern Pacific. Main conclusions The distribution patterns of myxinids are marked by a high degree of endemism and vicariance, and are correlated with the tectonic features involved in many of the events that led to the development of oceanic basins. The main massing of the group is around the Pacific Basin. In the Atlantic Ocean, the distribution of Myxine glutinosa seems to correspond to a classic trans‐oceanic track and vicariance resulting from the opening of the Atlantic Ocean during the Cretaceous. In the Pacific Ocean, the distribution of the Eptatretus and Paramyxine species is clearly associated with the margins of the Pacific tectonic plate. The generalized tracks of hagfishes are shared by several other groups of marine organisms, including many from shallow tropical waters, implying a common history for this marine biota. Overall, vicariance is a major feature of hagfish distribution, suggesting vicariant differentiation of widespread ancestors as a result of sea‐floor spreading between continents in connection with ocean formation.  相似文献   

5.
Hypochaeris has a disjunct distribution, with more than 15 species in the Mediterranean region, the Canary Islands, Europe, and Asia, and more than 40 species in South America. Previous studies have suggested that the New World taxa have evolved from ancestors similar to the central European H. maculata. Based on internal transcribed spacer (ITS) sequences and fluorescence in situ hybridization (FISH) with 5S and 18S-25S rDNA of the previously overlooked Hypochaeris angustifolia from Moyen Atlas, Morocco, we show that it is sister to the entire South American group. A biogeographic analysis supports the hypothesis of long-distance dispersal from NW Africa across the Atlantic Ocean for the origin of the South American taxa rather than migration from North America, through the Panamian land bridge, followed by subsequent extinction in North America. With the assumption of a molecular clock, the trans-Atlantic dispersal from NW Africa to South America is roughly estimated to have taken place during Pliocene or Pleistocene.  相似文献   

6.
Boulder shores are common at all latitudes and dominate the intertidal and subtidal zones of sub-Antarctic coastlines. The encrusting benthos of boulders was examined on similar shore types at four locations: Tierra del Fuego, East Falkland, West Falkland and Bird Island (off South Georgia). Bird Island is unusual in experiencing high trampling and organic enrichment from fur seals. The results were compared to a Patagonian site and a non-trampled South Georgia site (Husvik) and other sites taken from the literature. Principal Component Analysis revealed South Atlantic/Southern Ocean encrusting faunas formed a distinct cluster when compared to assemblages from elsewhere at similar latitudes. Bray Curtis cluster analysis of the South Atlantic-Southern Ocean sites showed the major division was between Southern Ocean and South Atlantic Ocean sites, beyond which there were three distinct clusters centred around Patagonia (Magellanic), the Falklands and Southern Ocean sites. The organisation of competitive interactions between species was mostly determinate and transitive (essentially hierarchical). The transitivity index scores were higher than most similar assemblages studied to date. The diversity of encrusting assemblages ranged from Shannon Weaver H values of 2.38–0.77 (East Falkland and Bird Island, respectively) in the intertidal to 1.27–0.73 (Patagonia and South Georgia, respectively) in the subtidal zone. Annual mortality (of bryozoan colonies) varied from 85–97% in the intertidal to 65–92% in the subtidal, being higher in the Southern Ocean than South Atlantic sites, largely due to ice scour and wave action. The Bird Island mortality values may be high even for a Southern Ocean site. Accepted: 5 October 2000  相似文献   

7.
Little is known about the biology of Burmeister’s porpoises (Phocoena spinipinnis), a small cetacean species endemic to South American waters. Information on stock structure, however, is urgently needed, as the species suffers from considerable mortality due to local fishery activities throughout its distribution range. Using mitochondrial control region sequences and 11 species-specific microsatellite loci, we assessed the genetic differentiation among 118 stranded, incidentally or directly-caught Burmeister’s porpoises from different localities in Peruvian, Chilean, and Argentine waters. F-statistics and Bayesian clustering analyses indicate a major population differentiation along the South American Pacific coast, separating Peruvian from both Chilean and Argentine individuals. Interestingly, this population boundary is consistent with the population structure found in another sympatrically-occurring cetacean species: the dusky dolphin (Lagenorhynchus obscurus). Given that vulnerability to local depletion for South American coastal porpoises and dolphins is probably highest in the Peruvian population (due to high exploitation levels and recurrent El Niño events), the genetic data reported here considerably strengthen the need for conservation efforts focused on regulation of catches in local waters. Moreover, we discuss possible genetic differentiation among Burmeister’s porpoises (i) from the Atlantic and Pacific Ocean and (ii) from different Peruvian harbors. Finally, cross-species amplifications suggest that our newly-developed microsatellite markers will be useful in population genetic studies in the five other extant porpoise species.  相似文献   

8.
The population structure of the giant mottled eel, Anguilla marmorata, was investigated with mitochondrial and microsatellite DNA analyses using 449 specimens from 13 localities throughout the species range. Control region F-statistics indicated the North Pacific (Japan, Taiwan, Philippines, Sulawesi), South Pacific (Tahiti, Fiji, New Caledonia, Papua New Guinea), eastern Indian Ocean (Sumatra), western Indian Ocean (Réunion, Madagascar), Ambon, and Guam regions were significantly different (Phi(ST) = 0.131-0.698, P < 0.05) while only a few differences were observed between localities within the South Pacific. These regions were roughly clustered in the neighbour-joining tree, although Ambon individuals were mainly divided into North and South Pacific groups. Analysis with eight microsatellite loci showed almost identical results to those of the control region, except no genetic difference was observed between the western and eastern Indian Ocean (F(ST) = 0.009, P > 0.05). The Bayesian cluster analysis of the microsatellite data detected two genetic groups. One included four North Pacific localities, and the other included eight localities in the South Pacific, Indian Ocean, and Guam, but Ambon individuals were evenly assigned to these two groups. These results showed that A. marmorata has four genetically different populations (North Pacific, South Pacific, Indian Ocean, Guam region). The North Pacific population is fully panmictic whereas the South Pacific and Indian Ocean populations have a metapopulation structure. Interestingly, Guam was suggested to be inhabited by a reproductive population restricted to that region, and the individuals from the North and South Pacific populations co-exist in Ambon.  相似文献   

9.
The distributional patterns of the seven species of Rhizoprionodon were analysed using the panbiogeographical method of track analysis. The individual tracks of Rhizoprionodon suggest that the genus is mainly an Indian–Atlantic Ocean group. Five generalized tracks were found: (1) Caribbean, defined by R. porosus and R. terraenovae; (2) eastern coast of South America, defined by R. porosus and R. lalandei; (3) Indian Ocean, defined by R. acutus and R. oligolinx; (4) north‐western Australia, defined by R. acutus, R. oligolinx and R. taylori; (5) north‐north‐eastern Australia, defined by R. acutus and R. taylori. Only R. longurio was not included in any generalized track, and its distribution is restricted to the eastern Pacific Ocean. Two biogeographical nodes were found at the intersection of the generalized tracks 1 and 2 (Caribbean Sea) and generalized tracks 4 and 5 (north Australia). The generalized tracks overlap with those found in several unrelated marine taxa. Overall, the generalized tracks are associated with warm currents. The biogeographical nodes found (Caribbean and Australian) are coincident with the global distribution of mangroves.  相似文献   

10.
The South American tern Sterna hirundinacea is a migratory species for which dispersal, site fidelity and migratory routes are largely unknown. Here, we used five microsatellite loci and 799 bp partial mitochondrial DNA sequences (Cytochrome b and ND2) to investigate the genetic structure of South American terns from the South Atlantic Ocean (Brazilian and Patagonian colonies). Brazilian and Patagonian colonies have two distinct breeding phenologies (austral winter and austral summer, respectively) and are under the influence of different oceanographic features (e.g. Brazil and Falklands/Malvinas ocean currents, respectively), that may promote genetic isolation between populations. Results show that the Atlantic populations are not completely panmictic, nevertheless, contrary to our expectations, low levels of genetic structure were detected between Brazilian and Patagonian colonies. Such low differentiation (despite temporal isolation of the colonies) could be explained by demographic history of these populations coupled with ongoing levels of gene flow. Interestingly, estimations of gene flow through Maximum likelihood and Bayesian approaches has indicated asymmetrical long term and contemporary gene flow from Brazilian to Patagonian colonies, approaching a source–sink metapopulation dynamic. Genetic analysis of other South American tern populations (especially those from the Pacific coast and Falklands–Malvinas Islands) and other seabird species showing similar geographical distribution (e.g. royal tern Thalasseus maximus), are fundamental in gaining a better understanding of the main processes involved in the diversification of seabirds in the southern hemisphere.  相似文献   

11.
Towards a generalized biogeography of the Southern Ocean benthos   总被引:1,自引:0,他引:1  
Aim To investigate whether the biogeographical regions proposed by J. W. Hedgpeth and widely adopted by other authors hold true, are an oversimplification or with further data might show a unified Antarctic province. Location Southern Hemisphere. Methods The distributions of 1318 species of bivalves, 4656 species of gastropods, 1465 species of cheilostome and 167 species of cyclostome bryozoans were analysed for 29 regions in the Southern Hemisphere, including South American, South African, Tasmanian, New Zealand, sub‐Antarctic and Antarctic regions. We present data on species richness, rates of endemism, patterns of radiation, faunal similarities and multivariate biogeographical analyses. Results The most striking pattern to emerge from our data set of species counts per region was a strong east–west hemispheric asymmetry, with high species numbers in New Zealand, Tasmania and South Africa and low numbers in South America. In contrast, no difference was found in richness between the east and west parts of the Southern Ocean. We compared findings in our model taxa with published data on ascidians, cephalopods and pycnogonids. Further evidence of strong faunal links between the Antarctic and South America is reported in this study, although we found little evidence for a biogeographical relationship between the Antarctic or South America and New Zealand/Tasmania. Strong evidence exists for a long‐term influence of the Antarctic Circumpolar Current upon the distribution of Southern Ocean benthos. This is demonstrated by the reduced prevalence of South American species in the Antarctic and sub‐Antarctic with increasing distance from South America in the direction of the current. Three of our four study taxa (bivalves, cheilostomes and cyclostomes) show the Southern Ocean as a ‘single functional unit’ with no evidence for a biogeographical split between east and west. Main conclusions Unlike the biogeographical schemes previously proposed, we show that biogeographical regions in the Southern Ocean differ depending upon the class of animals being considered. Despite this we suggest that some general rules are viable, including species endemism rates of around 50%, a single Antarctic province and a definite distinction between the sub‐Antarctic islands influenced by South America and those of New Zealand.  相似文献   

12.
We examined the spatial distributions of picoplankton, nanoplankton, and microplankton biomass and physiological state relative to the hydrography of the Southern Ocean along 90 degrees W longitude and across the Drake Passage in the late austral winter. The eastern South Pacific Ocean showed some large-scale biogeographical differences and size class variability. Microbial ATP biomass was greatest in euphotic surface waters. The horizontal distributions of microbial biomass and physiological state (adenylate energy charge ratio) coincided with internal currents (fronts) of the Antarctic Circumpolar Current. In the Drake Passage, the biological scales in the euphotic and aphotic zones were complex, and ATP, total adenylate, and adenylate energy charge ratio isopleths were compressed due to the extension of the sea ice from Antarctica and constriction of the Circumpolar Current through the narrow passage. The physiological state of microbial assemblages and biomass were much higher in the Drake Passage than in the eastern South Pacific Ocean. The temperature of Antarctic waters, not dissolved organic carbon, was the major variable controlling picoplankton growth. Estimates of picoplankton production based on ATP increments with time suggest that production under reduced predation pressure was 1 to 10 mug of carbon per liter per day. Our results demonstrate the influence of large-scale hydrographic processes on the distribution and structure of microplankton, nanoplankton, and picoplankton across the Southern Ocean.  相似文献   

13.
Rhamnocercus stichospinus Seamster and Monaco, 1956 (Diplectanidae) parasitic on the sciaenid fish Menticirrhus americanus from the coastal zone of the State of Rio de Janeiro, is redescribed and recorded for the first time in the South American Atlantic Ocean. The generic diagnosis of Rhamnocercus is emended to accommodate the presence of confluent intestinal ceca in R. stichospinus.  相似文献   

14.
The origins and evolution of sub-Antarctic island floras are not well understood. In particular there is uncertainty about the ages of the contemporary floras and the ultimate origins of the lineages they contain. Pringlea R. Br. (Brassicaceae) is a monotypic genus endemic to four sub-Antarctic island groups in the southern Indian Ocean. Here we used sequences from both the chloroplast and nuclear genomes to examine the phylogenetic position of this enigmatic genus. Our analyses confirm that Pringlea falls within the tribe Thelypodieae and provide a preliminary view of its relationships within the group. Divergence time estimates and ancestral area reconstructions imply Pringlea diverged from a South American ancestor ~5Myr ago. It remains unclear whether the ancestor of Pringlea dispersed directly to the South Indian Ocean Province (SIOP) or used Antarctica as a stepping-stone; what is clear, however, is that following arrival in the SIOP several additional long-distance dispersal events must be inferred to explain the current distribution of this species. Our analyses also suggest that although Pringlea is likely to have inherited cold tolerance from its closest relatives, the distinctive morphology of this species evolved only after it split from the South American lineage. More generally, our results lend support to the hypothesis that angiosperms persisted on the sub-Antarctic islands throughout the Pliocene and Pleistocene. Taken together with evidence from other sub-Antarctic island plant groups, they suggest the extant flora of sub-Antarctic is likely to have been assembled over a broad time period and from lineages with distinctive biogeographic histories.  相似文献   

15.
We used mitochondrial gene sequences to reconstruct phylogenetic relationships among subspecies of the bushmaster, Lachesis muta. These large vipers are widely distributed in lowland tropical forests in Central and South America, where three of four allopatric subspecies are separated by montane barriers. Our phylogeny indicates that the four subspecies belong to two clades, the Central American and South American lineages. We use published molecular studies of other taxa to estimate a 'reptilian mtDNA rate' and thus temporal boundaries for major lineage divergences in Lachesis. We estimate that the Central and South American forms diverged 18-6 Mya, perhaps due to the uplifting of the Andes, whereas the two Central American subspecies may have diverged 11-4 Mya with the uprising of the Cordillera de Talamanca that separates them today. South American bushmasters from the Amazon Basin and the Atlantic Forest are not strongly differentiated, perhaps due to episodic gene flow during the Pleistocene, when suitable habitat for this species was at times more continuous. Our results agree with previous evidence that genetic divergence among some neotropical vertebrates pre-dated Pleistocene forest fragmentation cycles and the appearance of the Panamanian Isthmus. Based on morphological, behavioral, and molecular evidence, we recognize three species of Lachesis. In addition to L. muta, the widespread South American form, the Central American forms are treated as distinct species (L. meknocephak and L. stenophrys), each deserving of special conservation status due to restricted distribution and habitat destruction.  相似文献   

16.
A phylogeny of 19 of the 22 currently recognized species of Myiarchus tyrant-flycatchers is presented. It is based on 842bp of mitochondrial DNA (mtDNA) sequences from the ATPase subunit 8 and ATPase subunit 6 genes. Except for the morphologically distinct M. semirufus, mtDNAs of the remaining 18 species fall into either of two clades. One comprises predominantly Caribbean and Central and North American taxa (Clade I), and the other is of predominantly South American taxa (Clade II). The phylogeny is only very broadly concordant with some vocal characters and also with the limited morphological diversity for which the group is well known. Paraphyly in several species (M. swainsoni, M. tuberculifer, M. ferox, M. phaeocephalus, M. sagrae, M. stolidus) suggests that morphological evolution, albeit resulting in limited morphological diversity, has been more rapid than that of mtDNA, or that current taxonomy is faulty, or both. A South American origin for Myiarchus is likely. Dispersal and vicariance both appear to have been involved in generating the present-day distribution of some species. Relatively recent dispersal events out of South America are inferred to have brought species of Clades I and II into broad sympatry. Jamaica has been colonized independently at least twice by members of Clades I and II. The phylogeny brings a historical perspective that in turn suggests that ecological study of closely related species from within each major clade where they are sympatric will be especially rewarding.  相似文献   

17.
The spiny dogfish (Squalus acanthias) is a temperate, coastal squaloid shark with an antitropical distribution in the Atlantic and Pacific oceans. The global population structure of this species is poorly understood, although individuals are known to undergo extensive migrations within coastal waters and across ocean basins. In this study, an analysis of the global population structure of the spiny dogfish was conducted using eight polymorphic nuclear microsatellite markers and a 566‐bp fragment of the mitochondrial ND2 gene region. A low level of genetic divergence was found among collections from the Atlantic and South Pacific basins, whereas a high level of genetic divergence was found among Pacific Ocean collections. Two genetically distinct groups were recovered by both marker classes: one exclusive to North Pacific collections, and one including collections from the South Pacific and Atlantic locations. The strong genetic break across the equatorial Pacific coincides with major regional differences in the life‐history characters of spiny dogfish, suggesting that spiny dogfish in areas on either side of the Pacific equator have been evolving independently for a considerable time. Phylogeographic analyses indicate that spiny dogfish populations had a Pacific origin, and that the North Atlantic was colonized as a result of a recent range expansion from the South American coast. Finally, the available data strongly argue for the taxonomic separation of the North Pacific spiny dogfish from S. acanthias and a re‐evaluation of the specific status of S. acanthias is warranted.  相似文献   

18.
This study examines a genome‐wide dataset of 678 Short Tandem Repeat loci characterized in 444 individuals representing 29 Native American populations as well as the Tundra Netsi and Yakut populations from Siberia. Using these data, the study tests four current hypotheses regarding the hierarchical distribution of neutral genetic variation in native South American populations: (1) the western region of South America harbors more variation than the eastern region of South America, (2) Central American and western South American populations cluster exclusively, (3) populations speaking the Chibchan‐Paezan and Equatorial‐Tucanoan language stock emerge as a group within an otherwise South American clade, (4) Chibchan‐Paezan populations in Central America emerge together at the tips of the Chibchan‐Paezan cluster. This study finds that hierarchical models with the best fit place Central American populations, and populations speaking the Chibchan‐Paezan language stock, at a basal position or separated from the South American group, which is more consistent with a serial founder effect into South America than that previously described. Western (Andean) South America is found to harbor similar levels of variation as eastern (Equatorial‐Tucanoan and Ge‐Pano‐Carib) South America, which is inconsistent with an initial west coast migration into South America. Moreover, in all relevant models, the estimates of genetic diversity within geographic regions suggest a major bottleneck or founder effect occurring within the North American subcontinent, before the peopling of Central and South America. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
The South Sandwich Islands, in the South Atlantic Ocean, are a major biological hot spot for penguins and other seabirds, but their remoteness and challenging coastlines preclude regular biological censuses. Here we report on an extensive survey of the South Sandwich Islands, the first since the late 1990s, which was completed through a combination of direct counting, GPS mapping, and interpretation of high-resolution commercial satellite imagery. We find that the South Sandwich Islands host nearly half of the world’s Chinstrap Penguin (Pygoscelis antarctica) population (1.3 million breeding pairs), as well as c. 95,000 breeding pairs of Macaroni Penguins (Eudyptes chrysolophus), and several thousand breeding pairs of Gentoo Penguins (Pygoscelis papua). Despite being at the northern edge of their breeding range, we found an unexpectedly large (≥125,000 breeding pairs) population of Adélie Penguins (Pygoscelis adeliae). Additionally, we report that nearly 1900 pairs of Southern Giant Petrels (Macronectes giganteus) breed in the South Sandwich Islands, 4 % of the global population, almost all of which are found on Candlemas Island. We find that the South Sandwich Islands have not experienced the same changes in penguin abundance and distribution as the rest of the Scotia Arc and associated portions of the western Antarctic Peninsula. This discovery adds important context to the larger conversation regarding changes to penguin populations in the Southern Ocean.  相似文献   

20.
In this paper we present the results of blood group typings for a total of 33 villages distributed among five South American Indian tribes--Yanomama (21 villages), Makiritare (eight villages), Macushi (two villages), Piaroa (one village), and Wapishana (one village). These new results for the Yanomama and Makiritare tribes have been combined with those previously reported to allow a better appreciation of the distribution of allelic frequencies in the tribes. The relationship of the Yanomama to other South American Indian tribes is investigated using data on six polymorphic loci (Rh, MNS, Fy, Jk, Di, Hp). By use of four genetic measures (two of genetic relationship and two of genetic diversity), we demonstrate that the Yanomama are genetically unique among a sample of 20 South American tribes. In addition, the Yanomama show somewhat less genetic diversity for the six loci analyzed than the average South American tribe. Taken together, these results indicate a rather long period of isolation for the population antecedent to the Yanomama--perhaps since the time of entry of man into the South American continent. The pattern of genetic relationships and genetic diversity for the 20 tribes is consistent with the hypothesis that evolution in South America proceeded by a process of fission-fusion leading to isolation of subpopulations with subsequent genetic differentiation as a consequence of population isolation. The uniqueness of the Yanomama appears to stem entirely from such a process, there being no evidence of any selective differential for the loci analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号