首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mixture of two phages, B44/1 and B44/2, protected calves against a potentially lethal oral infection with an O9:K30,99 enteropathogenic strain of Escherichia coli, called B44, when given before, but not after, the onset of diarrhoea; a mixture in which phage B44/3 was replaced by phage B44/3 was effective after the onset of diarrhoea. Calves that responded to phage treatment had much lower numbers of E. coli B44 in their alimentary tract than untreated calves. Usually, high numbers of phage B44/1 and rather lower numbers of phage B44/2 or B44/3 were present in the alimentary tract of these animals. At death, most calves that had not responded to treatment with phages B44/1 and B44/2 had high numbers of mutants of E. coli B44 resistant to phage B44/1 in their small intestine. Phage-treated calves that survived E. coli infection continued to excrete phage in their faeces, at least until the numbers of E. coli B44 also excreted were low. The phages survived longer than E. coli B44 in faecal samples taken from phage-treated calves and exposed to the atmosphere in an unheated animal house. Calves inoculated orally with faecal samples from phage-treated calves that contained sufficient E. coli B44 to cause a lethal infection remained healthy. A mixture of two phages, P433/1 and P433/2, and phage P433/1 alone cured diarrhoea in piglets caused by an O20:K101,987P strain of E. coli called P433. The numbers of the infecting bacteria and phages in the alimentary tract of the piglets resembled those in the calves. Another phage given to lambs 8 h after they were infected with an O8:K85,99 enteropathogenic strain of E. coli, called S13, reduced the numbers of these organisms in the alimentary tract and had an ameliorating effect on the course of the disease. No phage-resistant mutants of E. coli S13 were isolated from the lambs. The only mutants of E. coli B44 and P433 that emerged in the calves and piglets were K30- or K101- and resistant to phage B44/1 or P433/1 respectively; those tested were much less virulent than their parent strains.  相似文献   

2.
Seven phages highly active in vitro and in vivo against one or other of seven bovine enteropathogenic strains of Escherichia coli belonging to six different serotypes were isolated from sewage. Severe experimentally induced E. coli diarrhoea in calves could be cured by a single dose of 10(5) phage organisms. It could be prevented by doses as low as 10(2), by spraying the litter in the calf rooms with aqueous phage suspensions or simply by keeping the calves in uncleaned rooms previously occupied by calves whose E. coli infections had been treated with phage. Microbiological examinations of calves used in these experiments revealed that the phage organisms multiplied rapidly and profusely after gaining entry to the E. coli-infected small intestine, quickly reducing the E. coli to numbers that were virtually harmless. The only phage-resistant E. coli that emerged in the studies on calves infected with one or other of the seven E. coli strains were K-. These organisms were much less virulent than the K+ organisms from which they were derived and did not present a serious problem in calves given adequate amounts of colostrum. Infections produced by oral inoculation of a mixture of six strains of the E. coli could be controlled by administration of a pool of the six phages that were active against them but, in general, the control was less complete than that observed in the single-strain infections. K+ phage-resistant bacteria emerged in some of the calves used in these mixed infections and they were as virulent as their parent organisms; evidence from in vitro studies suggested that they might have arisen by genetic transfer between organisms of the different infecting strains. Infections produced by these K+ mutants and their parents could be controlled by the use of mutant phages derived from phages that were active on their parents. During the experiments with mixed E. coli infection, an extraneous phage active against one of the six E. coli strains suddenly appeared in calves kept in the same rooms. Microbiological examinations revealed that this phage was effectively controlling the multiplication of organisms of that particular strain of E. coli in the small intestines of the calves.  相似文献   

3.
Complications of chemotherapy, such as appearance of multidrug resistance, have persuaded researchers to consider phage therapy as a new method to combat bacterial infections. In vitro experiments were performed to assess the therapeutic value of genetically modified phages for controlling gastrointestinal Escherichia coli O157:H7 cells in Luria–Bertani (LB) media and contaminated cow milk. We constructed a modified nonreplicating M13-derived phage expressing a lethal catabolite gene activator protein (CAP) that is a Glu181Gln mutant of CAP. The modified phagemid was propagated in the lethal CAP-resistant strain XA3DII. Time–kill assay experiments showed a considerable reduction in the number of surviving bacteria in both LB media and contaminated cow milk. Our further study using other test strains demonstrated that the host range of lethal phage is limited to E. coli strains that produce pili. This study provides a possible strategy for the exploitation of genetically engineered nonlytic phages as bactericidal agents by minimizing the risk of release of progeny phages and endotoxins into the environment. The phage was engineered to remain lethal to its bacterial target, but incapable of replicating therein. Furthermore, the addition of an inducer to express the lethal protein is not required.  相似文献   

4.
A study was made of several bacteriophages (including phages U2 and LB related to T-even phages of Escherichia coli) that grow both on E. coli K12 and on some Salmonella strains. Such phages were termed ambivalent. T-even ambivalent phages (U2 and LB) are rare and have a limited number of hosts among Salmonella strains. U2 and LB are similar to canonical E. coli-specific T-even phages in morphological type and size of the phage particle and in reaction with specific anti-T4 serum. Phages U2 and LB have identical sets of structural proteins, some of which are similar in size to structural proteins of phages T2 and T4. DNA restriction patterns of phages U2 and LB differ from each other and from those of T2 and T4. Still, DNAs of all four phages have considerable homology. Unexpectedly, phages U2 and LB grown on Salmonella bungori were unstable during centrifugation in a CsCl gradient. Ambivalent bacteriophages were found in species other than T-even phages and were similar in morphotype to lambdoid and other E. coli phages. One of the ambivalent phages was highly similar to well-known Felix01, which is specific for Salmonella. Ambivalent phages can be used to develop a new set for phage typing in Salmonella. An obvious advantage is that ambivalent phages can be reproduced in the E. coli K12 laboratory strain, which does not produce active temperate phages. Consequently, the resulting typing phage preparation is devoid of an admixture of temperate phages, which are common in Salmonella. The presence of temperate phages in phage-typing preparations may cause false-positive results in identifying specific Salmonella strains isolated from the environment or salmonellosis patients. Ambivalent phages are potentially useful for phage therapy and prevention of salmonellosis in humans and animals.  相似文献   

5.
Escherichia coli strains freshly isolated from natural sources are inefficient indicators of coliphages present in sewage. Four E. coli strains recently isolated from clinical specimens were mutagenized to obtain lac(-) mutants. Such mutants were infected with an F'lac(+) sex factor of E. coli K-12. Pairs of isogenic lac(-) and lac(-)/F'lac(+) strains were used as indicators of coliphages present in sewage, and it was found that such strains can be effectively used for a direct and almost selective enumeration of F-specific coliphage contents of sewage samples. Serological tests were applied to a number of F-specific phages isolated. All the isolates that were tested fell into two distinguishable antigenic classes: members of one class being related to ribonucleic acid (RNA) phage MS2 and those of the other being related to another RNA phage, namely, Qbeta. MS2-related phages have been found to be more widely distributed than the Qbeta related phages. Most habitats sampled were found to yield only one or the other kind of phage. Single-stranded deoxyribonucleic acid-containing F-specific phages were not detectable by the methods employed by us.  相似文献   

6.
Nearly all of 62 strains of Salmonella paratyphi B were sensitive to colicin M and phage T5 but resistant to phages T1 and ES18 and to colicin B. All tested S. typhimurium strains were resistant to colicin M and phage T5, and many were sensitive to phage ES18. A rough S. typhimurium LT2 strain given the tonA region of Escherichia coli or S. paratyphi B became sensitive to colicin M and phage T5. We infer that the tonA allele of S. paratyphi B, like that of E. coli, determines an outer membrane protein that adsorbs T5 and colicin M but not phage ES18, whereas the S. typhimurium allele determines a protein able to adsorb only ES18. The partial T1 sensitivity of a rough LT2 strain with a tonA allele from E. coli or S. paratyphi B and also the tonB(+) phentotype of an E. coli B trp-tonB Delta mutant carrying an F' trp of LT2 origin showed that S. typhimurium LT2 has a tonB allele like that of E. coli with respect to determination of sensitivity to colicins and phage T1. Rough S. paratyphi B, although T5 sensitive, remained resistant to T1 even when given F' tonB(+) of E. coli origin. Classes of Salmonella mutants selected as resistant to colicin M included: T5-resistant mutants, probably tonA(-); mutants unchanged except for M resistance, perhaps tolerant; and Exb(+) mutants, producing a colicin inhibitor (presumably enterochelin). Some Exb(+) mutants were resistant to a bacteriocin inactive on E. coli but active on all tested S. paratyphi B and S. typhimurium strains (and on nearly all other tested Salmonella). A survey showed sensitivity to colicin M in several other species of Salmonella.  相似文献   

7.
Escherichia coli Capsule Bacteriophages II. Morphology   总被引:14,自引:8,他引:6       下载免费PDF全文
The Escherichia coli capsule bacteriophages (K phages) described herein are specific for certain capsular strains of E. coli, all of them test strains for different E. coli K antigens. The phages are not adsorbed to the acapsular mutants of their host organisms nor to similar strains with serologically and chemically different capsular polysaccharides. Thirteen E. coli (and one Klebsiella) K phages were visualized in the electron microscope. Most viruses are similar to P22 and thus belong to Bradley group C; however, one each of group A (long, contractile tail) and group B (long, noncontractile tail) was also found. All K phages were seen to carry spikes but no tail fibers were detected. These results suggest that the structures responsible for the recognition of the thick (about 400 nm or more) capsular polysaccharide gels are located in these spikes.  相似文献   

8.
9.
Evidence from several laboratories indicates that strain 15 of Escherichia coli is lysogenic for a defective phage. When lysates from induced cultures were centrifuged in CsCl, three bands were obtained. In order of decreasing density, these bands contained tailless particles, complete phages, and a second band of complete phages, in a ratio of 65.7:28.6:5.7. Reassociation rate measurements were used to establish that the molecular weights of the deoxyribonucleic acid (DNA) species from the phages in the first two bands are similar. A smaller genome is postulated in the complete phages from the minor band. Hybridization experiments revealed extensive homology between the DNA species from all three phage bands, thus suggesting that the complete and tailless particles are not different at the genetic level. The DNA from each phage band was also shown to hybridize almost completely with DNA from either E. coli 15T(-) or a reportedly cured derivative of 15T(-). In contrast, only about 25% of each phage DNA was able to react with DNA from E. coli strains B and K-12 C-600.  相似文献   

10.
Coliphage WPK was originally isolated from sewage in Kiel, Germany, because its plaque diameter continued to expand for days. Electron microscopy revealed an isometric capsid with dimensions of 54 nm between opposite apices, and a short, noncontractile tail 16 nm long, placing phage WPK into morphogroup C1. The nucleic acid of phage WPK was linear double stranded DNA. The host ranges of phages WPK and T3 were identical. Of ten E. coli strains tested for host range, two were resistant and of eighteen other Enterobacteriaceae only four were susceptible. Seven gram-negative species which are not members of the Enterobacteriaceae were refractory. However, there were differences in plaque morphology and plaque expansion between the two phages. Phage T3 plaques expanded for at least seven days on E. coli B only, while phage WPK plaques expanded for at least seven days on four strains of E. coli. The buoyant density of WPK, determined by isopycnic density gradient centrifugation in CsCl, was 1,508 g/ml which was significantly different than that of T3 at 1.493 g/ml (P less than 0.05). Phage-encoded proteins were examined for each phage using [35S]methionine incorporation, SDS-PAGE, and autoradiography. Of thirty proteins identified in phage WPK and twenty-eight in phage T3, only fourteen were of the same size in both. We concluded that phage WPK was distinct, but related to T3.  相似文献   

11.
Outer membrane pore protein OmpC was identified as the receptor for the temperate Escherichia coli phage HK253hrk. The part of OmpC protein recognized by the phage was identified by using hybrid proteins in which parts of OmpC protein are replaced by the corresponding parts of the related PhoE protein. In contrast to other OmpC-specific phages, HK253hrk recognizes a part of OmpC within the C-terminal 50 amino acids of the protein. E. coli strains lysogenic for HK253hrk produce reduced amounts of OmpC protein, and produce a new pore protein instead. Expression of this new protein was temperature-dependent, i.e. low at 30 degrees C. The functioning of this new pore protein was characterized both in vivo by studying the uptake of beta-lactam antibodies and in vitro after reconstitution of the protein in black lipid films. Its effective pore size was larger than that of the OmpF pores of E. coli B. The new porin appears to be cation-selective. A comparison with the selectivity of the known OmpC and OmpF pores of E. coli showed that the new pore has a higher selectivity than OmpF but is less selective than OmpC. The new pore protein appears to function in E. coli K12 lysogens as the receptor for the phages HK187, HK189 and HK332.  相似文献   

12.
An analysis of UV-damages accumulation in the phages as revealed by delay of intracellular growth is represented using temperate lambda phage. The maximum of growth delay of phage lambda at given UV-dose was found with lambda red+, infecting Escherichia coli AB1886 uvrA strain. The growth delay was absent, when a strain RH-1 uvrA-recA- was infected with UV-irradiated phage lambda red3. A moderate growth delay was obtained with the phages lambda red+, infecting E. coli RH-1 uvrA-recA- or phage lambda red3, infecting E. coli AB1886 uvrA-. THe growth delay was also absent when wild type, recA- and uvrA mutants of E. coli were infected with phage lambda after 8-metnoxypsoralen + light (lambda > 310 nm) treatment. It is known that the crosslinks appear to be the DNA defects which give rise to the observed biological inactivation following psoralen + light treatment. However, a considerable growth delay of phage lambda, treated by 8-metnoxypsoralen + light, was only found under condition of crosslinks repair (W-reactivation and prophage-reactivation). The results obtained are best explained by the assumption that the growth delay reflects the time required for the postreplication repair (RecA, LexA, Red) of any lethal UV-lesion.  相似文献   

13.
For the first time toxigenicity conversion in B. parapertussis induced by B. pertussis phages was discovered. The clones of B. parapertussis recipient strain No. 17903 used in this study were subjected to lysogenization with 4 B. pertussis phages; as a result, 95% of these clones became immune to the repeated phage infection, developed spontaneous phage production and showed toxic properties (lethal toxicity due to the action of thermolabile and thermostable toxins) characteristic of the donor strains from which B. pertussis phages had been obtained. Differences in the degree of toxicity shown by the converted strains were determined by means of the spleen index. The convertants thus obtained did not possess protective potency.  相似文献   

14.
A dual specificity for phage T5 adsorption to Escherichia coli cells is shown. The tail fiber-containing phages T5(+) and mutant hd-3 adsorbed rapidly to E. coli F (1.2 x 10(-9) ml min(-1)), whereas the adsorption rate of the tail fiber-less mutants hd-1, hd-2, and hd-4 was low (7 x 10(-11) ml min(-1)). The differences in adsorption rates were due to the particular lipopolysaccharide structure of E. coli F. Phage T4-resistant mutants of E. coli F with an altered lipopolysaccharide structure exhibited similar low adsorption for all phage strains with and without tail fibers. The same held true for E. coli K-12 and B which also differ from E. coli F in their lipopolysaccharide structures. Only the tail fiber-containing phages reversibly bound to isolated lipopolysaccharides of E. coli F. Infection by all phage strains strictly depended on the tonA-coded protein in the outer membrane of E. coli. We assume that the reversible preadsorption by the tail fibers to lipopolysaccharide accelerates infection which occurs via the highly specific irreversible binding of the phage tail to the tonA-coded protein receptor. The difference between rapid and slow adsorption was also revealed by the competition between ferrichrome and T5 for binding to their common tonA-coded receptor in tonB strains of E. coli. Whereas binding of T5(+) to E. coli K-12 and of the tail-fiber-less mutant hd-2 to E. coli F and K-12 was inhibited 50% by about 0.01 muM ferrichrome, adsorption of T5 to E. coli F was inhibited only 40% by even 1,000-fold higher ferrichrome concentrations.  相似文献   

15.
Milk contamination by phages, the susceptibility of the phages to pasteurization, and the high levels of resistance to phage infection of starter strains condition the evolution dynamics of phage populations in dairy environments. Approximately 10% (83 of 900) of raw milk samples contained phages of the quasi-species c2 (72%), 936 (24%), and P335 (4%). However, 936 phages were isolated from 20 of 24 (85%) whey samples, while c2 was detected in only one (4%) of these samples. This switch may have been due to the higher susceptibility of c2 to pasteurization (936-like phages were found to be approximately 35 times more resistant than c2 strains to treatment of contaminated milk in a plate heat exchanger at 72°C for 15 s). The restriction patterns of 936-like phages isolated from milk and whey were different, indicating that survival to pasteurization does not result in direct contamination of the dairy environment. The main alternative source of phages (commercial bacterial starters) does not appear to significantly contribute to phage contamination. Twenty-four strains isolated from nine starter formulations were generally resistant to phage infection, and very small progeny were generated upon induction of the lytic cycle of resident prophages. Thus, we postulate that a continuous supply of contaminated milk, followed by pasteurization, creates a factory environment rich in diverse 936 phage strains. This equilibrium would be broken if a particular starter strain turned out to be susceptible to infection by one of these 936-like phages, which, as a consequence, became prevalent.  相似文献   

16.
Milk contamination by phages, the susceptibility of the phages to pasteurization, and the high levels of resistance to phage infection of starter strains condition the evolution dynamics of phage populations in dairy environments. Approximately 10% (83 of 900) of raw milk samples contained phages of the quasi-species c2 (72%), 936 (24%), and P335 (4%). However, 936 phages were isolated from 20 of 24 (85%) whey samples, while c2 was detected in only one (4%) of these samples. This switch may have been due to the higher susceptibility of c2 to pasteurization (936-like phages were found to be approximately 35 times more resistant than c2 strains to treatment of contaminated milk in a plate heat exchanger at 72 degrees C for 15 s). The restriction patterns of 936-like phages isolated from milk and whey were different, indicating that survival to pasteurization does not result in direct contamination of the dairy environment. The main alternative source of phages (commercial bacterial starters) does not appear to significantly contribute to phage contamination. Twenty-four strains isolated from nine starter formulations were generally resistant to phage infection, and very small progeny were generated upon induction of the lytic cycle of resident prophages. Thus, we postulate that a continuous supply of contaminated milk, followed by pasteurization, creates a factory environment rich in diverse 936 phage strains. This equilibrium would be broken if a particular starter strain turned out to be susceptible to infection by one of these 936-like phages, which, as a consequence, became prevalent.  相似文献   

17.
Propagation of ribonucleic acid coliphages in gnotobiotic mice.   总被引:1,自引:1,他引:0       下载免费PDF全文
A Ando  K Furuse    I Watanabe 《Applied microbiology》1979,37(6):1157-1165
To clarify the propagation cycle of bacteriophages in their natural habitats, we tested whether animals could support ribonucleic acid (RNA) phage propagation in their intestines, using germfree mice as the test animal. Propagation of four different antigenic types of RNA phages was tested. No detectable propagation or colonization of RNA phages was observed either in germfree mice or in gnotobiotic mice infected with the F- strain of Escherichia coli. Propagation or colonization was observed when RNA phages were orally introduced into gnotobiotic mice harboring the F+ or F' strain of E. coli. These results were consistent with data for in vitro propagation experiments. Fecal titers of phages were monitored over 24 to 98 days and were found to vary from 10(5) to 10(11) plaque-forming units per g of feces. Streptomycin administration gradually led to the disappearance of bacteria and, concomitantly, the RNA phages. Phages recovered from gnotobiotic mice feces included some of novel antigenic types. The bacterial isolates recovered from gnotobiotic mice harboring F+ bacteria included the original F+ strain, strains which had become F-, and some which had become inefficient hosts for the propagation of RNA phages.  相似文献   

18.
To clarify the propagation cycle of bacteriophages in their natural habitats, we tested whether animals could support ribonucleic acid (RNA) phage propagation in their intestines, using germfree mice as the test animal. Propagation of four different antigenic types of RNA phages was tested. No detectable propagation or colonization of RNA phages was observed either in germfree mice or in gnotobiotic mice infected with the F- strain of Escherichia coli. Propagation or colonization was observed when RNA phages were orally introduced into gnotobiotic mice harboring the F+ or F' strain of E. coli. These results were consistent with data for in vitro propagation experiments. Fecal titers of phages were monitored over 24 to 98 days and were found to vary from 10(5) to 10(11) plaque-forming units per g of feces. Streptomycin administration gradually led to the disappearance of bacteria and, concomitantly, the RNA phages. Phages recovered from gnotobiotic mice feces included some of novel antigenic types. The bacterial isolates recovered from gnotobiotic mice harboring F+ bacteria included the original F+ strain, strains which had become F-, and some which had become inefficient hosts for the propagation of RNA phages.  相似文献   

19.
By inducing with mitomycin C the following phages were isolated from all the tested 32 methicillin resistant strains of S. aureus: the serogroup B phage was isolated from 2 strains, the serogroup B and F phages were isolated from 5 strains and the serogroup F phage was isolated from 25 strains. The phages were divided into 5 groups by the antiphage immunity. In group 1 of the phages 4 additional phages were specified. By the specificity of the prophages in the cultures all the strains were divided into 5 groups. Group 1 of the cultures was divided into 5 subgroups (A, B, C, D and E).  相似文献   

20.
A 3-week coliphage survey was conducted in stool samples from 140 Bangladeshi children hospitalized with severe diarrhea. On the Escherichia coli indicator strain K803, all but one phage isolate had 170-kb genomes and the morphology of T4 phage. In spot tests, the individual T4-like phages infected up to 27 out of 40 diarrhea-associated E. coli, representing 22 O serotypes and various virulence factors; only five of them were not infected by any of these new phages. A combination of diagnostic PCR based on g32 (DNA binding) and g23 (major capsid protein) and Southern hybridization revealed that half were T-even phages sensu strictu, while the other half were pseudo-T-even or even more distantly related T4-like phages that failed to cross-hybridize with T4 or between each other. Nineteen percent of the acute stool samples yielded T4-like phages, and the prevalence was lower in convalescent stool samples. T4-like phages were also isolated from environmental and sewage water, but with low frequency and low titers. On the enteropathogenic E. coli strain O127:K63, 14% of the patients yielded phage, all of which were members of the phage family Siphoviridae with 50-kb genomes, showing the morphology of Jersey- and beta-4 like phages and narrow lytic patterns on E. coli O serotypes. Three siphovirus types could be differentiated by lack of cross-hybridization. Only a few stool samples were positive on both indicator strains. Phages with closely related restriction patterns and, in the case of T4-like phages, identical g23 gene sequences were isolated from different patients, suggesting epidemiological links between the patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号