首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pharmacological receptors for substance P and neurokinins   总被引:31,自引:0,他引:31  
The three neurokinins identified in mammals, substance P, neurokinin A and neurokinin B, as well as their C-terminal biologically active fragments, have been used to characterize the responses of a variety of isolated organs. Three preparations selective either for substance P (the dog carotid artery), or for neurokinin A (the rabbit pulmonary artery) or for neurokinin B (the rat portal vein) are described. A neurokinin receptor classification is attempted using the neurokinins and their fragments to determine the order of potency of agonists. Three receptor subtypes have been identified: the NK-P, on which substance P (SP) is more active than neurokinin A (NKA) and neurokinin B (NKB), and the neurokinins are more active than their respective fragments; the NK-A on which NKA greater than NKB greater than SP, and some NKA fragments are more discriminative than their precursor; the NK-B on which NKB greater than NKA greater than SP, and fragments of NKB are less active than their precursor. Among the peptides studied, some potent compounds have been identified that could provide selective receptor ligands.  相似文献   

2.
D Regoli  F Nantel 《Biopolymers》1991,31(6):777-783
The neurokinins are a group of naturally occurring peptides with the common C-terminal sequence Phe-X-Gly-Leu-Met.NH2. They include substance P (SP), neurokinin A (NKA), and neurokinin B (NKB). SP and NKA are coded on the same gene, the PPT-A, while NKB is coded on a separate gene, the PPT-B. Neurokinins are present in the central nervous system and in peripheral organs where they exert various actions. They act on three receptors--NK-1, NK-2, and NK-3--characterized through pharmacological, biochemical, and histochemical studies. Selective agonists for each neurokinin receptor were developed and evaluated on isolated smooth muscle preparations containing only one neurokinin receptor type. All three neurokinin receptors were cloned and expressed in Xenopus oocytes. Relative affinities of those receptors to neurokinins are the same as in their respective smooth muscle preparation. Finally, the mechanism of action of SP on histamine release from rat peritoneal mast cell has been studied and a direct activation of G proteins by peptides with basic amino acids is proposed as a working hypothesis.  相似文献   

3.
Selective agonists for receptors of substance P and related neurokinins   总被引:3,自引:0,他引:3  
Neurokinins and their receptors are a complex system consisting of at least three endogenous agents--substance P (SP), neurokinin A (NKA), and neurokinin B (NKB)--and their corresponding receptor types, respectively, NK-1, NK-2, and NK-3. Investigations on receptors have been made using sensitive and fairly selective pharmacological preparations (the dog carotid artery for the NK-1, the rabbit pulmonary artery devoid of endothelium for the NK-2, and the rat portal vein for the NK-3 receptor), and some natural peptides of mammalian and nonmammalian origin. Because of the nonselectivity of the natural peptides, analogues of the neurokinins have been found that act on one receptor only and show therefore high selectivity. The selective agonists [Sar9,Met(O2)11]SP, [Nle10]NKA (4-10), and [MePhe7]-NKB have been used successfully for (a) characterizing the three neurokinin receptors, (b) identifying isolated organs whose responses to neurokinins depend on the activation of a single (monoreceptor systems) or of more than one (multireceptor systems) receptor, and (c) elucidating some of the physiological function of the three receptor types. It is suggested that NK-1 mediate peripheral vasodilatation and exocrine secretions, NK-2 stimulate bronchial muscles and facilitate the release of catecholamines, and NK-3 promote the release of acetylcholine in peripheral organs.  相似文献   

4.
R Mathison  J S Davison 《Life sciences》1989,45(12):1057-1064
This study characterizes the actions of the neurokinins and calcitonin-gene related peptide (CGRP) on electrolyte transport across the mucosa of the guinea pig jejunum in vitro in a modified Ussing chamber. By following changes in short circuit current (Isc) induced by substance P (SP) and neurokinins A & B (NKA & NKB) in the presence and absence of tetrodotoxin (TTX) and atropine, it was established that two distinct neurokinin receptors are involved in the regulation of electrolyte transport. NKA preferentially activates a neuronal receptor since the actions of this neurokinin were inhibited by both TTX and atropine. SP, whose actions were reduced to a lesser extent by TTX and atropine, is considered to activate preferentially a receptor on the epithelial cells. The third neurokinin, NKB, appears to act non-selectively on both the neuronal and epithelial receptors. CGRP, which per se did not affect Isc, markedly potentiated the increases in Isc induced by SP and NKB, and thus acts synergistically with the epithelial neurokinin receptor. These results suggest that two distinct neurokinin receptors (the NK-1 and the NK-2) regulate epithelial transport in the jejunal mucosa of the guinea pig, and furthermore indicate that at least one of the peptides found in enteric nerves (i.e. CGRP) modulates the actions of neurokinins on epithelial cells.  相似文献   

5.
Recently, the cloning of a novel preprotachykinin gene (PPT-C) has been reported. This gene codes for a novel peptide named hemokinin 1 (HK-1). In contrast with the known tachykinins, which are exclusively expressed in neuronal tissues, PPT-C mRNA was detected primarily in hematopoietic cells. In this study, we pharmacologically characterised the effects of HK-1 using three tachykinin monoreceptor systems, namely the rabbit jugular vein (rbJV) for NK(1), the rabbit pulmonary artery (rbPA) for NK(2), and rat portal vein (rPV) for NK(3) receptors. In all these preparations substance P (SP), neurokinin A (NKA) and neurokinin B (NKB) elicited concentration dependent contractions showing similar maximal effects and the following rank order of potency: SP > NKA = NKB in the rbJV, NKA > NKB > SP in the rbPA, and NKB > NKA > SP in the rPV. In those vessels HK-1 behaved as a full agonist displaying potencies similar (rbPA and rPV) or slightly higher (rbJV) than those of SP. In the rbJV, SR 140333, a selective NK(1) receptor antagonist, antagonised the effects of HK-1 and SP with similar high potencies (pK(B) 9.3 and 9.5, respectively). Similar results were obtained with the pseudopeptide NK(1) antagonist, MEN 11467 (pK(B) 8.8 and 8.6, respectively). Taken together, these data indicate that HK-1 behaves as a NK(1) preferring receptor agonist.  相似文献   

6.
Characterization of bradykinin receptors in peripheral organs.   总被引:3,自引:0,他引:3  
Bradykinin (BK) and related kinins are potent stimulants of the rabbit jugular vein, the hamster urinary bladder, and the guinea pig trachea. The characterization of kinin receptors in these tissues was made with agonists and antagonists. Results obtained with agonists indicate that bradykinin and kallidin are much more active than des-Arg9-BK and suggest the presence of B2 receptors in the three organs. Some new agonists were also tested and the BK analogue, [Hyp3,Tyr(Me)8]BK, was found to be a potent and selective stimulant of the three preparations, with pD2 values of 8.56, 8.00, and 8.39, respectively, but inactive on the rabbit aorta (a B1-receptor system). Contractile effects of kinins in the rabbit jugular vein and hamster urinary bladder were reduced or eliminated by B2-receptor antagonists but at different concentration levels; e.g., acetyl-D-Arg[Hyp3,D-Phe7]BK showed pA2 values of 7.78 on the rabbit jugular vein but only 5.72 on hamster urinary bladder. This compound contracted the guinea-pig trachea and was found to be inactive as an antagonist on this preparation. Contractions of the hamster urinary bladder and the guinea-pig trachea in response to bradykinin were markedly reduced or eliminated by indomethacin and by BW 755C, while those of the rabbit jugular vein were not modified. The present findings indicate that the myotropic effect of kinins on the rabbit jugular vein depends on the activation of B2 receptors and suggest that B2 receptors are largely responsible also for the response of the hamster urinary bladder. B2 receptors and (or) a nonreceptor mechanism appear to be involved in the stimulant effects of the kinin agonists and some antagonists in the guinea-pig trachea.  相似文献   

7.
Anti-idiotypic antibodies may serve as valuable probes for cytological identification of peptide receptors in the CNS. We have previously described the preparation of anti-substance P (SP) anti-idiotypic antibodies (anti-Id Ab) and have shown that they recognize SP receptors. These anti-Id Ab can be used in cytology to label SP receptors in CNS. We chose rat cervical spinal cord as a model because SP is present in large amounts in the dorsal and ventral horns, where it is implicated in pain and in motor function, respectively. After application of an indirect immunoperoxidase technique to tissue sections from perfused animals, immunolabeling was seen in the two superficial layers of the dorsal horn, the area surrounding the central canal, extending along the white matter in lamina VII, and in part of the ventral horn. This localization is in accordance with the classical distribution of SP receptors as seen by autoradiography with labeled SP. In the light of control experiments, as well as of biochemical and pharmacological arguments, we discuss the specificity of the immunolabeling. We conclude that anti-Id Ab recognize NK-P receptors, although crossreaction with NK-A or NK-B receptors cannot be totally ruled out.  相似文献   

8.
I Iwamoto  J A Nadel 《Life sciences》1989,44(16):1089-1095
To determine the tachykinin receptor subtype that mediates the increase in vascular permeability, we examined the rank order of potency of tachykinins for inducing plasma extravasation in guinea pig skin and the specificity of tachykinin-induced tachyphylaxis of the responses. Plasma extravasation of the skin induced by tachykinins was NK-1 (SP-P)-type response from the rank order of potency of mammalian and nonmammalian tachykinins. Tachyphylaxis of the vascular response was induced by intradermal preinjection of mammalian tachykinins and was tachykinin-specific. In substance P (SP) tachyphylaxis (where SP was preinjected), the response to SP, not to neurokinin A (NKA) or neurokinin B (NKB), was decreased. In NKA tachyphylaxis and NKB tachyphylaxis, the response to NKA, not to SP or NKB, and the response to NKB, not to SP or NKA, were decreased, respectively. Thus, we conclude that the apparent NK-1-type response is mediated through three mammalian tachykinin receptors, NK-1, NK-2, and NK-3, which are specifically stimulated by their preferred agonist, SP, NKA, and NKB, respectively.  相似文献   

9.
The neurokinin A analogue, MDL 28,564 (Asp-Ser-Phe-Val-Gly-Leu-CH2NH-Leu-NH2), inhibited 125I-NKA binding to hamster urinary bladder NK2 receptors with a KI of 130 nM. For rat submaxillary gland NK1 receptors and cerebral cortical NK3 receptors, the KI's for MDL 28,564 were greater than 250 microM and greater than 500 microM, respectively. MDL 28,564 did not relax dog carotid artery (NK1 tissue) or contract rat portal vein (NK3 tissue). In guinea-pig trachea tissues, MDL 28,564 stimulated phosphatidylinositol turnover and induced contraction with maximum effects similar to those of neurokinin A. In hamster urinary bladder tissue, MDL 28,564 stimulated phosphatidylinositol turnover with maximum effect only 10% of that of neurokinin A, did not produce sustained contraction itself and antagonized NKA-induced contraction. MDL 28,564 also produced full contraction in rabbit pulmonary artery (NK2 tissue) but was inactive in rat vas deferens (NK2 tissue). These data with MDL 28,564 are consistent with the NK2 receptors in guinea-pig trachea and rabbit pulmonary artery being different from those in hamster urinary bladder and rat vas deferens.  相似文献   

10.
The tachykinins (TKs) substance P (SP), neurokinin A (NKA), and neurokinin B (NKB) have conserved C-terminal sequences and mediate similar physiological responses by activating neurokinin receptors found on neural and smooth muscle cells. Many enteric nerves express preprotachykinin A (PPT A) mRNA and synthesize SP and NKA. However, it is unclear if NKB is synthesized in enteric neurons as many antibodies developed against NKB also recognize other TKs. Therefore, the cellular distribution of NKB-like-immunoreactivity (NKB-ir) in rat ileum was examined using selective antisera raised against either synthetic Cys10-NKB or peptide 2 (P2), a non-tachykinergic peptide sequence in NKB precursor protein. NKB-ir and P2-ir had a similar distribution in varicose nerve fibers in submucosal and myenteric ganglia and almost all ganglia contained immunoreactive nerves. Few submucosal or myenteric neuronal somata contained strong immunoreactivity. Preabsorption of NKB or P2 antisera with their respective cognate peptides, but not with other TK peptides, abolished specific immunostaining. Finally, co-localization of NKB-/P2-ir with SP-ir suggested that most NKB-/P2-ir nerve fibers contain SP-ir, but some SP-ir nerves do not contain detectable NKB-/P2-ir. These results indicate that PPT B products P2 and NKB are localized in a subpopulation of enteric nerves containing TKs encoded by PPT A. Stimulation of these nerves may release NKB to activate local neurokinin receptors.  相似文献   

11.
Highly selective agonists for substance P receptor subtypes.   总被引:30,自引:1,他引:29  
U Wormser  R Laufer  Y Hart  M Chorev  C Gilon    Z Selinger 《The EMBO journal》1986,5(11):2805-2808
The existence of a third tachykinin receptor (SP-N) in the mammalian nervous system was demonstrated by development of highly selective agonists. Systematic N-methylation of individual peptide bonds in the C-terminal hexapeptide of substance P gave rise to agonists which specifically act on different receptor subtypes. The most selective analog of this series, succinyl-[Asp6,Me-Phe8]SP6-11, elicits half-maximal contraction of the guinea pig ileum through the neuronal SP-N receptor at a concentration of 0.5 nM. At least 60,000-fold higher concentrations of this peptide are required to stimulate the other two tachykinin receptors (SP-P and SP-E). The action of selective SP-N agonists in the guinea pig ileum is antagonized by opioid peptides, suggesting a functional counteraction between opiate and SP-N receptors. These results indicate that the tachykinin receptors are distinct entities which may mediate different physiological functions.  相似文献   

12.
Intradermal (ID) injection of the natural tachykinins substance P (SP), neurokinin A (NKA), and neurokinin B (NKB) (0.3-30 nmol) resulted in a marked and dose-related rat paw edema, with mean ED50 values of 2.68 nmol, 1.17 nmol, and 0.80 nmol, respectively. The ID injection of the selective NK1, SP methyl-ester (1-30 nmol), NK2, [beta-Ala8]-neurokinin A4-10) (beta-Ala, 0.3-30 nmol), or NK3, senktide (1-10 nmol) agonists, caused extensive edema formation with mean ED50s of 0.48 nmol, 0.41 nmol, and 0.18 nmol, respectively. The ID injection of the selective NK1 antagonist FK888 (0.1-3 nmol) produced marked inhibition (94%, 52%, and 66%, respectively) of rat paw edema induced by SP, NKA, or SP methyl-ester. The ID co-injection of the NK2 receptor antagonist SR 48968 elicited a graded inhibition (52%, 67%, and 35%, respectively) of rat paw edema induced by NKA, beta-Ala and, to a lesser extent, the edema caused by SP. Finally, the ID co-injection of the NK, receptor antagonist SR 142801 significantly inhibited (53%, 76%, 53%, and 100%, respectively) the edema formation caused by NKB and NKA or by SP and senktide. Together, the data of the present study suggest that tachykinin-mediated rat paw edema depends on the activation of NK1, NK2 and NK3 receptor subtypes, with apparent major involvement of NK1 receptors subtypes.  相似文献   

13.
Abstract: This study was undertaken to investigate the pharmacology of cloned guinea pig and rat 5-hydroxytryptamine (serotonin; 5-HT)1D receptor sites. Guinea pig, rat, and mouse 5-HT1D receptor genes were cloned, and their amino acid sequences were compared with those of the human, dog, and rabbit. The overall amino acid sequence identity between these 5-HT1D receptors is high and varies between 86 and 99%. The sequence homology is slightly more divergent (13–27%) in the N-terminal extracellular region of these 5-HT1D receptors. Guinea pig and rat 5-HT1D receptors, stably and separately expressed in rat C6 glial cells, are negatively coupled to cyclic AMP formation upon stimulation with agonists, as previously found for cloned human 5-HT1D receptor sites. The cyclic AMP data show some common pharmacological features for the 5-HT1D receptors of guinea pig, rat, and human: an almost similar rank order of potency for the investigated 5-HT1D receptor agonists, stereoselectivity for the binding affinity and agonist potency of R(+)-8-hydroxy-2-(di-n-propylamino)tetralin, and equal 5-HT1D receptor-mediated antagonist potency for methiothepin and the 5-HT2 receptor antagonists ritanserin and ketanserin. In conclusion, the pharmacology of the cloned 5-HT1D receptor subtype seems, unlike the 5-HT1B receptor subtype, conserved among various mammal species such as the human, guinea pig, and rat.  相似文献   

14.
A novel and highly specific radioimmunoassay for the tachykinin peptide neuromedin K (NMK, also known as neurokinin beta, neurokinin B) has been developed and used to determine the distribution of this peptide in extracts of guinea pig tissues. In addition to immunoreactive components coeluting with the 3 mammalian tachykinins, substance P (SP), substance K (SK) and NMK, analyses using reverse-phase HPLC revealed immunoreactive peaks coeluting with the C-terminal octapeptide of SK (SK-(3-10], an N-terminally extended form of SK (gamma-preprotachykinin-(72-92)amide), and a yet unidentified peak eluting before NMK in the extracts of guinea pig brain and spinal cord. In contrast to the other tachykinins, SP and SK, which were present in high concentrations in extracts of all peripheral and central tissues examined, NMK-like immunoreactivity was detected only in extracts of central tissues. NMK-like immunoreactivity was not detected in extracts of terminal ileum and urinary bladder.  相似文献   

15.
O Laneuville  J Dorais  R Couture 《Life sciences》1988,42(13):1295-1305
In the awake restrained rat the intrathecal (i.th.) administration of 6.5 pmol-40 nmol of substance P (SP), neurokinin A (NKA) or one of two selective NK-1 receptor agonists [Pro9, Met(O2)11]SP, denoted ana1 and [beta-Ala4, Sar9, Met(O2)11]SP , denoted ana2 decreased reaction time (RT) to a noxious radiant heat stimulus in a dose-related manner. The following rank order of potency was observed in relation to this response: ana1 = ana2 greater than SP much greater than NKA. The decrement of tail-flick latency was greatest at 1 min and RT returned to the basal level within 6-11 min post-administration. However, in some rats SP produced a small increase in RT (anti-nociception) at 6-11 min post-administration. The i.th. administration of neurokinin B (NKB) or a selective NK-3 receptor agonist [beta-Asp4, MePhe7]NKB), denoted ana3 induced an antinociceptive effect which was greatest at 1 min and lasted less than 11 min after NKB or more than 30 min after ana3 administration. The magnitude of the increase in RT produced by 65 pmol-40 nmol doses of these peptides is ana3 much greater than NKB much greater than SP. The effect of NKB (8.0 nmol) was significantly blocked (P less than 0.005) by prior i.th. administration of naloxone (opioid antagonist) but not by idazoxan (alpha 2-adrenoceptor antagonist), [Thi5,8, D-Phe7]BK (kinin antagonist), or following bilateral adrenalectomy. From these results, we conclude that NKB-induced antinociception is mediated by the spinal release of an opioid and not through a BK or NA mechanism. The results also suggest that the nociceptive and antinociceptive effects of neuro-kinins are mediated by the activation of NK-1 and NK-3 receptor subtypes respectively, in the rat spinal cord.  相似文献   

16.
Muscarinic receptors coupled to phosphoinositide hydrolysis (PI) are present in guinea pig bladder and colon. Compared to rat cerebral cortex, an extensively studied muscarinic/PI turnover system, all agonists were more potent and efficacious in both bladder and colon. The "M1-selective antagonists", pirenzepine and dicyclomine, were much more potent (Ki = 1-5 nM) and selective (300 to 500-fold) at both rat and guinea pig brain and guinea pig colon receptors, compared to PI-coupled receptors in guinea pig bladder. In contrast, "M2-selective antagonists", AF-DX 116 and HHSiD, were 2-6 fold more potent in bladder than in brain, while HHSiD was very potent in the colon (50 times more potent than in brain). These results suggest a pharmacological heterogeneity of PI-linked muscarinic receptors. If muscarinic receptors with a low affinity for pirenzepine are defined as M2, these results show that the guinea pig bladder contains PI-linked M2 muscarinic receptors, whereas the guinea pig colon contains PI-linked M1 receptors.  相似文献   

17.
Four neurokinin antagonists of different size have been used to counteract the myotropic effects of substance P, neurokinin A and neurokinin B in isolated organs containing a single receptor type (monoreceptor systems). These are: the dog carotid artery, the rabbit jugular and cava veins and the guinea pig ileum (NK-1), the rabbit pulmonary artery (NK-2) and the rat portal vein (NK-3). Undeca and octapeptides containing 2 D-Trp residues in their sequences were slightly more active on the NK-1, than on the NK-2 and NK-3 receptors and showed little selectivity. In contrast, compound AcThr-D.Trp(For)-Phe.NMe Bz was found to be as good an antagonist as the larger compounds and showed some selectivity for the NK-1 receptors. When tested against kinins or angiotensin, all compounds were found to be inactive, suggesting that they are specific for neurokinins. The present results show that NK-1 receptor antagonism can be obtained with compounds of different size, including tripeptides and nonpeptides.  相似文献   

18.
In urethane-anaesthetized rats, the intrathecal administration of 6.5 nmol of substance P (SP), neurokinin A (NKA), or neurokinin B (NKB) at the T8-T10 level of the spinal cord enhances mean arterial pressure and heart rate. However, in the pentobarbital-anaesthetized rat, while NKB produces no effect on mean arterial pressure, NKA produces a biphasic change and SP, a depressor response. All three neurokinins elicit a tachycardia. The following rank order of potency SP greater than or equal to NKA greater than NKB is observed in relation to these cardiovascular responses when either one of the two anaesthetics is used. The low cardiovascular activity of NKB cannot be attributed to its hydrophobicity, as the water soluble analogue of NKB, [Arg0]NKB, elicits a response as weak as the native peptide. In pentobarbital-anaesthetized rats, the intrathecal administration of 6.5 nmol of SP, also enhances plasma protein extravasation in cutaneous tissues of the back, the hind paws, and the ears. In this response NKA and NKB are either inactive (skin of hind paws) or less potent than SP (ears and dorsal skin). These findings agree with the hypothesis that in the rat spinal cord, the neurokinin receptor producing changes in mean arterial pressure, heart rate, and vascular permeability is of the NK-1 subtype.  相似文献   

19.
The binding of [3H]PK 11195 and [3H]Ro 5-4864 to membrane preparations from cerebral cortex and peripheral tissues of various species was studied. [3H]PK 11195 (0.05-10 nM) bound with high affinity to rat and calf cerebral cortical and kidney membranes. [3H]Ro 5-4864 (0.05-30 nM) also successfully labeled rat cerebral cortical and kidney membranes, but in calf cerebral cortical and kidney membranes, its binding capacity was only 3 and 4%, respectively, of that of [3H]PK 11195. Displacement studies showed that unlabeled Ro 5-4864, diazepam, and flunitrazepam were much more potent in displacing [3H]PK 11195 from rat cerebral cortex and kidney membranes than from calf tissues. The potency of unlabeled Ro 5-4864 in displacing [3H]PK 11195 from the cerebral cortex of various other species was also tested, and the rank order of potency was rat = guinea pig greater than cat = dog greater than rabbit greater than calf. Analysis of these displacement curves revealed that Ro 5-4864 bound to two populations of binding sites from rat and calf kidney and from rat, guinea pig, rabbit, and calf cerebral cortex but to a single population of binding sites from cat and dog cerebral cortex. Using [3H]PK 11195 as a ligand, the rank order of binding capacity in cerebral cortex of various species was cat greater than calf greater than guinea pig greater than rabbit greater than dog greater than rat, whereas when [3H]Ro 5-4864 was used, the rank order of binding capacity was cat greater than guinea pig greater than rat greater than rabbit greater than calf greater than dog.  相似文献   

20.
Antibodies to substance P (SP) produced in rabbits have been characterized for their specificity toward SP and some 30 SP-related peptides. For each compound, we observed a close correlation between capacity of binding to anti-SP antibodies and biological activity, namely their spasmogenic effect on guinea pig ileum in vitro and their hypotensive effect in the rat in vivo, indicating that the combining sites of anti-SP and SP receptor(s) are structurally very similar. Further immunization of five rabbits with anti-SP immunoglobulins elicited in two allotype-matched animals the production of anti-SP anti-idiotypic antibodies. These latter antibodies were found to strongly inhibit the spasmogenic action of SP on the guinea pig ileum. In contrast, they specifically enhanced, like SP, phospholipid turnover in rat parotid gland cells, a physiological function mediated through an activation of SP receptors. Immunocytochemical studies actually revealed the presence of specific membranous binding sites for anti-idiotypic antibodies on the parotid gland-dissociated cells. The anti-idiotypic antibodies described here, which thus behave either as agonists or antagonists for SP depending on the biological test, might be used as original and powerful tools not only in studies of the receptor stereospecificity but also in attempts to purify the membranous SP receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号