首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Abstract. Factors underlying the process of photosynthetic acclimation to temperature were investigated for the shrub Nerium oleander L. Ramets of a single clone were grown under day/night temperature regimes of 20°C/15°C or 45°C/32°C. Plants grown at the lower temperature regime possessed rates of photosynthesis twice that of the high-temperature grown plants when CO2 fixation was measured at 20°C. In contrast, the plants grown at the high-temperature regime had twice the rate of CO2 fixation of the 20°C/l 5°C-grown plants at a measurement temperature of 45° C. It was determined that the ability to acclimate to changes in temperature regime was present in fully mature leaves. A reciprocal transfer of plants between the two growth regimes resulted in the appearance of the CO2 fixation characteristics appropriate to the new growth temperature after 12–14d. The response of CO2 fixation to light, temperature, and CO2 partial pressure and the temperature responses of soluble and membrane-bound photosynthetic enzyme systems were analysed to determine which components might be responsible for the superior photosynthetic performance of the 20°C/I5°C-grown plants at 20°C, and the enhanced high-temperature stability of the 45°C/32°C plants. The measured photosynthetic capacity of the 20°C/15°C plants could not be attributed to gross morphological, stomatal, or other physical changes, or to a general increase in the concentration of components of the photosynthetic process. Only a single enzyme, Fru-P2 phosphatase, was affected to an extent similar to that of photosynthesis. The enhanced thermal stability of the 45°C/32°C plants may be attributed primarily to an enhanced stability of the chloroplast membrane-bound enzymatic activities and the stability of the photosynthetic carbon metabolism enzymes which require lighl for activation.  相似文献   

2.
Using controlled environmental growth chambers, whole plants of soybean, cv. ‘Clark’, were examined during early development (7–20 days after sowing) at both ambient (≈ 350 μL L–1) and elevated (≈ 700 μL L–1) carbon dioxide and a range of air temperatures (20, 25, 30, and 35 °C) to determine if future climatic change (temperature or CO2 concentration) could alter the ratio of carbon lost by dark respiration to that gained via photosynthesis. Although whole-plant respiration increased with short-term increases in the measurement temperature, respiration acclimated to increasing growth temperature. Respiration, on a dry weight basis, was either unchanged or lower for the elevated CO2 grown plants, relative to ambient CO2 concentration, over the range of growth temperatures. Levels of both starch and sucrose increased with elevated CO2 concentration, but no interaction between CO2 and growth temperature was observed. Relative growth rate increased with elevated CO2 concentration up to a growth temperature of 35 °C. The ratio of respiration to photosynthesis rate over a 24-h period during early development was not altered over the growth temperatures (20–35 °C) and was consistently less at the elevated relative to the ambient CO2 concentration. The current experiment does not support the proposition that global increases in carbon dioxide and temperature will increase the ratio of respiration to photosynthesis; rather, the data suggest that some plant species may continue to act as a sink for carbon even if carbon dioxide and temperature increase simultaneously.  相似文献   

3.
Summary Salicornia fruticosa was collected from a salt marsh on the Mediterranean sea coast in Libya. Growth and gas exchange of this C3 species were monitered in plants pretreated at various NaCl concentrations (0, 171, 342, 513 and 855 mM). Maximum growth was at 171 mM NaCl under cool growth conditions (20/10° C) and at 342 mM NaCl under warm growth conditions (30/15° C) with minimum growth at 0 mM NaCl (control). Net photosynthesis (Pn) was greatest in plants grown in 171 mM NaCl with plants grown at 513 and 855 mM having lowest rates. Maximum Pn was at 20–25° C shoot temperatures with statistically significant reductions at 30° C in control plants while salt treated plants showed such reductions at 35° C. Salt treatments increased dark respiration over the control at 171 and 342 mM but reduced it at higher concentrations. Photorespiration was reduced by salt treatment and increased by increasing shoot temperature. Greatest transpiration was in 171 mM NaCl treated plants and increasing shoot temperature increased transpiration in all treatments. Stomatal resistance to CO2 influx was influenced only moderately by temperature while increasing salinity resulted in increased stomatal resistance. In general both temperature and salinity increased the mesophyll resistance to CO2 influx. The species seems adapted to the warm saline habitat along the Mediterranean sea coast, at least partially, by its ability to maintain relatively high Pn at moderate NaCl concentrations over a broad range of shoot temperatures.  相似文献   

4.
Most plants show considerable capacity to adjust their photosynthetic characteristics to their growth temperatures (temperature acclimation). The most typical case is a shift in the optimum temperature for photosynthesis, which can maximize the photosynthetic rate at the growth temperature. These plastic adjustments can allow plants to photosynthesize more efficiently at their new growth temperatures. In this review article, we summarize the basic differences in photosynthetic reactions in C3, C4, and CAM plants. We review the current understanding of the temperature responses of C3, C4, and CAM photosynthesis, and then discuss the underlying physiological and biochemical mechanisms for temperature acclimation of photosynthesis in each photosynthetic type. Finally, we use the published data to evaluate the extent of photosynthetic temperature acclimation in higher plants, and analyze which plant groups (i.e., photosynthetic types and functional types) have a greater inherent ability for photosynthetic acclimation to temperature than others, since there have been reported interspecific variations in this ability. We found that the inherent ability for temperature acclimation of photosynthesis was different: (1) among C3, C4, and CAM species; and (2) among functional types within C3 plants. C3 plants generally had a greater ability for temperature acclimation of photosynthesis across a broad temperature range, CAM plants acclimated day and night photosynthetic process differentially to temperature, and C4 plants was adapted to warm environments. Moreover, within C3 species, evergreen woody plants and perennial herbaceous plants showed greater temperature homeostasis of photosynthesis (i.e., the photosynthetic rate at high-growth temperature divided by that at low-growth temperature was close to 1.0) than deciduous woody plants and annual herbaceous plants, indicating that photosynthetic acclimation would be particularly important in perennial, long-lived species that would experience a rise in growing season temperatures over their lifespan. Interestingly, across growth temperatures, the extent of temperature homeostasis of photosynthesis was maintained irrespective of the extent of the change in the optimum temperature for photosynthesis (T opt), indicating that some plants achieve greater photosynthesis at the growth temperature by shifting T opt, whereas others can also achieve greater photosynthesis at the growth temperature by changing the shape of the photosynthesis–temperature curve without shifting T opt. It is considered that these differences in the inherent stability of temperature acclimation of photosynthesis would be reflected by differences in the limiting steps of photosynthetic rate.  相似文献   

5.
We examined the importance of temperature (7°C or 15°C) and soil moisture regime (saturated or field capacity) on the carbon (C) balance of arctic tussock tundra microcosms (intact blocks of soil and vegetation) in growth chambers over an 81-day simulated growing season. We measured gaseous CO2 exchanges, methane (CH4) emissions, and dissolved C losses on intact blocks of tussock (Eriophorum vaginatum) and intertussock (moss-dominated). We hypothesized that under increased temperature and/or enhanced drainage, C losses from ecosystem respiration (CO2 respired by plants and heterotrophs) would exceed gains from gross photosynthesis causing tussock tundra to become a net source of C to the atmosphere. The field capacity moisture regime caused a decrease in net CO2 storage (NEP) in tussock tundra micrososms. This resulted from a stimulation of ecosystem respiration (probably mostly microbial) with enhanced drainage, rather than a decrease in gross photosynthesis. Elevated temperature alone had no effect on NEP because CO2 losses from increased ecosystem respiration at elevated temperature were compensated by increased CO2 uptake (gross photosynthesis). Although CO2 losses from ecosystem respiration were primarily limited by drainage, CH4 emissions, in contrast, were dependent on temperature. Furthermore, substantial dissolved C losses, especially organic C, and important microhabitat differences must be considered in estimating C balance for the tussock tundra system. As much as 20% of total C fixed in photosynthesis was lost as dissolved organic C. Tussocks stored 2x more C and emitted 5x more methane than intertussocks. In spite of the limitations of this microcosm experiment, this study has further elucidated the critical role of soil moisture regime and dissolved C losses in regulating net C balance of arctic tussock tundra.  相似文献   

6.
C4 plants are rare in the cool climates characteristic of high latitudes and altitudes, perhaps because of an enhanced susceptibility to photo‐inhibition at low temperatures relative to C3 species. In the present study we tested the hypothesis that low‐temperature photo‐inhibition is more detrimental to carbon gain in the C4 grass Muhlenbergia glomerata than the C3 species Calamogrostis Canadensis. These grasses occur together in boreal fens in northern Canada. Plants were grown under cool (14/10 °C day/night) and warm (26/22 °C) temperatures before measurement of the light responses of photosynthesis and chlorophyll fluorescence at different temperatures. Cool growth temperatures led to reduced rates of photosynthesis in M. glomerata at all measurement temperatures, but had a smaller effect on the C3 species. In both species the amount of xanthophyll cycle pigments increased when plants were grown at 14/10 °C, and in M. glomerata the xanthophyll epoxidation state was greatly reduced. The detrimental effect of low growth temperature on photosynthesis in M. glomerata was almost completely reversed by a 24‐h exposure to the warm‐temperature regime. These data indicate that reversible dynamic photo‐inhibition is a strategy by which C4 species may tolerate cool climates and overcome the Rubisco limitation that is prevalent at low temperatures in C4 plants.  相似文献   

7.
Larrea divaricata, a desert evergreen shrub, has a remarkable ability to adjust its photosynthetic temperature response characteristics to changing temperature conditions. In its native habitat on the floor of Death Valley, California, plants of this C3 species when provided with adequate water are able to maintain a relatively high and constant photosynthetic activity throughout the year even though the mean daily maximum temperature varies by nearly 30 C from winter to summer. The temperature dependence of light-saturated net photosynthesis varies in concert with these seasonal temperature changes whereas the photosynthetic rate at the respective optimum temperatures shows little change.

Experiments on plants of the same age, grown at day/night temperatures of 20/15, 35/25, and 45/33 C with the same conditions of day length and other environmental factors, showed a similar photosynthetic acclimation response as observed in nature. An analysis was made of a number of factors that potentially can contribute to the observed changes in the temperature dependence of net CO2 uptake at normal CO2 and O2 levels. These included stomatal conductance, respiration, O2 inhibition of photosynthesis, and nonstomatal limitations of CO2 diffusive transport. None of these factors, separately or taken together, can account for the observed acclimation responses. Measurements under high saturating CO2 concentrations provide additional evidence that the observed adaptive responses are primarily the result of changes in intrinsic characteristics of the photosynthetic machinery at the cellular or subcellular levels. Two apparently separate effects of the growth temperature regime can be distinguished: one involves an increased capacity for photosynthesis at low, rate-limiting temperatures with decreased growth temperature, and the other an increased thermal stability of key components of the photosynthetic apparatus with increased growth temperature.

  相似文献   

8.
Two experiments are reported in which young plants of tall fescuewere grown in temperature regimes of 20 °C day/15 °Cnight or 10 °C day/5 °C night until the fourth leafon the main stem was fully expanded. These temperature regimeswere then either changed over for individual plants or continuedunchanged up to the seven-leaf stage. Photosynthesis and respirationrates were determined in the fourth and subsequent leaves andalso in ageing leaves, using an infra-red gas analyser in anopen system and at temperatures of 10 and 20 °C in one and10, 15, 20, and 25 °C in the other experiment. Rates of apparent photosynthesis per unit leaf area in fullyexpanded leaves differed little as a result of previous treatmentand were not greatly affected by temperature during measurement.However, the specific leaf area and the rate of apparent photosynthesisper unit dry weight were higher in plants grown at the hightemperature. Leaves from the high-temperature regime had a higheroptimum temperature for apparent photosynthesis, a shorter life,and a lower respiration rate at any one temperature of measurementthan did leaves from the low-temperature regime. After transfer from one temperature regime to the other, therate of apparent photosynthesis of the next leaf to become fullyexpanded was higher in plants transferred from low to high temperatureand lower in plants transferred from high to low than in plantsremaining in either temperature regime; the leaves which subsequentlyexpanded had rates similar to those of unchanged plants. Inleaves which were fully expanded at the time of transfer, therate of apparent photosynthesis rose after transfer to the high-temperatureregime and fell after transfer to the low-temperature regime. These results are discussed in relation to growth-analysis datafrom other plants grown in the same conditions.  相似文献   

9.
This study is devoted to CO2 gas exchange (true photosynthesis at light saturation (P), dark respiration (R), and P/R ratio) in vegetating and cold-hardened winter wheat (Triticum aestivum L.) plants (cultivar Mironovskaya 808) in relation to their freezing tolerance. Under natural cultivation conditions, freezing tolerance of plants depended on adaptive changes in the shape of P and R curves in the temperature range from 20 to ?2°C. These changes, induced by cold hardening and treatment of plants with the photosynthesis inhibitor diuron, were observed within month and week ranges. Under laboratory conditions, the P/R ratio in vegetating plants increased three times within an hour range as the temperature decreased from 22 to 0°C. The P/R ratio also decreased within a minute range as a result of partial inhibition of photosynthesis with diuron and immediately decreased when CO2 concentration in the air was reduced from 419 to 0 μl/l. The P/R ratio decreased primarily at the expense of a decrease in P. The decrease in P/R was more pronounced at low temperatures, indicating variability of low-temperature tolerance of photosynthesis within a minute range. The possibility of plant adaptation to nonsimultaneous temperature changes under natural conditions via adaptive changes in temperature tolerance of the photosynthetic apparatus is discussed.  相似文献   

10.
The purpose of this study was to evaluate the temperature response of photosynthesis in two common bean genotypes differing in crop yield when grown under warm conditions. The cultivar Nobre is sensitive to high temperatures, whereas Diplomata shows better crop yield under high temperatures. Plants were grown in a greenhouse prior to transferring to a controlled environment cabinet for the temperature treatments. In a first experiment, 30 days-old plants were subjected to a short exposure (1 day) at temperatures that varied from 9 °C to 39 °C. Diplomata had lower net CO2 assimilation rate (A) at 15 °C and 21 °C, but higher from 27 °C to 39 °C. Photosynthetic parameters calculated from modeling the response of A to the intercellular CO2 concentration suggested that the different temperature responses of the two genotypes are caused by different rates of diffusion of CO2 to the assimilation site, not by differences in biochemical limitations of photosynthesis. While stomatal conductance (gs) did not differ between the genotypes, mesophyll conductance (gm) was slightly greater for Nobre at 15 °C, but much higher in Diplomata from 21 °C to 39 °C. In a second experiment, no difference was observed in biomass accumulation between the two genotypes after growth for 24 days under a 35/20 °C (day/night) regime. Hence, the differences in photosynthesis did not cause variation in plant growth at the vegetative stage. The differential genotypic response of gm to temperature suggests that gm might be an important limitation to photosynthesis in Nobre, the common bean genotype sensitive to elevated temperature. However, more studies are needed employing other methods for gm evaluation to validate these results.  相似文献   

11.
Two species of Atriplex were grown under low temperature (8 C day/6 C night) and high temperature (28 C day/20 C night) regimes. The photosynthetic capacity of these plants was studied as a function of temperature in a leaf gas exchange cuvette. Both species showed substantial photosynthetic capacity between 4 and 10 C and this was not enhanced by growth at low temperatures but rather, was somewhat greater in plants grown at higher temperature. Photosynthetic capacity of low temperature-grown plants at high temperature was greater in Atriplex confertifolia (Torr. and Frem.) S. Watts., a native of cool deserts, than in Atriplex vesicaria (Hew. ex. Benth.) from warmer desert areas. Leaves of both species were also subjected to 14CO2 pulse-chase and steady-state feeding experiments under controlled temperature conditions. These experiments revealed that the kinetics of carbon assimilation through the intermediates of the C4 pathway is not substantially disrupted at low temperature in either species. There was, however, a substantial interchange of label between aspartate and malate at low temperature which was not evident at high temperature. There was also an increase in the pool sizes of the C4 acids involved in photosynthesis of A. confertifolia. Speculation as to the explanation of these changes and their possible significance in promoting low temperature C4 photosynthesis in these plants is presented.  相似文献   

12.
Isoprene emissions from the leaves of velvet bean (Mucuna pruriens L. var utilis) plants exhibited temperature response patterns that were dependent on the plant's growth temperature. Plants grown in a warm regimen (34/28°C, day/night) exhibited a temperature optimum for emissions of 45°C, whereas those grown in a cooler regimen (26/20°C, day/night) exhibited an optimum of 40°C. Several previous studies have provided evidence of a linkage between isoprene emissions and photosynthesis, and more recent studies have demonstrated that isoprene emissions are linked to the activity of isoprene synthase in plant leaves. To further explore this linkage within the context of the temperature dependence of isoprene emissions, we determined the relative temperature dependencies of photosynthetic electron transport, CO2 assimilation, and isoprene synthase activity. When measured over a broad range of temperatures, the temperature dependence of isoprene emission rate was not closely correlated with either the electron transport rate or the CO2 assimilation rate. The temperature optima for electron transport rate and CO2 assimilation rate were 5 to 10°C lower than that for the isoprene emission rate. The dependence of isoprene emissions on photon flux density was also affected by measurement temperature in a pattern independent of those exhibited for electron transport rate and CO2 assimilation rate. Thus, despite no change in the electron transport rate or CO2 assimilation rate at 26 and 34°C, the isoprene emission rate changed markedly. The quantum yield of isoprene emissions was stimulated by a temperature increase from 26 to 34°C, whereas the quantum yield for CO2 assimilation was inhibited. In greenhouse-grown aspen leaves (Populus tremuloides Michaux.), the high temperature threshold for inhibition of isoprene emissions was closely correlated with the high temperature-induced decrease in the in vitro activity of isoprene synthase. When taken together, the results indicate that although there may be a linkage between isoprene emission rate and photosynthesis, the temperature dependence of isoprene emission is not determined solely by the rates of CO2 assimilation or electron transport. Rather, we propose that regulation is accomplished primarily through the enzyme isoprene synthase.  相似文献   

13.
We investigated the extent to which leaf and root respiration (R) differ in their response to short‐ and long‐term changes in temperature in several contrasting plant species (herbs, grasses, shrubs and trees) that differ in inherent relative growth rate (RGR, increase in mass per unit starting mass and time). Two experiments were conducted using hydroponically grown plants. In the long‐term (LT) acclimation experiment, 16 species were grown at constant 18, 23 and 28 °C. In the short‐term (ST) acclimation experiment, 9 of those species were grown at 25/20 °C (day/night) and then shifted to a 15/10 °C for 7 days. Short‐term Q10 values (proportional change in R per 10 °C) and the degree of acclimation to longer‐term changes in temperature were compared. The effect of growth temperature on root and leaf soluble sugar and nitrogen concentrations was examined. Light‐saturated photosynthesis (Asat) was also measured in the LT acclimation experiment. Our results show that Q10 values and the degree of acclimation are highly variable amongst species and that roots exhibit lower Q10 values than leaves over the 15–25 °C measurement temperature range. Differences in RGR or concentrations of soluble sugars/nitrogen could not account for the inter‐specific differences in the Q10 or degree of acclimation. There were no systematic differences in the ability of roots and leaves to acclimate when plants developed under contrasting temperatures (LT acclimation). However, acclimation was greater in both leaves and roots that developed at the growth temperature (LT acclimation) than in pre‐existing leaves and roots shifted from one temperature to another (ST acclimation). The balance between leaf R and Asat was maintained in plants grown at different temperatures, regardless of their inherent relative growth rate. We conclude that there is tight coupling between the respiratory acclimation and the temperature under which leaves and roots developed and that acclimation plays an important role in determining the relationship between respiration and photosynthesis.  相似文献   

14.
To determine how parameters of a Farquhar-type photosynthesis model varied with measurement temperature and with growth temperature, eight cool and warm climate herbaceous crop and weed species were grown at 15 and 25 °C and single leaf carbon dioxide and water vapor exchange rates were measured over the range of 15 – 35 °C. Photosynthetic parameters examined were the initial slope of the response of assimilation rate (A) to substomatal carbon dioxide concentration (Ci), A at high Ci, and stomatal conductance. The first two measurements allow calculation of VCmax, the maximum rate of carboxylation of ribulose bisphosphate carboxylase and Jmax, the maximum rate of photosynthetic electron transport, of Farquhar-type photosynthesis models. In all species, stomatal conductance increased exponentially with temperature over the whole range of 15 – 35 °C, even when A decreased at high measurement temperature. There were larger increases in conductance over this temperature range in the warm climate species (4.3 ×) than in the cool climate species (2.5 ×). The initial slope of A vs. Ci exhibited an optimum temperature which ranged from 20 to 30 °C. There was a larger increase in the optimum temperature of the initial slope at the warmer growth temperature in the cool climate species than in the warm climate species. The optimum temperature for A at high Ci ranged from 25 to 30 °C among species, but changed little with growth temperature. The absolute values of both the initial slope of A vs. Ci and A at high Ci were increased about 10% by growth at the warmer temperature in the warm climate species, and decreased about 20% in the cool climate species. The ratio of Jmax — VCmax normalized to 20 °C varied by more than a factor of 2 across species and growth temperatures, but differences in the temperature response of photosynthesis were more related to variation in the temperature dependencies of Jmax and VCmax than to the ratio of their normalized values.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

15.
Orchard-grown dwarf apple (Malus domestica Borkh.) trees selected from a hybrid population were propagated by tissue culture but had a growth pattern similar to standard cv. Golden Delicious plants when grown at constant 27°C instead of the expected dwarf pattern of growth. Shoot elongation was markedly reduced, with or without gibberellin A1 (GA1) or GA4 treatment, when trees were grown in an environment where day temperature was maintained at 35°C for 2 h in a ramped regime (night 20°C day ramped to 35°C, held for 2 h and ramped down to 20°C night over a 14-h photoperiod). Application of GA1 or GA4 partially overcame growth retardation resulting from prior paclobutrazol treatment of both standard and dwarf trees grown at constant 27°C and of standard trees grown in the ramped environment. However, these GAs had no effect on paclobutrazol-treated or untreated dwarfs grown in the ramped regime. Gas chromatography-mass spectrometry with labelled internal standards was used to quantify GA1, GA3, GA8, GA19, GA20 and GA29 in extracts from standard and dwarf plants grown either at a constant 27°C or in a 20-30-20°C ramped temperature regime. Standard plants, which elongate quite rapidly in either environment, had similar levels of these GAs in both temperature regimes. The slowly growing dwarfs in the ramped temperature environment contained three times more GA19 than the rapidly elongating dwarfs grown at 27°C. The concentrations of the other GAs were reduced to ca 40% or less in plants grown in the ramped temperature regime compared with those grown at 27°C. These data suggest that shoot elongation of dwarf plants is sensitive to elevated temperatures both as a result of reduced responsiveness to GAs and because of a reduction in the concentration of GA1, apparently as a result of a lower rate of conversion of GA19 to GA20. It is possible that the altered GA metabolism may be a consequence of the change in GA sensitivity.  相似文献   

16.
The effect of temperature regime on growth and other morphological characteristics of barley plants (Hordeum distichum L., cv. Andrei) as dependent on the level of mineral nutrition was investigated in a controlled experiment. Plants were raised hydroponically at a high (0.22 g/(g day)) and low (0.05 g/(g day)) relative rates of the addition of mineral nutrients (R A). Mineral nutrients were daily added to the nutrient solutions in exponentially increased amounts to provide steady-state plant growth. At the optimum temperature regime (21/17°C, day/night), the plant relative growth rate (RGR) was proportional to the preset R A during the entire exponential period. Low R A led to a decrease in the nitrogen content in plants, plant weight, and respiratory activity, as well as to the increase in the relative root weight. Biomass accumulation at lowered temperature regime (13/8°C) and a high R A was 1.8-fold lower than at optimum temperature regime. Although under these conditions, the ratio of respiration to gross photosynthesis reduced threefold due to the decrease in the respiration rate, RGR of plants was equal to 0.11 ± 0.02 g/(g day), which was twice lower than the preset R A. These pointed to the decrease in plant ability to maintain a certain ratio of photosynthesis to respiration within a day. At a deficiency of mineral nutrition and low temperature, RGR reached the preset R A. Plants adapted to lowered temperature by a shift of the temperature optimum of their metabolism (heat production) to lower values. As a whole, a low variability of such growth parameters as RGR, C/N, and root to shoot weight ratio at different R A and lowered temperatures testified to the lessening of growth limitation by the mineral nutrition.__________Translated from Fiziologiya Rastenii, Vol. 52, No. 3, 2005, pp. 384–391.Original Russian Text Copyright © 2005 by Garmash.  相似文献   

17.
The photosynthetic capabilities of the fern Pteris cretica var. ouvrardii were analysed by means of the light response curves of CO2 exchange. In control growth conditions (greenhouse, low-light: 20–32 W m?2); photosynthesis was shown to be saturated for low irradiance (20–25 W m?2); the saturating photosynthetic rate, very low as compared to higher plants, was due to an extremely high intracellular resistance. When irradiance during the photosynthesis measurement was higher than 60–80 W m?2, a constant decline of net CO2 exchange as a function of time was observed. When irradiance during growth was enhanced, whether in greenhouse (20–250 W m?2) or controlled (62 W m?2) conditions, the first fronds that had developed in the new condition from the crosier stage exhibited decreased net maximal photosynthesis and a decreased efficiency in low light, but saturating irradiance was unmodified. However, the fronds whose entire differentiation (from meristem) occurred under these moderate irradiances (plants defoliated of all fronds and crosiers at the time of transfer), possessed more efficient photosynthetic characteristics than control plants. Pteris is able to grow under extreme shade conditions (4–8 W m?2); light saturating photosynthesis and efficiency are higher under extreme shade than under control conditions. These adaptive characteristics indicate that Pteris is a well-adapted shade species.  相似文献   

18.
Rubisco limits C3 photosynthesis under some conditions and is therefore a potential target for improving photosynthetic efficiency. The overproduction of Rubisco is often accompanied by a decline in Rubisco activation, and the protein ratio of Rubisco activase (RCA) to Rubisco (RCA/Rubisco) greatly decreases in Rubisco-overproducing plants (RBCS-ox). Here, we produced transgenic rice (Oryza sativa) plants co-overproducing both Rubisco and RCA (RBCS-RCA-ox). Rubisco content in RBCS-RCA-ox plants increased by 23%–44%, and RCA/Rubisco levels were similar or higher than those of wild-type plants. However, although the activation state of Rubisco in RBCS-RCA-ox plants was enhanced, the rates of CO2 assimilation at 25°C in RBCS-RCA-ox plants did not differ from that of wild-type plants. Alternatively, at a moderately high temperature (optimal range of 32°C–36°C), the rates of CO2 assimilation in RBCS-ox and RBCS-RCA-ox plants were higher than in wild-type plants under conditions equal to or lower than current atmospheric CO2 levels. The activation state of Rubisco in RBCS-RCA-ox remained higher than that of RBCS-ox plants, and activated Rubisco content in RCA overproducing, RBCS-ox, RBCS-RCA-ox, and wild-type plants was highly correlated with the initial slope of CO2 assimilation against intercellular CO2 pressures (A:Ci) at 36°C. Thus, a simultaneous increase in Rubisco and RCA contents leads to enhanced photosynthesis within the optimal temperature range.

A simultaneous increase in Rubisco and RCA contents in transgenic rice leads to an enhancement of photosynthesis at moderately high temperatures within the optimal temperature range.  相似文献   

19.
Effect of suppression of the source activity on some physiological characteristics of winter wheat (Triticum aestivum L., cv. Mironovskaya 808) was studied on plants grown in water culture. The plants were examined at the mixotrophic stage of growth period, during their transition from vegetative state to relative dormancy in autumn. The average temperature over 10 days of the experiment was 6°C at 9-h photoperiod and illuminance of 8–20 klx. The source strength was suppressed successively with a series of treatments: intact control plants (V1); plants with the seed endosperm removed (V2); plants with photosynthesis inhibited (V3); plants with the seed endosperm removed and photosynthesis inhibited (V4); plants with the seed endosperm removed, photosynthesis inhibited, and the root nutrient medium replaced with distilled water (V5). On the 6th–10th day of the experiment, the relative growth rate (RGR) was determined from dry weight increments. At the same time, the distribution of biomass among organs, the CO2 exchange rates (photosynthesis and dark respiration), the content and proportions of sugars (sucrose, glucose, and fructose), the total content of phenolic compounds and flavonoids, the index of membrane stability (IMS) in leaves, and frost hardiness of plants were measured. Frost hardiness of vegetating plants was shown to be inversely related to RGR (R = ?0.906), dark respiration rate (R = ?0.789), the percentage of sucrose in total sugar content (R = ?0.737), leaf IMS (R = ?0.390), and the rate of apparent photosynthesis (R = ?0.288); it was directly proportional to the content of flavonoids (R =0.973), total phenols (R = 0.743), and sugars (R = 0.385). The role of modified source-sink relations in frost hardiness of vegetating plants at the stage of their transition to cold hardening is discussed. The differences between plants undergoing this transition and cold-hardened plants are considered, as well as the importance of phenolic compounds for the development of frost hardiness.  相似文献   

20.
Growth, CO2 exchange, and the ultrastructure of chloroplasts were investigated in the leaves of potato plants (Solanum tuberosum L., cv. Désirée) of wild type and transformed with a gene for yeast invertase under the control of patatin class I B33 promoter (for apoplastic enzyme) grown in vitro on the Murashige and Skoog medium supplemented with 2% sucrose. At a temperature of 22°C optimal for growth, the transformed plants differed from the plants of wild type in retarded growth and a lower rate of photosynthesis as calculated per plant. On a leaf dry weight basis, photosynthesis of transformed plants was higher than in control plants. Under hypothermia (5°C), dark respiration and especially photosynthesis of transformed plants turned out to be more intense than in control material. After a prolonged exposure to low temperature (6 days at 5°C), in the plants of both genotypes, the ultrastructure of chloroplasts changed. Absolute areas of sections of chloroplasts and starch grains rose, and the area of plastoglobules decreased; in transformed plants, these changes were more pronounced. By some ultrastructural characteristics: a reduction in the cold of relative total area of sections of starch grains and plastoglobules (in percents of the chloroplast section area) and in the number of granal thylakoids (per a chloroplast section area), transformed plants turned out to be more cold resistant than wild-type plants. The obtained results are discussed in connection with changes in source-sink relations in transformed potato plants. These changes modify the balance between photosynthesis and retarded efflux of assimilates, causing an increase in the intracellular level of sugars and a rise in the tolerance to chilling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号