首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Knobs are conspicuous heterochromatic regions found on the chromosomes of maize and its relatives. The number, locations, and sizes of knobs vary dramatically, with most lines containing between four and eight knobs in mid-arm positions. Prior data suggest that some knobs may reduce recombination. However, comprehensive tests have not been carried out, primarily because most knobs have not been placed on the genetic map. We used fluorescent in situ hybridization and two recombinant inbred populations to map seven knobs and to accurately place three knobs from the B73 inbred on the genomic sequence assembly. The data show that knobs lie in gene-dense regions of the maize genome. Comparisons to 23 other recombinant inbred populations segregating for knobs at the same sites confirm that large knobs can locally reduce crossing over by as much as twofold on a cM/Mb scale. These effects do not extend beyond regions ~10 cM to either side of knobs and do not appear to affect linkage disequilibrium among genes within and near knob repeat regions of the B73 RefGen_v2 assembly.  相似文献   

2.
Meiotic drive of chromosomal knobs reshaped the maize genome.   总被引:5,自引:0,他引:5  
Meiotic drive is the subversion of meiosis so that particular genes are preferentially transmitted to the progeny. Meiotic drive generally causes the preferential segregation of small regions of the genome; however, in maize we propose that meiotic drive is responsible for the evolution of large repetitive DNA arrays on all chromosomes. A maize meiotic drive locus found on an uncommon form of chromosome 10 [abnormal 10 (Ab10)] may be largely responsible for the evolution of heterochromatic chromosomal knobs, which can confer meiotic drive potential to every maize chromosome. Simulations were used to illustrate the dynamics of this meiotic drive model and suggest knobs might be deleterious in the absence of Ab10. Chromosomal knob data from maize's wild relatives (Zea mays ssp. parviglumis and mexicana) and phylogenetic comparisons demonstrated that the evolution of knob size, frequency, and chromosomal position agreed with the meiotic drive hypothesis. Knob chromosomal position was incompatible with the hypothesis that knob repetitive DNA is neutral or slightly deleterious to the genome. We also show that environmental factors and transposition may play a role in the evolution of knobs. Because knobs occur at multiple locations on all maize chromosomes, the combined effects of meiotic drive and genetic linkage may have reshaped genetic diversity throughout the maize genome in response to the presence of Ab10. Meiotic drive may be a major force of genome evolution, allowing revolutionary changes in genome structure and diversity over short evolutionary periods.  相似文献   

3.
Niedermaier J  Moritz KB 《Chromosoma》2000,109(7):439-452
In the nematode genus Ascaris the germline genome contains considerable amounts of extra DNA, which is discarded from the somatic founder blastomeres during early cleavage. In Parascaris univalens the haploid germline genome is contained in one large compound chromosome, which consists of a euchromatic region containing the somatic genome flanked by large blocks of heterochromatin. Fluorescence in situ hybridization of fractions of the germline-limited satellite DNA revealed two highly repeated sequence families establishing the entire heterochromatin (HET blocks). The repeats, a pentanucleotide, TTGCA, and a decanucleotide, TTTGTGCGTG, constitute separate segments of the HET blocks. The blocks are polymorphic in length and, hence, in copy number of the repeats, and the arrangement of the segments. The numerous sequence variants of both repeats display a disperse distribution. The type and rate of base substitutions within both repeat units depend on position. Prior to the elimination process in presomatic cells, termed chromatin diminution, the chromosomes undergo differential mitotic condensation. Interstitial 'chromatin linkers' flanking the prospective numerous somatic chromosomes remain entirely decondensed. The somatic chromosomes are released from the plurivalent chromosomes via excision of the linkers at onset of anaphase, followed by exclusion of the akinetic linker chromatin and HET blocks from the daughter nuclei. In Ascaris suum, the germline-limited satellite, which consists of one 123 bp repeat, is scattered throughout the numerous chromosomes in small heterochromatic knobs of variable sizes, residing at chromosomal ends and/or intercalary positions. The programmed breakage, which appears to proceed in a similar manner to that in P. univalens, results in the loss of all heterochromatic knobs, accompanied by an increase in chromosome number. In both species, all germline chromosomes are capped by tracts of TTAGGC repeats. In P. univalens, such telomeric tracts also occur at the termini of the euchromatic intercalary regions. Upon diminution all telomeric tracts are discarded. De novo telomere addition occurs in all somatic cell lineages of both species. The presented data shed light on the evolutionary history of chromosome aggregation and satellite DNA formation, and putative mechanisms involved in the process of site-directed breakage to reestablish stable somatic chromosomes.  相似文献   

4.
On the mechanism of chromatin loss induced by the B chromosome of maize   总被引:3,自引:1,他引:2  
Rhoades MM  Dempsey E 《Genetics》1972,71(1):73-96
Knobbed regions of the regular maize complement frequently are eliminated at the second microspore division in spores which have two or more B chromosomes. Evidence is presented that no or little loss occurs in spores with one B and that the rate is not increased in spores with more than two B's.—The B chromosomes from an unrelated strain proved as effective in inducing loss as did the B's of the original high loss stock.—Chromatin loss induced by B's is restricted to knobbed A chromosomes and occurs only at the second microspore division. Knobbed chromosomes 3, 5, and 9 have been tested and all interact with B's to give loss. Chromosomes with large knobs are more frequently broken than are those with smaller knobs and knobless chromosomes show negligible loss.—Although knobs and B's are essential for chromatin elimination, modifying genes can markedly affect the rate of loss.——Two knobbed heterologous chromosomes undergo simultaneous loss more frequently than expected from independent events. The data indicate that joint loss occurs in competent cells and that preferential assortment of the two deficient chromosomes to specific poles is unlikely.—B chromosomes and deficient chromosomes assort independently at the second microspore anaphase.—Genetic data from crosses with marker genes in both arms of chromosome 3 show that breakage of the postulated dicentric bridge does not occur solely at the centric region since a variety of deficient chromosomes were recovered.—Nondisjunction of B chromosomes and elimination of knobbed chromatin take place during the second microspore mitosis. The argument is advanced that the two phenomena result from faulty replication of heterochromatic segments. The position of the nonreplicating segment in the two kinds of chromosomes determines whether nondisjunction or breakage takes place.—Finally, it is suggested that all of the reported effects of the B chromosome can be accounted for if the B is a parasitic entity having no genetic function other than controlling the replication of its proximal heterochromatic knob and increasing the ability of B-containing sperm cells to compete successfully for fertilization of the egg.  相似文献   

5.
Pentaploid endosperm nuclei in certain Gagea species exhibit large masses of sticky and dense chromatin, not observed in somatic nuclei. These heterochromatin masses most probably stem from the triploid chalasal polar nucleus of the embryo sac, thus representing an example of facultative heterochromatinisation in plants. In the present investigation, we studied the nuclei in Gagea lutea (L.) Ker-Gawl. endosperm tissue. The position of the heterochromatin in interphase nuclei was observed by confocal laser scanning microscopy (CLSM) and the DNA methylation status of the euchromatin and heterochromatin was analysed by immunolabelling with an antibody raised against 5-methylcytosine (anti-5-mC). In young endosperms, heterochromatin was relatively dispersed, occupying some peripheral and inner parts of the nuclei. In a later endosperm development, the nuclei became smaller and more pycnotic, and the heterochromatin masses were placed predominantly near the nuclear periphery. The distribution of anti-5-mC labelling on the heterochromatic regions was unequal: some parts appeared hypermethylated while other parts were, like the euchromatin, not labelled. During mitosis, the labelling intensity of all the chromosomes was approximately the same, thus indicating that there are no cytologically detectable methylation differences among the individual sets of chromosomes. However, differences in the anti-5-mC signal intensity along individual chromosomes were observed, resulting in banding patterns with highly positive bands apparently representing constitutive heterochromatic regions. From these results it is obvious that facultative heterochromatinisation, in contrast to constitutive heterochromatinisation, need not be strictly accompanied by a prominent DNA hypermethylation. Received: 24 April 1997 / Accepted: 28 July 1997  相似文献   

6.
A Fluminhan  T Kameya 《Génome》1997,40(1):91-98
Seeds of three inbred lines of maize, with contrasting numbers of heterochromatic knobs and stored under two different ageing treatments, were analyzed for the occurrence of abnormalities at mitotic anaphase in root meristems 3, 7, 21,42, and 56 days after germination, and in root meristems of their freshly harvested selfed progeny. The largest category of detectable aberrations involved breakage of knobbed chromosome arms. We have obtained evidence that knob heterochromatin plays a central role in the origin of primary chromosome bridges. The initial event responsible for the occurrence of breakages and lagging chromosomes was characterized by the nondisjunction of newly replicated sister chromatids, which was observed to occur preferentially at the knob level. Such configurations, and all the other types of abnormalities (as for example, lagging chromosomes, typical chromosome bridges, fragments, and micronuclei), were observed at decreasing frequencies throughout root growth. Nevertheless, we have detected the occurrence of breakage-fusion-bridge cycles that were initiated by broken chromosomes. The relationship between late-replicating DNA in maize knob heterochromatin and the vulnerability of such regions to breakage is discussed. Our observations suggest a similarity between the mechanisms involved or associated with the origin of the described abnormalities and those reported to occur in cultured maize cells.  相似文献   

7.
Abnormal mitosis occurs in maize tapetum, producing binucleate cells that later disintegrate, following a pattern of programmed cell death. FISH allowed us to observe chromosome nondisjunction and micronucleus formation in binucleate cells, using DNA probes specific to B chromosomes (B's), knobbed chromosomes, and the chromosome 6 (NOR) of maize. All chromosome types seem to be involved in micronucleus formation, but the B's form more micronuclei than do knobbed chromosomes and knobbed chromosomes form more than do chromosomes without knobs. Micronuclei were more frequent in 1B plants and in a genotype selected for low B transmission rate. Nondisjunction was observed in all types of FISH-labeled chromosomes. In addition, unlabeled bridges and delayed chromatids were observed in the last telophase before binucleate cell formation, suggesting that nondisjunction might occur in all chromosomes of the maize complement. B nondisjunction is known to occur in the second pollen mitosis and in the endosperm, but it was not previously reported in other tissues. This is also a new report of nondisjunction of chromosomes of the normal set (A's) in tapetal cells. Our results support the conclusion that nondisjunction and micronucleus formation are regular events in the process of the tapetal cell death program, but B's strongly increase A chromosome instability.  相似文献   

8.
9.
In order to gain more insight into the relationships between DNA methylation and genome stability, chromosomal and molecular evolutions of four Epstein-Barr virus-transformed human lymphoblastoid cell lines were followed in culture for more than 2 yr. The four cell lines underwent early, strong overall demethylation of the genome. The classical satellite-rich, heterochromatic,juxtacentromeric regions of chromosomes 1, 9, and 16 and the distal part of the long arm of the Y chromosome displayed specific behavior with time in culture. In two cell lines, they underwent a strong demethylation, involving successively chromosomes Y, 9, 16, and 1, whereas in the two other cell lines, they remained heavily methylated. For classical satellite 2-rich heterochromatic regions of chromosomes 1 and 16, a direct relationship could be established between their demethylation, their undercondensation at metaphase, and their involvement in non-clonal rearrangements. Unstable sites distributed along the whole chromosomes were found only when the heterochromatic regions of chromosomes 1 and 16 were unstable. The classical satellite 3-rich heterochromatic region of chromosomes 9 and Y, despite their strong demethylation, remained condensed and stable. Genome demethylation and chromosome instability could not be related to variations in mRNA amounts of the DNA methyltransferases DNMT1, DNMT3A, and DNMT3B and DNA demethylase. These data suggest that the influence of DNA demethylation on chromosome stability is modulated by a sequence-specific chromatin structure.  相似文献   

10.
The recovery of maize (Zea mays L.) chromosome addition lines of oat (Avena sativa L.) from oat x maize crosses enables us to analyze the structure and composition of individual maize chromosomes via the isolation and characterization of chromosome-specific cosmid clones. Restriction fragment fingerprinting, sequencing, and in situ hybridization were applied to discover a new family of knob associated tandem repeats, the TR1, which are capable of forming fold-back DNA segments, as well as a new family of centromeric tandem repeats, CentC. Analysis of knob and centromeric DNA segments revealed a complex organization in which blocks of tandemly arranged repeating units are interrupted by insertions of other repeated DNA sequences, mostly represented by individual full size copies of retrotransposable elements. There is an obvious preference for the integration/association of certain retrotransposable elements into knobs or centromere regions as well as for integration of retrotransposable elements into certain sites (hot spots) of the 180-bp repeat. DNA hybridization to a blot panel of eight individual maize chromosome addition lines revealed that CentC, TR1, and 180-bp tandem repeats are found in each of these maize chromosomes, but the copy number of each can vary significantly from about 100 to 25,000. In situ hybridization revealed variation among the maize chromosomes in the size of centromeric tandem repeats as well as in the size and composition of knob regions. It was found that knobs may be composed of either 180-bp or TR1, or both repeats, and in addition to large knobs these repeated elements may form micro clusters which are detectable only with the help of in situ hybridization. The association of the fold-back elements with knobs, knob polymorphism and complex structure suggest that maize knob may be consider as megatransposable elements. The discovery of the interspersion of retrotransposable elements among blocks of tandem repeats in maize and some other organisms suggests that this pattern may be basic to heterochromatin organization for eukaryotes.  相似文献   

11.
12.
Human chromosomes prepared according to routine methods were treated with the restriction endonuclease Alu I followed by staining with Giemsa solution or fluorescent dyes. This procedure results in a C-band-like appearance of the chromosomes due to removal of DNA from euchromatic chromosomal regions. The resistance of heterochromatic regions against cleavage by the enzyme has mainly been interpreted by the absence or rareness of recognition sites for this particular enzyme in these regions. Proteinase K pretreatment followed by a nick translation procedure with Alu I was combined to check this hypothesis. The results show that heterochromatic chromosomal regions can also be labelled. Thus, they are not characterized by a lack of recognition sites. Gradual deproteinisation of chromosomes changes the labelling pattern from a reverse C-banding pattern to a C-band-like appearance. The resistance of heterochromatic chromosomal parts revealed by the technique is mainly due to local chromatin configuration rather than to the underlying DNA sequence itself.  相似文献   

13.
14.
Summary Chromatin structure was studied in nuclei of the endosperm of durum wheat (Triticum durum Desf., cv. Creso), where a large number of cells undergo chromosome endoreduplication during caryopsis development. Optical density profiles of interphase nuclei at different ploidy levels after Feulgen staining were determined cytophotometrically. It was observed that, within each development stage, polyploid nuclei (6–12C and 12–24C) show more condensed chromatin than euploid nuclei (3–6C): this should indicate that endoreduplication is accompanied by some reduction of nuclear activity. Within the same ploidy level, 3–6C and 6–12C nuclei become increasingly condensed with development (except for the last stage), while 12-24C nuclei are identical at all stages. DNA methylation at different stages of caryopsis development was then analyzed in genomic DNA, highly repeated sequences and ribosomal DNA, by digestion with cytosine-methylation-sensitive restriction enzymes. We observed that (i), depending on the enzyme, DNA from caryopses may show higher mean length than DNA from shoot apices and variations occur during endosperm development; (ii) highly repeated DNA sequences also show some variation in base methylation between apices and endosperms and among endosperm development stages, even though to a lesser extent than genomic DNA; (iii) rDNA shows variations only between endosperm and apices while no variation was observed among endosperm development stages in relation to chromosome endoreduplication. Our data may be explained by assuming the occurrence, during endosperm development, of processes of chromatin condensation possibly involved in silencing the activity of extra copies of DNA resulting from chromosome endoreduplication. At least in part, DNA methylation is involved in the process of chromatin condensation. rDNA shows no variation during endosperm development: this suggests that rDNA copies are actively transcribed in both triploid and endoreduplicated nuclei.  相似文献   

15.
The restriction endonuclease TaqI cleaves DNA at TCGA sites which are very common in human satellite DNAs. However, this enzyme was not used successfully up to now to digest constitutive heterochromatin of human chromosomes, where those highly repetitive DNAs are preferentially located. In this work, we show that TaqI is able to cut and extract DNA from the major heterochromatic regions on chromosomes 1, 9, 15, and 16 which appear as unstained gaps. Yq heterochromatin displays moderate digestion along its entire length but a middle region can be distinguished which is usually more affected. Complete digestion of Yq heterochromatin can be achieved when this block has been previously undercondensed by treating cell cultures with the cytidine analog, 5-azacytidine. Thus, it may be deduced that some factors related to chromatin organization might be involved in the action of TaqI. These results come to reinforce previous data about heterogeneity of Yq heterochromatin, and allow us to subdivide it into three different regions according to their differential response to TaqI digestion.  相似文献   

16.
Distamycin A, netropsin and berenil are known to cause undercondensation of heterochromatic regions of metaphase chromosomes. These ligands interfere with DNA curvature by binding to the minor groove of the DNA. Whereas the effects of these ligands upon chromatin structure are well established, little is known about their possible interference with cell cycle progression. We show that the presence of these DNA-ligands causes protracted cell growth consisting of a prolongation of the G1 phase of the cell cycle along with arrest in the G2 compartment. Concomitant with these cell kinetic disturbances the DNA ligands cause increased polyploidisation. These observations suggest that the DNA-minor groove may play an important role in progression through the G2 phase and proper mitotic transit.  相似文献   

17.
重复DNA沿染色体的分布是认识植物基因组的组织和进化的要素之一。本研究采用一种改良的基因组原位杂交程序,对基因组大小和重复DNA数量不同的6种植物进行了自身基因组原位杂交(self-genomic in situ hybridization,self-GISH)。在所有供试物种的染色体都观察到荧光标记探针DNA的不均匀分布。杂交信号图型在物种间有明显的差异,并与基因组的大小相关。小基因组拟南芥的染色体几乎只有近着丝粒区和核仁组织区被标记。基因组相对较小的水稻、高粱、甘蓝的杂交信号分散分布在染色体的全长,但在近着丝粒区或近端区以及某些异染色质臂的分布明显占优势。大基因组的玉米和大麦的所有染色体都被密集地标记,并在染色体全长显示出强标记区与弱标记或不标记区的交替排列。此外,甘蓝染色体的所有近着丝粒区和核仁组织区、大麦染色体的所有近着丝粒区和某些臂中间区还显示了增强的信号带。大麦增强的信号带带型与其N-带带型一致。水稻自身基因组原位杂交图型与水稻Cot-1DNA在水稻染色体上的荧光原位杂交图型基本一致。研究结果表明,自身基因组原位杂交信号实际上反映了基因组重复DNA序列对染色体的杂交,因而自身基因组原位杂交技术是显示植物基因组中重复DNA聚集区在染色体上的分布以及与重复DNA相关联的染色质分化的有效方法。  相似文献   

18.
Summary Prior studies have shown a preferential decondensation (or fragmentation) of the heterochromatic long arm of the X chromosome of Chinese hamster ovary cells when treated with carcinogenic crystalline NiS particles (crNiS). In this report, we show that the heterochromatic regions of mouse chromosomes are also more frequently involved in aberrations than euchromatic regions, although the heterochromatin in mouse cells is restricted to centromeric regions. We also present the karyotypic analyses of four cell lines derived from tumors induced by leg muscle injections of crystalline nickel sulfide which have been analyzed to determine whether heterochromatic chromosomal regions are preferentially altered in the transformed genotypes. Common to all cell lines was the presence of minichromosomes, which are acrocentric chromosomes smaller than chromosome 19, normally the smallest chromosome of the mouse karyotype. The minichromosomes were present in a majority of cells of each line although the morphology of this extra chromosome varied significantly among the cell lines. C-banding revealed the presence of centromeric DNA and thus these minichromosomes may be the result of chromosome breaks at or near the centromere. In three of the four lines a marker chromosome could be identified as a rearrangement between two chromosomes. In the fourth cell line a rearranged chromosome was present in only 15% of the cells and was not studied in detail. One of the three major marker chromosomes resulted from a centromeric fusion of chromosome 4 while another appeared to be an interchange involving the centromere of chromosome 2 and possibly the telomeric region of chromosome 17. The third marker chromosome involves a rearrangement between chromosome 4 near the telomeric region and what appears to be the centromeric region of chromosome 19. Thus, in these three major marker chromosomes centromeric heterochromatic DNA is clearly implicated in two of the rearrangements and less clearly in the third. The involvement of centromeric DNA in the formation of even two of four markers is consistent with the previously observed preference in the site of action of crNiS for heterochromatic DNA during the early stages of carcinogenesis.  相似文献   

19.
Concerted evolution leading to homogenization of tandemly repeated DNA arrays is widespread and important for genome evolution. We investigated the range and nature of the process at chromosomal and array levels using the 1.688 tandem repeats of Drosophila melanogaster where large arrays are present in the heterochromatin of chromosomes 2, 3, and X, and short arrays are found in the euchromatin of the same chromosomes. Analysis of 326 euchromatic and heterochromatic repeats from 52 arrays showed that the homogenization of 1.688 repeats occurred differentially for distinct genomic regions, from euchromatin to heterochromatin and from local arrays to chromosomes. We further found that most euchromatic arrays are either close to, or are within introns of, genes. The short size of euchromatic arrays (one to five repeats) could be selectively constrained by their role as gene regulators, a situation similar to the so-called "tuning knobs."  相似文献   

20.
Replication variants of the inactive X chromosome were investigated in lymphocytes from six donors by means of terminal BrdU or thymidine incorporation. There were interindividual differences in the incidence of particular variants. In endoreduplicated and tetraploid cells both allocyclic X chromosomes showed the same replication sequence. The Xp22 band of the allocyclic X chromosome seemed to replicate later than the homologous material in some cells. Initiation time of DNA synthesis within the inactive X chromosome was found to be stable; termination time, however, varied greatly relative to the other chromosomes. Early completion of replication within the heterochromatic X chromosome could be demonstrated preferentially for the Xq25–27 terminal sequence, but other variants expressed the phenomenon also. A variable replication rate of the inactive X chromosome is believed to be responsible for its asynchronous, independent replication. The biological significance of the phenomenon is discussed with respect to cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号