首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Tomato chlorosis virus (ToCV) is a whitefly‐transmitted, phloem‐limited, bipartite Crinivirus. In 2012, severe interveinal symptoms characteristic of ToCV infections were observed in greenhouse tomato plants in the Shandong province of China. High levels of infestation by whiteflies (Bemisia tabaci), which transmit ToCV, were also observed on tomato plants in all the greenhouses investigated. The presence of ToCV was confirmed by specific RT‐PCR either in the sampled plants or in the whiteflies collected from the ventral surface of the leaves of diseased plants. The complete genomic nucleotide sequences (RNA1 and RNA2) of the Shandong isolate of ToCV (ToCV‐SDSG) were determined and analysed. ToCV‐SDSG RNA1 consisted of 8594 nucleotides encompassing four open reading frames (ORFs). ToCV‐SDSG RNA2 consisted of 8242 nucleotides encompassing nine ORFs. Phylogenetic analysis suggests that the Chinese ToCV‐SDSG isolate is most similar to the ToCV‐Florida isolate.  相似文献   

5.
6.
Interveinal leaf chlorosis, brittleness, limited necrotic flecking or bronzing developed on greenhouse‐grown tobacco and tomato plants at Nanjing Agricultural University from 2010 to 2013. A positive RT‐PCR using a pair of degenerate primers for Crinivirus confirmed the diseased plants were infected with Tomato chlorosis virus (ToCV). The complete RNA 1 genomic sequence of this ToCV isolate was determined; it comprises of 8596 nucleotides with four open reading frames. Phylogenetic analysis of ToCV isolates from diverse geographical regions categorized the ToCV isolates into two main groups. Group one consisted of Chinese, American‐Florida, Greek and Brazilian isolates, while Group two contained only the Spanish isolate. The first group had two subgroups, one of Chinese and American‐Florida isolates, while the other subgroup had Greek and Brazilian isolates. This is the first study of the complete nucleotide sequence of the RNA 1 of ToCV isolated from China.  相似文献   

7.
By comparing the partial nucleotide sequences of the heat shock protein HSP70 homologue gene, we assessed the genetic diversity of Brazilian tomato isolates of Tomato chlorosis virus (ToCV), as well as their relationship with other ToCV isolates found worldwide. The Brazilian ToCV isolates shared 99.9–100% nucleotide identity, which indicates low genetic diversity. Brazilian ToCV isolates showed a closer evolutionary relationship to those from Mediterranean countries. Based on these results, the origin of Brazilian ToCV isolates and the possible number of introductions of the virus into Brazil are discussed.  相似文献   

8.
Burkholderia gladioli pv. alliicola is a causal agent of rot on a wide range of hosts including onion and tulip. It is one of quarantine phytopathogenic bacteria in China. To reduce the economic losses associated with this pathogen, simple and rapid detection methods are needed. In this study, an efficient loop‐mediated isothermal amplification (LAMP) assay with a real‐time fluorometer was developed. The analysis of 16S‐23S rRNA intergenic transcribed spacer (ITS) sequences showed considerable variability between different Burkholderia species and B. gradioli pathovars. A set of LAMP primers was designed based on the ITS region. The sensitivity and specificity of the developed assay were evaluated at the optimal temperature of 65°C. The primers were specific for B. gladioli pv. alliicola and did not react to strains of others species and other pathovars in the species B. gladioli. The sensitivity of the real‐time LAMP assay was 1 fg DNA which was 100 times higher than that of conventional PCR. The method was verified by testing natural samples and inoculated onion seeds, and it showed effectiveness. The real‐time LAMP assay established in this study is an effective method for detection of B. gladioli pv. alliicola.  相似文献   

9.
Lily symptomless virus (LSV) and Arabis mosaic virus (ArMV) cause severe losses of quantity and quality of lily flower and bulb production. Specificity, sensitivity and speed of detection methods for viruses need to be improved greatly to prevent LSV and ArMV from spreading from infected lilies. A dual IC‐RT‐PCR procedure for detection was developed in which the antibodies of LSV and ArMV were mixed and the mixture used to coat the PCR tubes. The particles of the two viruses were captured by the respective antibodies. Interference by other RNA viruses in infected lily was eliminated in the RT‐PCR. Also, an RNA extraction step was omitted. The dual IC‐RT‐PCR products of LSV and ArMV were 521 bp and 691 bp, respectively. The specificity of the method was validated; only LSV and ArMV of four viruses were detected by dual IC‐RT‐PCR. The sensitivity of the detection method is 1 mg leaf tissue and higher than DAS‐ELISA due to enrichment by dual immunocapture.  相似文献   

10.
Phytophthora nicotianae is an important soilborne plant pathogen. It causes black shank in tobacco and other commercially important crop diseases. Early and accurate detection of P. nicotianae is essential for controlling these diseases. In this study, primers based on the Ras‐related protein gene (Ypt1) of P. nicotianae were tested for their specific detection of the pathogen using nested PCR and LAMP assays. For specificity testing, DNA extracts from 47 P. nicotianae isolates, 45 isolates of 16 different oomycetes and 25 isolates of other fungal species were used; no cross‐reaction with other pathogens was observed. The sensitivity assay showed that the nested PCR and LAMP assays had detection limits of 100 fg and 10 fg genomic DNA per 25‐μl reaction, respectively. Furthermore, the nested PCR and LAMP assays were used for the detection of DNA from naturally P. nicotianae‐infected tobacco tissues and soil. Our results suggest that the LAMP assay has the greatest potential for the specific detection of P. nicotianae in regions that are at risk of contracting tobacco black shank disease and that the Ypt1 gene is a novel and effective target of P. nicotianae LAMP visual detection.  相似文献   

11.
Tomato chlorosis virus (ToCV), which is a newly emerged and rapidly spreading plant virus in China, has seriously reduced tomato production and quality over the past several years. In this study, the effect of ToCV on the demography of the whitefly, Bemisia tabaci biotype Q (Hemiptera: Aleyrodidae), fed on infected and healthy tomato plants was evaluated using the age‐stage, two‐sex life table. When reared on ToCV‐infected tomato plants, the fecundity, length of oviposition period and female adult longevity of B. tabaci biotype Q decreased significantly, while the pre‐adult duration significantly increased compared to controls reared on healthy tomatoes. Consequently, the intrinsic rate of increase (r) and finite of increase (λ) of B. tabaci biotype Q on ToCV‐infected tomato plants significantly decreased compared to those on healthy tomatoes. Population projection predicted that a population of B. tabaci biotype Q fed on ToCV‐infected tomatoes increases slower than on healthy plants. These findings demonstrated that ToCV infection decreased the performance of B. tabaci biotype Q on tomato plants.  相似文献   

12.
13.
Banana streak virus (BSV) is a significant constraint to banana production and genetic improvement. It is necessary to develop and use BSV detection strategies that are both reliable and sensitive for the management of the virus. A loop‐mediated isothermal amplification (LAMP) assay was developed and evaluated for the detection of BSV. Four primers matching a total of six sequences of the conserved ORF III polyprotein genes were synthesized for developing a specific and sensitive LAMP for DNA extracts from field‐infected banana plants. LAMP assay could detect as low as 1 pg/μl template DNA. Test results of all field samples collected from different regions of South China showed that LAMP is more sensitive than PCR. This relatively simple and sensitive technique showed excellent potential with field‐collected samples and for routine screening of tissue culture materials in South China.  相似文献   

14.
Virus‐like chlorotic symptoms were observed on tomato plants, cv. Velocity, grown in a greenhouse, region of Plovdiv. Samples collected from the leaves with interveinal yellowing and with initial interveinal chlorosis were tested for virus presence. Only the samples collected from the upper leaves with slight interveinal chlorosis were positive for Tomato infectious chlorosis virus (TICV) in indirect ELISA. Further, RT‐PCR analysis with specific primers for Tomato chlorosis virus (ToCV) heat shock protein 70, for TICV heat shock protein 70 and for TICV minor capsid protein was positive for TICV in all tested samples. No signals were obtained with primers for ToCV. Phylogenetic analysis showed that the Bulgarian sequence of Hsp70 and a sequence of Greek isolate clustered together having the highest resampling score. Regarding CPm, the Bulgarian isolate was more relevant to the French isolate. The obtained results from phylogenetic analysis supported the idea of a close relationship between the Bulgarian and Greek isolates.  相似文献   

15.
We report a rapid diagnosis of soya bean (Glycine max L.) root rot caused by Fusarium culmorum, using a loop‐mediated isothermal amplification (LAMP) assay. We used the CYP51C gene sequence to design LAMP assay primers specific for F. culmorum. The LAMP assay amplified the target gene efficiently in 60 min at 63°C. The sensitivity of the assay was 100 pg/μl of genomic DNA. Among the tested soya bean pathogens, a positive colour (sky blue) was only observed in the presence of F. culmorum with the addition of hydroxynaphthol blue (HNB) dye prior to amplification, whereas other species isolates showed no colour change. Suspected diseased soya bean samples collected in the field from Jiangsu, Shandong and Anhui provinces and Beijing were diagnosed successfully using the LAMP assay reported here. This study provides a new and readily available method for rapid diagnosis of soya bean root rot caused by F. culmorum.  相似文献   

16.
17.
18.
The one‐step real‐time turbidity loop‐mediated isothermal amplification assay (RealAmp) was developed to detect Hosta virus X (HVX), the most devastating threat to hosta industry. The reaction was performed in a single tube at 63°C for 15 min, and real‐time turbidimetry was used to monitor the amplification results. Specificity and sensitivity analyses demonstrated that this RealAmp method was sensitive as real‐time TaqMan RT‐PCR and about 100‐fold higher than conventional RT‐PCR with no cross‐reaction with other viral pathogens. Field samples detection showed that HVX could be identified effectively with this method. Overall, this RealAmp assay for HVX detection was simple, specific, sensitive, convenient and time‐saving and could assist in the quarantine measures for prevention and control of the disease caused by HVX.  相似文献   

19.
Electron microscopy studies were carried out to investigate the cytopathological changes induced in tomato leaves by Tomato torrado virus (ToTV) that infects tomato plants worldwide causing severe necrotic symptoms. Plants infected with one of the Polish isolates of ToTV were used for cytopathological research. The results revealed severe cellular alterations, especially in Solanum lycopersicum. Moreover, it was shown that crystalline aggregates of virions occurred not only within the phloem cells as it has been previously reported.  相似文献   

20.
Citrus is one of the most economically important fruit crops in the world. Citrus psorosis is a serious disease affecting mainly oranges and mandarins in Argentina and Uruguay. The causal agent is Citrus psorosis virus (CPsV), an ophiovirus with a tripartite ssRNA genome of negative polarity. The coat protein (CP), the most abundant viral protein in infected plants, has been used to detect CPsV by TAS‐ELISA, but only biological indexing, requiring 1 year, is the current and validated technique for diagnosis of citrus psorosis. In this study, a SYBR Green RT‐qPCR protocol was developed, with primers designed to the most conserved region of the cp gene. We tested their specificity and sensitivity in comparison with TAS‐ELISA. This RT‐qPCR was applied successfully to field samples from Argentina, to a variety of isolates from different countries maintained in the greenhouse, to young seedlings and old trees from a psorosis natural transmission plot, and to transgenic citrus expressing the cp gene of CPsV or a fragment thereof. This method allowed accurate quantification of viral titer and cp gene expression in transgenic plants, which could not be detected previously. The sensitivity and reliability of quantitative CPsV detection were improved with greater speed using commercial reagents, and the sensitivity was three orders of magnitude higher than that of TAS‐ELISA. All these data encourage its validation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号