首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sharing of secreted invertase by yeast cells is a well‐established laboratory model for cooperation, but the only evidence that such cooperation occurs in nature is that the SUC loci, which encode invertase, vary in number and functionality. Genotypes that do not produce invertase can act as ‘cheats’ in laboratory experiments, growing on the glucose that is released when invertase producers, or ‘cooperators’, digest sucrose. However, genetic variation for invertase production might instead be explained by adaptation of different populations to different local availabilities of sucrose, the substrate for invertase. Here we find that 110 wild yeast strains isolated from natural habitats, and all contained a single SUC locus and produced invertase; none were ‘cheats’. The only genetic variants we found were three strains isolated instead from sucrose‐rich nectar, which produced higher levels of invertase from three additional SUC loci at their subtelomeres. We argue that the pattern of SUC gene variation is better explained by local adaptation than by social conflict.  相似文献   

2.
Genome‐wide association studies have successfully identified over 70 loci associated with the risk of type 2 diabetes mellitus (T2DM) in multiple populations of European ancestry. However, the risk attributable to an individual variant is modest and does not yet provide convincing evidence for clinical utility. Association between these established genetic variants and T2DM in general populations is hitherto understudied in the isolated populations, such as the Uyghurs, resident in Hetian, far southern Xinjiang Uyghur Autonomous Region, China. In this case–control study, we genotyped 13 single‐nucleotide polymorphisms (SNPs) at 10 genes associated with diabetes in 130 cases with T2DM and 135 healthy controls of Uyghur, a Chinese minority ethnic group. Three of the 13 SNPs demonstrated significant association with T2DM in the Uyghur population. There were significant differences between the T2DM patients and controls in the risk allele distributions of rs3792267 (CAPN10) (P = 0.002), rs1501299 (APM1) (P = 0.017), and rs3760776 (FUT6) (P = 0.031). Allelic carriers of rs3792267‐A, rs1501299‐T, and rs3760776‐T had a 2.24‐fold [OR (95% CI): 1.35–3.71], 0.59‐fold [OR (95% CI): 0.39–0.91], 0.57‐fold [OR (95% CI): 0.34–0.95] increased risk for T2DM respectively. We further confirmed that the cumulative risk allelic scores calculated from the 13 susceptibility loci for T2DM differed significantly between the T2DM patients and controls (P = 0.001), and the effect of obesity/overweight on T2DM was only observed in the subjects with a combined risk allelic score under a value of 17. This study observed that the SNPs rs3792267 in CAPN10, rs1501299 in APM1, and rs3760776 in FUT6 might serve as potential susceptible biomarkers for T2DM in Uyghurs. The cumulative risk allelic scores of multiple loci with modest individual effects are also significant risk factors in Uyghurs for T2DM, particularly among non‐obese individuals. This is the first investigation having observed/found genetic variations on genetic loci functionally linked with glycosylation associated with the risk of T2DM in a Uyghur population.  相似文献   

3.
Because of the frequent breakdown of major resistance (R) genes, identification of new partial R genes against rice blast disease is an important goal of rice breeding. In this study, we used a core collection of the Rice Diversity Panel II (C‐RDP‐II), which contains 584 rice accessions and are genotyped with 700 000 single‐nucleotide polymorphism (SNP) markers. The C‐RDP‐II accessions were inoculated with three blast strains collected from different rice‐growing regions in China. Genome‐wide association study identified 27 loci associated with rice blast resistance (LABRs). Among them, 22 LABRs were not associated with any known blast R genes or QTLs. Interestingly, a nucleotide‐binding site leucine‐rich repeat (NLR) gene cluster exists in the LABR12 region on chromosome 4. One of the NLR genes is highly conserved in multiple partially resistant rice cultivars, and its expression is significantly up‐regulated at the early stages of rice blast infection. Knockout of this gene via CRISPR‐Cas9 in transgenic plants partially reduced blast resistance to four blast strains. The identification of this new non‐strain specific partial R gene, tentatively named rice blast Partial Resistance gene 1 (PiPR1), provides genetic material that will be useful for understanding the partial resistance mechanism and for breeding durably resistant cultivars against blast disease of rice.  相似文献   

4.
  • Environmental gradients, and particularly climatic variables, exert a strong influence on plant distribution and, potentially, population genetic diversity and differentiation. Differences in water availability can cause among‐population variation in ecological processes and can thus interrupt populations’ connectivity and isolate them environmentally. The present study examines the effect of environmental heterogeneity on plant populations due to environmental isolation unrelated to geographic distance.
  • Using AFLP markers, we analyzed genetic diversity and differentiation among 12 Salvia spinosa populations and 13 Salvia syriaca populations from three phytogeographical regions (Mediterranean, Irano‐Turanian and Saharo‐Arabian) representing the extent of the species’ geographic range in Jordan. Differences in geographic location and climate were considered in the analyses.
  • For both species, flowering phenology varied among populations and regions. Irano‐Turanian and Saharo‐Arabian populations had higher genetic diversity than Mediterranean populations, and genetic diversity increased significantly with increasing temperature. Genetic diversity in Salvia syriaca was affected by population size, while genetic diversity responded to drought in S. spinosa. For both species, high levels of genetic differentiation were found as well as two well‐supported phytogeographical groups of populations, with Mediterranean populations clustering in one group and the Irano‐Turanian and Saharo‐Arabian populations in another. Genetic distance was significantly correlated to environmental distance, but not to geographic distance.
  • Our data indicate that populations from moist vs. arid environments are environmentally isolated, where environmental gradients affect their flowering phenology, limit gene flow and shape their genetic structure. We conclude that environmental heterogeneity may act as driver for the observed variation in genetic diversity.
  相似文献   

5.
Pathogenic and genetic variability among seven populations of Phytophthora parasitica var. nicotianae from individual tobacco fields (Yunnan, Shandong, Henan, Heilongjiang, Shanxi, Fujian and Sichuan provinces) were investigated using pathogenicity and randomly amplified polymorphic DNA (RAPD) analyses; 63 strains were isolated from different fields of seven tobacco growing regions, using tobacco cv. Hongda as a baiting host. Pathogenic variability was evaluated in greenhouse studies using five tobacco cultivars that have different levels of resistance to tobacco black shank; 75 and 73% of the strains were pathogenic on M3 and M4, 29 and 33% on M1 and M2, and 94% were pathogenic on M5, respectively. Disease severity incited by different strains varied significantly on individual tobacco cultivars. The percentage of strains pathogenic on different cultivars varied among locations. Genotypic variation among 63 strains was evaluated by RAPD analysis. Ten primers detected 89 polymorphic bands. Cluster and principal coordinates analysed cluster groups. the minor group contained 26 strains, and major group contained 37 strains. Estimates of genetic diversity based on RAPD analysis ranged from 0.24 to 0.34 within populations to 0.36 among all strains from all populations. Phytophthora parasitica var. nicotianae populations were genotypically and phenotypically variable, but no distinct genotypic differences were identified among populations from the seven locations.  相似文献   

6.
Freshwater green microalgae are diverse and widely distributed across the globe, yet the population structuring of these organisms is poorly understood. We assessed the degree of genetic diversity and differentiation of the desmid species, Micrasterias rotata. First, we compared the sequences of four nuclear regions (actin, gapC1, gapC2, and oee1) in 25 strains and selected the gapC1 and actin regions as the most appropriate markers for population structure assessment in this species. Population genetic structure was subsequently analyzed, based on seven populations from the Czech Republic and Ireland. Hudson's Snn statistics indicated that nearest‐neighbor sequences occurred significantly more frequently within geographical populations than within the wider panmictic population. Moreover, Irish populations consistently showed higher genetic diversity than the Czech samples. These results are in accordance with the unbalanced distribution of alleles in many land plant species; however, the large genetic diversity in M. rotata differs from levels of genetic diversity found in most land plants.  相似文献   

7.
Bacteria were isolated from the surface of two samples of American pine wood nematodes to identify methods of controlling pine wilt disease. The dominant bacterial strains were identified, and their toxicity and pathogenicity, in addition to their competitiveness with other pathogenic bacteria, were measured to ascertain how bacteria on the surface of American pine wood nematodes might be used to prevent and control pine wilt disease. The bacterial isolates show that the dominant bacteria carried by the two samples of pine wood nematodes are US4, US5, Smal‐007 and Rrad‐006. Based on routine staining, morphological observation and 16S rDNA sequence analysis, the four strains were identified as Delftia lacustris, Pseudomonas putida, Stenotrophomonas maltophilia and Rhizobium nepotum. The incubation of four dominant bacterial strains and Chinese dominant bacterial strains on the surface of aseptic nematodes and in nutrient broth showed that Smal‐007 and Rrad‐006 have strong competitiveness on the surface of pine wood nematodes. Using a bacterial culture medium to measure the propensity of pine seedlings to wilt, all the American dominant bacterial strains were shown to be less toxic than the Chinese dominant strains. If pine seedlings are inoculated with both bacterial and aseptic pine wood nematodes, American dominant bacterial strains present less pathogenicity than the Chinese dominant bacterial strains. In particular, Smal‐007 and Rrad‐006 show the lowest pathogenicity. If pine seedlings are inoculated with both bacterial and wild pine wood nematodes, American dominant bacterial strains significantly reduce the pathogenicity of wild pine wood nematodes isolated from Zhejiang Province, China. The effects of Smal‐007 and Rrad‐006 are confirmed as the most prominent. The American dominant strains Smal‐007 and Rrad‐006 satisfy two main requirements: excellent repulsion performance and low pathogenicity. Therefore, they can be used as candidate strains for biocontrol bacteria.  相似文献   

8.
In 2013, bitter rot of grape was observed in Changbei Vineyard located in Nanchang City, Jiangxi Province, China. Greeneria species was consistently isolated from the diseased grape berries (Vitis labruscana cv. Kyoho) at approximately 91% of isolation rate in three independent experiments. The species was identified as Greeneria uvicola based on the morphological characteristics, cultural appearance and sequence analysis. Koch's postulates were fulfilled through pathogenicity tests on detached healthy Kyoho grape berries. To our knowledge, this is the first report of G. uvicola causing bitter rot of grape in China.  相似文献   

9.
Anthracnose caused by Elsinoë ampelina is one of the most important table grape diseases in humid regions in Brazil and Australia. The objective of this study was to characterize E. ampelina isolates from Brazil and Australia by means of phylogenetic analyses, morphological features and pathogenicity tests. Phylogenetic relationships among 35 isolates were determined based on a data set of internal transcribed spacer (ITS), histone H3 (HIS3) and elongation factor 1‐α (TEF) sequences. In phylogenetic tree analyses, using a combined ITS and TEF sequence alignment, all E. ampelina isolates were clustered together in a single well‐supported clade. In contrast to the absence of genetic variability within ITS and TEF sequences, HIS3 sequences showed 54 polymorphic sites. The haplotype network generated from HIS3 data set showed four distinct haplotypes. EA1 was the predominant haplotype including 29 isolates from both countries. High genetic variability was observed in two Brazilian isolates, haplotype EA4, which may have lost the intron region during species evolution. Colony colours differed between Brazilian and Australian isolates, but showed similar wrinkled colony texture, absence of spores, sparse‐to‐absent white aerial mycelium and slow growth (0.049–0.060 mm/day). Brazilian isolates produced conidia of 5.65 × 2.65 μm, larger than conidia from Australian isolates, which measured 5.14 × 2.30 μm. In pathogenicity tests, all nine Australian isolates inoculated were pathogenic on detached canes and potted vines of table grape.  相似文献   

10.
Sclerotinia stem rot caused by Sclerotinia sclerotiorum is one of the most important diseases in oilseed rape‐growing areas of China. To determine the frequency of resistance of field isolates of S. sclerotiorum to carbendazim and dimethachlone, a total of 556 isolates from 10 different regions of Henan Province were obtained between 2015 and 2016. The frequency of isolates with a high‐resistance phenotype and a moderate‐resistance phenotype to carbendazim was 69.2% and 10.8%, respectively. However, S. sclerotiorum isolates resistant to dimethachlone were not detected. The baseline sensitivity of S. sclerotiorum to dimethachlone was distributed as a unimodal curve with a mean EC50 value of 0.39 ± 0.09 μg ml?1 for the inhibition of mycelial growth. Four dimethachlone‐resistant mutants were obtained from 20 wild‐type isolates induced by exposure to increasing concentrations of the fungicide in vitro. The mutants showed high levels of resistance to dimethachlone, with resistance factors that ranged from 179 to 323. Positive cross‐resistance occurred between dimethachlone and procymidone, iprodione, and fludioxonil; however, no cross‐resistance was observed for carbendazim and boscalid. The fitness of the dimethachlone‐resistant mutants was significantly lower than that of the wild‐type isolates, as measured by mycelial growth, hyphal dry weight, sclerotium number and dry weight, and pathogenicity. Additionally, based on osmotic tests, the inhibition of mycelial growth caused by NaCl applied at different concentrations was significantly higher for the dimethachlone‐resistant mutants than for their wild‐type parents.  相似文献   

11.
A recently isolated Fusarium population from maize in Belgium was identified as a new species, Fusarium temperatum. From a survey of Fusarium species associated with maize ear rot in nineteen provinces in 2009 in China, ten strains isolated from Guizhou and Hubei provinces were identified as F. temperatum. Morphological and molecular phylogenetic analyses based on the DNA sequences of individual translation elongation factor 1‐alpha and β‐tubulin genes revealed that the recovered isolates produced macroconidia typical of four‐septate with a foot‐shaped basal cell and belonged to F. temperatum that is distinctly different from its most closely related species F. subglutinans and others within Gibberella fujikuroi complex species from maize. All the strains from this newly isolated species were able to infect maize and wheat in field, with higher pathogenicity on maize. Mycotoxin determination of maize grains infected by the strains under natural field condition by ultra‐high‐performance liquid chromatography–tandem mass spectrometry and gas chromatography–mass spectrometry analyses showed that among fifteen mycotoxins assayed, two mycotoxins fumonisin B1 and B2 ranging from 9.26 to 166.89 μg/g were detected, with massively more FB2 mycotoxin (2.8‐ to 108.8‐fold) than FB1. This mycotoxin production profile is different from that of the Belgian population in which only fumonisin B1 was barely detected in one of eleven strains assayed. Comparative analyses of the Ftemperatum and F. subglutinans strains showed that the highest fumonisin producers were present among the Ftemperatum population, which were also the most pathogenic to maize. These results suggested a need for proper monitoring and controlling this species in the relevant maize‐growing regions.  相似文献   

12.
Pest species are often able to develop resistance to pesticides used to control them, depending on how rapidly resistance can emerge within a population or spread from another resistant population. We examined the evolution of bifenazate resistance in China in the two‐spotted spider mite (TSSM) Tetranychus uticae Koch (Acari: Tetranychidae), one of the most resistant arthropods, by using bioassays, detection of mutations in the target cytb gene, and population genetic structure analysis using microsatellite markers. Bioassays showed variable levels of resistance to bifenazate. The cytb mutation G126S, which confers medium resistance in TSSM to bifenazate, had previously been detected prior to the application of bifenazate and was now widespread, suggesting likely resistance evolution from standing genetic variation. G126S was detected in geographically distant populations across different genetic clusters, pointing to the independent origin of this mutation in different TSSM populations. A novel A269V mutation linked to a low‐level resistance was detected in two southern populations. Widespread resistance associated with a high frequency of the G126S allele was found in four populations from the Beijing area which were not genetically differentiated. In this case, a high level of gene flows likely accelerated the development of resistance within this local region, as well as into an outlying region distant from Beijing. These findings, therefore, suggest patterns consistent with both local evolution of pesticide resistance as well as an impact of migration, helping to inform resistance management strategies in TSSM.  相似文献   

13.
Alternaria alternata is the most common fungal pathogen of tomatoes in Upper Egypt. Morphological identification of this fungus is challenging; therefore, this study searched for new classification tools based on molecular techniques. Using a dilution plating method, 67 strains of A. alternata were isolated from 34 samples of rotten tomato fruits representing the Giza 80 and Edkawy cultivars. The collected strains were identified using the amplification products of the internal transcribed spacer (ITS) region, glyceraldehyde 3‐phosphate dehydrogenase (Gpd) and Alt a1, which is a gene involved in the production of most of the allergens produced by A. alternata. The screening revealed that A. alternata constituted more than half of the total fungi recovered from rotten tomatoes in this study. According to the phylogenetic analysis using these three loci, the collected strains clustered in accordance with the host cultivar type from which they had been isolated. Specific gene random primer polymerase chain reaction (SGRP‐PCR) techniques indicated that the A. alternata population in the tested region has a high genetic diversity. The pathogenicity test showed that most of the A. alternata isolates (67.2%) were highly pathogenic, and no correlation was found between the phylogenetic analysis and pathogenicity. In addition, the influence of the fungicide Disan 80% on the collected strains showed significant differences that were attributed to the source of isolation.  相似文献   

14.
The shrubby milkwort (Polygala chamaebuxus L.) is widely distributed in the Alps, but occurs also in the lower mountain ranges of Central Europe such as the Franconian Jura or the Bohemian uplands. Populations in these regions may either originate from glacial survival or from postglacial recolonization. In this study, we analyzed 30 populations of P. chamaebuxus from the whole distribution range using AFLP (Amplified Fragment Length Polymorphism) analysis to identify glacial refugia and to illuminate the origin of P. chamaebuxus in the lower mountain ranges of Central Europe. Genetic variation and the number of rare fragments within populations were highest in populations from the central part of the distribution range, especially in the Southern Alps (from the Tessin Alps and the Prealps of Lugano to the Triglav Massiv) and in the middle part of the northern Alps. These regions may have served, in accordance with previous studies, as long‐term refugia for the glacial survival of the species. The geographic pattern of genetic variation, as revealed by analysis of molecular variance, Bayesian cluster analysis and a PopGraph genetic network was, however, only weak. Instead of postglacial recolonization from only few long‐term refugia, which would have resulted in deeper genetic splits within the data set, broad waves of postglacial expansion from several short‐term isolated populations in the center to the actual periphery of the distribution range seem to be the scenario explaining the observed pattern of genetic variation most likely. The populations from the lower mountain ranges in Central Europe were more closely related to the populations from the southwestern and northern than from the nearby eastern Alps. Although glacial survival in the Bohemian uplands cannot fully be excluded, P. chamaebuxus seems to have immigrated postglacially from the southwestern or central‐northern parts of the Alps into these regions during the expansion of the pine forests in the early Holocene.  相似文献   

15.
The genus Tanakaea is a plant genus that consists of one or two evergreen herbaceous species in Japan and China. As rithophytic plant species occur on shaded rocks, the populations are usually isolated and sporadically found in disjunct areas. To evaluate the genetic structure of the species at multiple spatial scales, 10 nuclear and mitochondrial microsatellite markers were developed. The novel markers showed high genetic variations (two to 15 alleles and He from 0.400 to 0.894). Clonal samples were identified with the probability of identity of 9.0E‐8. When evaluated with 11 populations in Japan, significant genetic differentiation between regional population groups was detected (FST = 0.313 between Shikoku and Honshu islands), suggesting they have long been isolated from each other. Overall, these markers will be useful for population genetic research to investigate clonal structure and genetic diversity and levels of genetic differentiation between the geographically isolated populations.  相似文献   

16.
Parrotia subaequalis (Hamamelidaceae) is a Tertiary relic species endemic in eastern China. We used inter‐simple sequence repeat (ISSR) markers to access genetic diversity and population genetic structure in natural five populations of P. subaequalis. The levels of genetic diversity were higher at species level (= 0.2031) but lower at population level (= 0.1096). The higher genetic diversity at species levels might be attributed to the accumulation of distinctive genotypes which adapted to the different habitats after Quaternary glaciations. Meanwhile, founder effects on the early stage, and subsequent bottleneck of population regeneration due to its biological characteristics, environmental features, and human activities, seemed to explain the low population levels of genetic diversity. The hierarchical AMOVA revealed high levels (42.60%) of among‐population genetic differentiation, which was in congruence with the high levels of Nei's genetic differentiation index (GST = 0.4629) and limited gene flow (Nm = 0.5801) among the studied populations. Mantel test showed a significant isolation‐by‐distance, indicating that geographic isolation has a significant effect on genetic structure in this species. Unweighted pair‐group method with arithmetic average clustering, PCoA, and Bayesian analyses uniformly recovered groups that matched the geographical distribution of this species. In particular, our results suggest that Yangtze River has served as a natural barrier to gene flow between populations occurred on both riversides. Concerning the management of P. subaequalis, the high genetic differentiation among populations indicates that preserving all five natural populations in situ and collecting enough individuals from these populations for ex situ conservation are necessary.  相似文献   

17.
To characterize Aspergillus section Nigri strains involved in the ochratoxin A (OTA) contamination of Tunisian wine and table grapes, a total of 33 strains were analysed. A molecular characterization of the isolates was performed by the amplification of internal transcribed spacer (ITS1‐5.8S rDNA‐ITS2) region combined with amplicon sequencing. Analysis of similarity between the obtained sequences and those deposited in the GenBank database was performed. Twelve strains were confirmed to belong to the Aspergillus carbonarius species. Strains belonging to the Aspergillus niger aggregate group were classified by in silico RFLP assay into two patterns N and T, corresponding to A. niger and Aspergillus tubingensis. Among the 21 OTA producing isolates analysed, 13 showed the T‐type pattern and 8 showed the N‐type pattern. The presented method showed to be a reliable alternative to the classic RFLP method. Our findings unambiguously revealed that multiple aspergilli species isolated from wine and table grape in Tunisia are able to produce OTA.  相似文献   

18.
Characteristic symptoms of Pierce's disease (PD) in grapevines (Vitis vinifera L.) were observed in 2002 in the major grape production fields of central Taiwan. Disease severity in vineyards varied, and all investigated grape cultivars were affected. Diseased tissues were collected from fields for subsequent isolation and characterization of the causal agent of the disease (Xylella fastidiosa). Koch's postulates were fulfilled by artificially inoculating two purified PD bacteria to grape cultivars Kyoho, Honey Red and Golden Muscat. The inoculated plants developed typical leaf‐scorching symptoms, and similar disease severity developed in the three cultivars from which the bacterium was readily re‐isolated, proving that the leaf scorch of grapevines in Taiwan is caused by the fastidious X. fastidiosa. This confirmed PD of grapevines is also the first report from the Asian Continent. Phylogenetic analyses were performed by comparing the 16S rRNA gene and 16S‐23S rRNA internal transcribed spacer region (16S‐23S ITS) of 12 PD strains from Taiwan with the sequences of 13 X. fastidiosa strains from different hosts and different geographical areas. Results showed that the PD strains of Taiwan were closely related to the American X. fastidiosa grape strains but not to the pear strains of Taiwan, suggesting that the X. fastidiosa grape and pear strains of Taiwan may have evolved independently from each other.  相似文献   

19.
Bacterial wilt, caused by Ralstonia solanacearum species complex is a key yield‐limiting factor on crops in Guangdong province, China. The genetic diversity of 110 R. solanacearum strains collected from 16 host plants in different areas of Guangdong province was analysed using biovar and phylotype classification schemes. Of 110 strains, fifty‐five strains belong to biovar 3, fifty‐two strains belong to biovar 4, two strains belong to biovar 2 and one strain belonged to biovar 1. Phylotype‐specific multiplex PCR showed that 108 strains belonged to phylotype I (biovars 1, 3, 4) and two strains belonged to phylotype II (biovar 2). The result of phylogenetic relationships analysis based on egl gene sequences demonstrated that 108 strains of phylotype I were grouped into nine previously described sequevars and a new sequevar 57, and two strains of phylotype II were grouped into sequevar 1. Sequevars 15, 34 and 44 widely distributed in Guangdong were predominant sequevars. Sequevar 45 was first reported on potato and pumpkin in China. These results revealed the genetic structure and phylogenetic relationships of R. solanacearum population in Guangdong and will be helpful in bacterial wilt‐resistance breeding.  相似文献   

20.
Bitter gourd (Momordica charantia L.) cultivated in China is regarded as an important vegetable crop and is of considerable economic importance. However, it is susceptible to fusarium wilt, which causes heavy economic losses. Forty‐eight isolates were isolated from diseased bitter gourd plants that displayed typical fusarium wilt symptoms. Based on the morphological features, the rDNA internal transcribed space (ITS) sequences, pathogenicity and host biotypes, all of the isolates tested were pathogenic to the susceptible bitter gourd plants species (cv. ‘Guinongke No. 2’) and were identified as Fusarium oxysporum f. sp. momordicae (FOM). Our results classified different isolates as slightly, moderately or highly virulent. Among the isolates tested, 43 isolates slightly infected bottle gourd (Lagenaria siceraria var. clavata), whereas they did not infect other species from the family Cucurbitaceae. Genetic diversity among 48 isolates was characterized using amplified fragment length polymorphism (AFLP) analysis. The number of bands amplified by each primer pairs ranged from 41 to 66, with sizes ranging from 200 to 500 bp. A total of 366 bands were observed, out of which 363 were polymorphic (99.14%). The Nei's genetic identity of the six geographical populations varied from 0.7362 to 0.9707. The mean Nei's gene diversity index (= 0.2644) and the mean Shannon's information index (= 0.4071) at species level were higher than ones at populations level, indicated that the variation within populations was greater than that among populations. The Nei's GST (0.5103) and gene flow (Nm = 0.4923) revealed that genetic differentiation was mainly among populations and few gene exchanges. The dendrogram obtained from AFLP marker showed that there was a good correlation between isolates from different geographical locations and their pathogenicity. The AFLP marker effectively distinguished the high virulent isolates from the less virulent isolates. The highly virulent isolates were distinctly separated in different clusters, which indicated a significantly high correlation with the geographical origin in the AFLP dendrogram. The pathogenicity and molecular marker analysis confirmed the presence of variation in virulence as well as genetic diversity among the FOM isolates studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号