首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Capsaicinoids are pungent compounds found in pepper (Capsicum spp.) fruits. Capsaicin showed antimicrobial activity in plate assays against seven isolates of five species of fungi and nine isolates of two species of oomycetes. The general trend was that oomycetes were more inhibited than fungi. Assays of capsaicin biosynthetic precursors suggest that the lateral chain of capsaicinoids has more inhibitory activity than the phenolic part. In planta tests of capsaicinoids (capsaicin and N‐vanillylnonanamide) applied to the roots demonstrated that these compounds conferred protection against the pathogenic fungus Verticillium dahliae and induced both chitinase activity and expression of several defence‐related genes, such as CASC1, CACHI2 and CABGLU. N‐Vanillylnonanamide infiltrated into cotyledons confers systemic protection to the upper leaves of pepper against the fungal pathogen Botrytis cinerea. In wild‐type tomato plants such cotyledon infiltration has no protective effect, but is effective in the Never‐ripe tomato mutant impaired in ethylene response. A similar effect was observed in tomato after salicylic acid infiltration.  相似文献   

3.
4.
The Ptr1 (Pseudomonas tomato race 1) locus in Solanum lycopersicoides confers resistance to strains of Pseudomonas syringae pv. tomato expressing AvrRpt2 and Ralstonia pseudosolanacearum expressing RipBN. Here we describe the identification and phylogenetic analysis of the Ptr1 gene. A single recombinant among 585 F2 plants segregating for the Ptr1 locus was discovered that narrowed the Ptr1 candidates to eight nucleotide‐binding leucine‐rich repeat protein (NLR)‐encoding genes. From analysis of the gene models in the S. lycopersicoides genome sequence and RNA‐Seq data, two of the eight genes emerged as the strongest candidates for Ptr1. One of these two candidates was found to encode Ptr1 based on its ability to mediate recognition of AvrRpt2 and RipBN when it was transiently expressed with these effectors in leaves of Nicotiana glutinosa. The ortholog of Ptr1 in tomato and in Solanum pennellii is a pseudogene. However, a functional Ptr1 ortholog exists in Nicotiana benthamiana and potato, and both mediate recognition of AvrRpt2 and RipBN. In apple and Arabidopsis, recognition of AvrRpt2 is mediated by the Mr5 and RPS2 proteins, respectively. Phylogenetic analysis places Ptr1 in a distinct clade compared with Mr5 and RPS2, and it therefore appears to have arisen by convergent evolution for recognition of AvrRpt2.  相似文献   

5.
6.
Chitin, a major component of fungal cell walls, is a well‐known pathogen‐associated molecular pattern (PAMP) that triggers defense responses in several mammal and plant species. Here, we show that two chitooligosaccharides, chitin and chitosan, act as PAMPs in grapevine (Vitis vinifera) as they elicit immune signalling events, defense gene expression and resistance against fungal diseases. To identify their cognate receptors, the grapevine family of LysM receptor kinases (LysM‐RKs) was annotated and their gene expression profiles were characterized. Phylogenetic analysis clearly distinguished three V. vinifera LysM‐RKs (VvLYKs) located in the same clade as the Arabidopsis CHITIN ELICITOR RECEPTOR KINASE1 (AtCERK1), which mediates chitin‐induced immune responses. The Arabidopsis mutant Atcerk1, impaired in chitin perception, was transformed with these three putative orthologous genes encoding VvLYK1‐1, ‐2, or ‐3 to determine if they would complement the loss of AtCERK1 function. Our results provide evidence that VvLYK1‐1 and VvLYK1‐2, but not VvLYK1‐3, functionally complement the Atcerk1 mutant by restoring chitooligosaccharide‐induced MAPK activation and immune gene expression. Moreover, expression of VvLYK1‐1 in Atcerk1 restored penetration resistance to the non‐adapted grapevine powdery mildew (Erysiphe necator). On the whole, our results indicate that the grapevine VvLYK1‐1 and VvLYK1‐2 participate in chitin‐ and chitosan‐triggered immunity and that VvLYK1‐1 plays an important role in basal resistance against E. necator.  相似文献   

7.
Endophytic isolates of Trichoderma species are being considered as biocontrol agents for diseases of Theobroma cacao (cacao). Gene expression was studied during the interaction between cacao seedlings and four endophytic Trichoderma isolates, T. ovalisporum-DIS 70a, T. hamatum-DIS 219b, T. harzianum-DIS 219f, and Trichoderma sp.-DIS 172ai. Isolates DIS 70a, DIS 219b, and DIS 219f were mycoparasitic on the pathogen Moniliophthora roreri, and DIS 172ai produced metabolites that inhibited growth of M. roreri in culture. ESTs (116) responsive to endophytic colonization of cacao were identified using differential display and their expression analyzed using macroarrays. Nineteen cacao ESTs and 17 Trichoderma ESTs were chosen for real-time quantitative PCR analysis. Seven cacao ESTs were induced during colonization by the Trichoderma isolates. These included putative genes for ornithine decarboxylase (P1), GST-like proteins (P4), zinc finger protein (P13), wound-induced protein (P26), EF-calcium-binding protein (P29), carbohydrate oxidase (P59), and an unknown protein (U4). Two plant ESTs, extensin-like protein (P12) and major intrinsic protein (P31), were repressed due to colonization. The plant gene expression profile was dependent on the Trichoderma isolate colonizing the cacao seedling. The fungal ESTs induced in colonized cacao seedlings also varied with the Trichoderma isolate used. The most highly induced fungal ESTs were putative glucosyl hydrolase family 2 (F3), glucosyl hydrolase family 7 (F7), serine protease (F11), and alcohol oxidase (F19). The pattern of altered gene expression suggests a complex system of genetic cross talk occurs between the cacao tree and Trichoderma isolates during the establishment of the endophytic association.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

8.
9.
10.
Botrytis cinerea is a plant-pathogenic fungus infecting over 200 different plant species. We use a molecular genetic approach to study the process of pectin degradation by the fungus. Recently, we described the cloning and characterization of an endopolygalacturonase (endoPG) gene from B. cinerea (Bcpg1) which is required for full virulence. Here we describe the cloning and characterization of five additional endoPG-encoding genes from B. cinerea SAS56. The identity at the amino acid level between the six endoPGs of B. cinerea varied from 34 to 73%. Phylogenetic analysis, by using a group of 35 related fungal endoPGs and as an outgroup one plant PG, resulted in the identification of five monophyletic groups of closely related proteins. The endoPG proteins from B. cinerea SAS56 could be assigned to three different monophyletic groups. DNA blot analysis revealed the presence of the complete endoPG gene family in other strains of B. cinerea, as well as in other Botrytis species. Differential gene expression of the gene family members was found in mycelium grown in liquid culture with either glucose or polygalacturonic acid as the carbon source.  相似文献   

11.
Banana (Musa spp.) is severely damaged by Fusarium wilt caused by Fusarium oxysporum f. sp. cubense (Foc). Biocontrol by inducing systemic resistance has been considered as one of the most important strategies to improve plant health. Very few studies have investigated appropriate reference gene selection for RT‐qPCR (quantitative real‐time polymerase chain reaction) analysis suitable for conditions of systemic activated resistance. In this study, we assessed over a time‐course the expression of seven candidate reference genes (EF1, TUB, ACT1, ACT2, L2, RPS2 and RAN) for Cavendish cultivar Brazilian (Musa spp. AAA) and dwarf banana cultivar Guangfen No. 1 (Musa spp. ABB) that were inoculated by Bacillus subtilis strain TR21 and Foc. We choose these plants because they are commonly planted in Southern China. Expression stability of the candidate genes was evaluated using various software packages (GeNorm, NormFinder and BestKeeper). L2 and TUB genes displayed maximum stability in Guangfen No. 1. In Brazilian, ACT1 and TUB were the most stable genes. To further validate the suitability of the reference genes identified in this study, the expression of pathogenesis‐related 1 (PR1) gene under TR21 and Foc strains Foc004/Foc009 treatments was also studied. Identified reference genes in this work that are most suitable for normalizing gene expression data in banana under Fusarium wilt resistance induction conditions will contribute to the understanding of disease resistance mechanisms induced by biocontrol strains in banana.  相似文献   

12.
13.
14.
The mycoparasite Trichoderma harzianum has been extensively used in the biocontrol of a wide range of phytopathogenic fungi. Hydrolytic enzymes secreted by the parasite have been directly implicated in the lysis of the host. Dual cultures of Trichoderma and a host, with and without contact, were used as means to study the mycoparasitic response in Trichoderma. Northern analysis showed high-level expression of genes encoding a proteinase (prb1) and an endochitinase (ech42) in dual cultures even if contact with the host was prevented by using cellophane membranes. Neither gene was induced during the interaction of Trichoderma with lectin-coated nylon fibres, which are known to induce hyphal coiling and appressorium formation. Thus, the signal involved in triggering the production of these hydrolytic enzymes by T. harzianum during the parasitic response is independent of the recognition mediated by this lectin-carbohydrate interaction. The results showed that induction of prb1 and ech42 is contact-independent, and a diffusible molecule produced by the host is the signal that triggers expression of both genes in vivo. Furthermore, a molecule that is resistant to heat and protease treatment, obtained from Rhizoctonia solani cell walls induces expression of both genes. Thus, this molecule is involved in the regulation of the expression of hydrolytic enzymes during mycoparasitism by T. harzianum. Received: 8 June 1998 / Accepted: 28 July 1998  相似文献   

15.
Flowers can serve as infection courts for specialized and unspecialized plant pathogens, but little is known about the ability of floral tissues to undergo induced resistance (IR) responses against these pathogens. We studied the expression of IR marker genes in tomato and blueberry flowers treated with the inducers methyl jasmonate (MeJA), benzothiadiazole‐S‐methyl ester (BTH) and 2,6‐dichloroisonicotinic acid (INA). In tomato, spray application of MeJA and BTH (but not INA) to entire plants (leaves, stems and flowers) resulted in a significant (< 0.05) overexpression of Pin2 (5.2‐fold) and PR‐4 (5.6‐fold) in pistil tissues, respectively. A statistically similar expression was obtained in pistils when flowers were protected from direct spray, indicating a systemic response. In blueberry, where information about IR marker genes is limited, PR‐3 and PR‐4 orthologs were first identified and characterized using in silico and wet‐laboratory techniques. In subsequent induction experiments, INA and BTH induced overexpression of PR‐4 in blueberry pistils by 3.2‐ and 1.8‐fold, respectively, when entire plants were treated. In blueberry flowers protected from spray applications, all chemicals applied to vegetative tissues led to significant overexpression of PR‐4 (MeJA: 1.4‐fold, BTH: 2.9‐fold and INA: 1.6‐fold), with BTH also inducing PR‐3 (1.7‐fold). The effect of these responses in protecting flowers was studied by inoculating treated tomato flowers with the necrotroph Botrytis cinerea and blueberry flowers with the hemi‐biotroph Monilinia vaccinii‐corymbosi. In both pathosystems, no significant disease suppression associated with resistance inducer application was observed under the conditions studied. Thus, although IR marker genes were shown to be inducible in floral tissue, the magnitude of this response was insufficient to suppress pathogen ingress.  相似文献   

16.
17.
18.
19.
Trichoderma spp. are cosmopolitan soil fungi that are highly resistant to many toxic compounds. Here, we show that Trichoderma virens and T. reesei are tolerant to aromatic amines (AA), a major class of pollutants including the highly toxic pesticide residue 3,4-dichloroaniline (3,4-DCA). In a previous study, we provided proof-of-concept remediation experiments in which another soil fungus, Podospora anserina, detoxifies 3,4-DCA through its arylamine N-acetyltransferase (NAT), a xenobiotic-metabolizing enzyme that enables acetyl coenzyme A-dependent detoxification of AA. To assess whether the N-acetylation pathway enables AA tolerance in Trichoderma spp., we cloned and characterized NATs from T. virens and T. reesei. We characterized recombinant enzymes by determining their catalytic efficiencies toward several toxic AA. Through a complementary approach, we also demonstrate that both Trichoderma species efficiently metabolize 3,4-DCA. Finally, we provide evidence that NAT-independent transformation is solely (in T. virens) or mainly (in T. reesei) responsible for the observed removal of 3,4-DCA. We conclude that T. virens and, to a lesser extent, T. reesei likely utilize another, unidentified, metabolic pathway for the detoxification of AA aside from acetylation. This is the first molecular and functional characterization of AA biotransformation in Trichoderma spp. Given the potential of Trichoderma for cleanup of contaminated soils, these results reveal new possibilities in the fungal remediation of AA-contaminated soil.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号