首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Grapevine (Vitis vinifera) is one of the most important fruits in Iran where the provinces of Qazvin, Lorestan and Markazi are main producers. During 2013–2015, vineyards located in these provinces were surveyed to verify the presence of phytoplasma. The sample collection was based on symptomatology including decline, leaf yellowing and shortening of internodes. Total DNA was extracted from symptomatic and symptomless grapevine samples and used in nested‐polymerase chain reaction (PCR) assays with phytoplasma ribosomal primers (P1/Tint followed by R16F2n/R2, R16mF1/mR1, R16(I)F1/R1 or 6R758f/16R1232r). Nested‐PCR products were obtained only for symptomatic samples while samples from symptomless plants yielded no PCR products. Restriction fragment length polymorphism (RFLP) analyses with Tru1I, TaqI and Tsp509I and direct sequencing of amplicons followed by phylogenetic analyses indicated the presence of ‘Candidatus Phytoplasma fraxini’, ‘Ca. P. aurantifolia’, ‘Ca. P. solani’ and ‘Ca. P. phoenicium’‐related strains. In Marzaki province, there ‘Ca. P. aurantifolia’ strains were mainly detected, while in the other two provinces, all the four ‘Candidatus species’ were identified with the prevalence of ‘Ca. P. solani’‐related strains. In both provinces in one case, mixed phytoplasma infection was also detected by RFLP analyses. The presence of different phytoplasmas in positive samples indicates great phytosanitary significance due to grapevine economic importance for country. Grapevine phytoplasma infection represents a threat for other crops suggesting grapevine as alternative host species for the phytoplasmas already reported in Iran, while the ‘Ca. P. fraxini’ is for the first time identified in Iran.  相似文献   

2.
Potato plants with symptoms suggestive of potato purple top disease (PPTD) occurred in the central, western and north‐western regions of Iran. Polymerase chain reaction (PCR) and nested PCR assays were performed using phytoplasma universal primer pair P1/P7 followed by primer pairs R16F2n/R16R2 and fU5/rU3 for phytoplasma detection. Using primer pairs R16F2n/R16R2 and fU5/rU3 in nested PCR, the expected fragments were amplified from 53% of symptomatic potatoes. Restriction fragment length polymorphism (RFLP) analysis using AluI, CfoI, EcoRI, KpnI, HindIII, MseI, RsaI and TaqI restriction enzymes confirmed that different phytoplasma isolates caused PPTD in several Iranian potato‐growing areas. Sequences analysis of partial 16S rRNA gene amplified by nested PCR indicated that ‘Candidatus Phytoplasma solani’, ‘Ca. Phytoplasma astris’ and ‘Ca. Phytoplasma trifolii’ are prevalent in potato plants showing PPTD symptoms in the production areas of central, western and north‐western regions of Iran, although ‘Ca. Phytoplasma solani’ is more prevalent than other phytoplasmas. This is the first report of phytoplasmas related to ‘Ca. Phytoplasma astris’, ‘Ca. Phytoplasma solani’ and ‘Ca. Phytoplasma trifolii’ causing PPTD in Iran.  相似文献   

3.
Tree peony (Paeonia suffruticosais) plants with yellowing symptoms suggestive of a phytoplasma disease were observed in Shandong Peninsula, China. Typical phytoplasma bodies were detected in the phloem tissue using transmission electron microscopy. The association of a phytoplasma with the disease was confirmed by polymerase chain reaction (PCR) using phytoplasma universal primer pair R16mF2/R16mR1 followed by R16F2n/R16R2 as nested PCR primer pair. The sequence analysis indicated that the phytoplasma associated with tree peony yellows (TPY) was an isolate of ‘Ca. Phytoplasma solani’ belonging to the stolbur (16SrXII) group. This is the first report of a phytoplasma associated with tree peony.  相似文献   

4.
A search for phytoplasma-associated diseases was conducted for the first time in the main grapevine-growing localities of the Dukagjini plain in Kosovo. A total of 144 samples were collected from grapevine cultivars displaying leaf yellowing, reddening, discolouration and irregular wood ripening, and analysed using nested and quantitative PCR assays. These assays showed that 35.4% of samples belonging to eight cultivars were positive to the presence of phytoplasmas in the 16SrXII group. The 16S rDNA phytoplasma sequences obtained from 15 samples shared identity greater than 99.5% with ‘Candidatus Phytoplasma solani’. Sequence analysis of the tuf gene showed that the strains found in Kosovar grapevines are in the tuf-type b1 group, sharing 99.6% to 99.8% identity with ‘Ca. P. solani'-related strains associated with the “bois noir” grapevine disease in many European countries; the secY gene sequences, on the other hand, shared 100% identity with ‘Ca. P. solani' strains from Bosnia and Herzegovina, Serbia, Croatia and Turkey. This study constitutes the first report on the presence and molecular characterization of phytoplasmas in Kosovar vineyards. Based on these results, it is recommended that testing for phytoplasma be included in the certification program for grapevine in Kosovo.  相似文献   

5.
Reddening disease has recently been threatening Salvia miltiorrhiza in China, ranging from 30 to 50%. The main symptoms observed, such as plant stunting, inflorescence malformation, leaf reddening, fibrous roots browning, skin blackening and eventually root rot, are typically associated with phytoplasma infection. The presence of phytoplasmas was demonstrated through phytoplasma‐specific PCR, with the expected amplification (1.8 kb) from symptomatic S. miltiorrhiza plants from Shangluo, Shangzhou and Luonan fields in Shaanxi Province of China. The sequences of 16S rRNA, tuf, secY and vmp1 genes amplified from LN‐1 phytoplasma shared the closest homologies of 99%, 100%, 99% and 98% with those of the reference strain Candidatus Phytoplasma solani (subgroup 16SrXII‐A), respectively. The phylogenetic trees showed that LN‐1 phytoplasma clustered with the members of 16SrXII‐A group, including CaP. solani. Computer‐simulated restriction fragment length polymorphism analysis further supported this classification. Diversity analysis showed that all ‘Ca. P. solani’ strains identified from the three different regions examined shared 100% identical 16S rRNA, tuf, secY and vmp1 nucleotide sequences. To the best of our knowledge, this is the first report of phytoplasma infecting the medicinal plant of S. miltiorrhiza. The results demonstrate that ‘CaP. solani’ is the presumptive aetiological agent of S. miltiorrhiza reddening disease in China.  相似文献   

6.
Suspected phytoplasma and virus‐like symptoms of little leaf, yellow mosaic and witches’ broom were recorded on soya bean and two weed species (Digitaria sanguinalis and Parthenium hysterophorus), at experimental fields of Indian Agricultural Research Institute, New Delhi, India, in August–September 2013. The phytoplasma aetiology was confirmed in symptomatic soya bean and both the weed species by direct and nested PCR assays with phytoplasma‐specific universal primer pairs (P1/P6 and R16F2n/R16R2n). One major leafhopper species viz. Empoasca motti Pruthi feeding on symptomatic soya bean plants was also found phytoplasma positive in nested PCR assays. Sequencing BLASTn search analysis and phylogenetic analysis revealed that 16Sr DNA sequences of phytoplasma isolates of soya bean, weeds and leafhoppers had 99% sequence identity among themselves and were related to strains of ‘Candidatus Phytoplasma asteris’. PCR assays with Mungbean yellow mosaic India virus (MYMIV) coat‐protein‐specific primers yielded an amplicon of approximately 770 bp both from symptomatic soya bean and from whiteflies (Bemisia tabaci) feeding on soya bean, confirmed the presence of MYMIV in soya bean and whitefly. Hence, this study suggested the mixed infection of MYMIV and ‘Ca. P. asteris’ with soya bean yellow leaf and witches’ broom syndrome. The two weed species (D. sanguinalis and P. hysterophorus) were recorded as putative alternative hosts for ‘Ca. P. asteris’ soya bean Indian strain. However, the leafhopper E. motti was recorded as putative vector for the identified soya bean phytoplasma isolate, and the whitefly (B. tabaci) was identified as vector of MYMIV which belonged to Asia‐II‐1 genotype.  相似文献   

7.
Bacteria of the genus ‘Candidatus Phytoplasma’ are uncultivated intracellular plant pathogens transmitted by phloem-feeding insects. They have small genomes lacking genes for essential metabolites, which they acquire from either plant or insect hosts. Nonetheless, some phytoplasmas, such as ‘Ca. P. solani’, have broad plant host range and are transmitted by several polyphagous insect species. To understand better how these obligate symbionts can colonize such a wide range of hosts, the genome of ‘Ca. P. solani’ strain SA-1 was sequenced from infected periwinkle via a metagenomics approach. The de novo assembly generated a draft genome with 19 contigs totalling 821,322 bp, which corresponded to more than 80% of the estimated genome size. Further completion of the genome was challenging due to the high occurrence of repetitive sequences. The majority of repeats consisted of gene arrangements characteristic of phytoplasma potential mobile units (PMUs). These regions showed variation in gene orders intermixed with genes of unknown functions and lack of similarity to other phytoplasma genes, suggesting that they were prone to rearrangements and acquisition of new sequences via recombination. The availability of this high-quality draft genome also provided a foundation for genome-scale genotypic analysis (e.g., average nucleotide identity and average amino acid identity) and molecular phylogenetic analysis. Phylogenetic analyses provided evidence of horizontal transfer for PMU-like elements from various phytoplasmas, including distantly related ones. The ‘Ca. P. solani’ SA-1 genome also contained putative secreted protein/effector genes, including a homologue of SAP11, found in many other phytoplasma species.  相似文献   

8.
Bois noir (BN), the most prevalent disease of the grapevine yellows complex, causes considerable yield loss in vineyards. BN is associated with phytoplasma strains of the species ‘Candidatus Phytoplasma solani’ (taxonomic subgroup 16SrXII‐A). In Europe, the BN phytoplasma is transmitted to grapevine mainly by Hyalesthes obsoletus, a polyphagous cixiid completing its life cycle on stinging nettle and field bindweed. As a result of the complexity of BN epidemiology, no effective control strategies have been developed. In previous studies conducted in the eastern Mediterranean coast of Israel, chaste tree (Vitex agnus‐castus) was found to be the preferred host plant of H. obsoletus but did not harbour BN phytoplasma. Thus, a ‘push and pull’ strategy was suggested based on the fact that chaste tree plants located at vineyard borders was an effective trap plant for H. obsoletus adults. However, in other studies carried out in the eastern Adriatic coast of Montenegro, chaste tree was found to be a key source plant for BN phytoplasma transmission to grapevine. This study aimed to investigate (i) the interaction between chaste tree and H. obsoletus through survival, attractiveness and oviposition experiments conducted comparing the behaviour of H. obsoletus in chaste tree versus stinging nettle and grapevine and (ii) the capability of chaste tree to harbor ‘Ca. P. solani’ in northern Italy through transmission trials. H. obsoletus adults were found to survive on chaste tree and grapevine over a 1 week period and prefer chaste tree to grapevine. Moreover, H. obsoletus produced eggs and overwintered as nymphs on chaste tree, even if at a lesser extent than on stinging nettle. H. obsoletus originating from nettle was found able to transmit ‘Ca. P. solani’ to chaste tree (2 plants of 16 were found infected by the BN phytoplasma strain St5 identified in H. obsoletus specimens). These results increased our knowledge about the role of Vitex agnus‐castus as host plant of H. obsoletus and BN phytoplasma in northern Italy and do not recommend considering chaste tree as trap plant at vineyard borders.  相似文献   

9.
A survey was made to determine the incidence of phytoplasmas in 39 sweet and sour cherry, peach, nectarine, apricot and plum commercial and experimental orchards in seven growing regions of Poland. Nested polymerase chain reaction (PCR) using the phytoplasma‐universal primer pairs P1/P7 followed by R16F2n/R16R2 showed the presence of phytoplasmas in 29 of 435 tested stone fruit trees. The random fragment length polymorphism (RFLP) patterns obtained after digestion of the nested PCR products separately with RsaI, AluI and SspI endonucleases indicated that selected Prunus spp. trees were infected by phytoplasmas belonging to three different subgroups of the apple proliferation group (16SrX‐A, ‐B, ‐C). Nucleotide sequence analysis of 16S rDNA fragment amplified with primers R16F2n/R16R2 confirmed the PCR/Restriction Fragment Length Polymorphism (RFLP) results and revealed that phytoplasma infecting sweet cherry cv. Regina (Reg), sour cherry cv. Sokowka (Sok), apricots cv. Early Orange (EO) and AI/5, Japanese plum cv. Ozark Premier (OzPr) and peach cv. Redhaven (RedH) was closely related to isolate European stone fruit yellows‐G1 of the ‘Candidatus Phytoplasma prunorum’ (16SrX‐B). Sequence and phylogenetic analyses resulted in the highest similarity of the 16S rDNA fragment of phytoplasma from nectarine cv. Super Queen (SQ) with the parallel sequence of the strain AP15 of the ‘Candidatus Phytoplasma mali’ (16SrX‐A). The phytoplasma infecting sweet cherry cv. Kordia (Kord) was most similar to the PD1 strain of the ‘Candidatus Phytoplasma pyri’ (16SrX‐C). This is the first report of the occurrence of ‘Ca. P. prunorum’, ‘Ca. P. mali’ and ‘Ca. P. pyri’ in naturally infected stone fruit trees in Poland.  相似文献   

10.
The leafhopper Amplicephalus curtulus Linnavuori & DeLong (Hemiptera: Cicadellidae) can transmit ‘Candidatus Phytoplasma ulmi’ (16SrV‐A) from a native Chilean shrub, Ugni molinae Turcz. (Myrtaceae), to ryegrasses. A recent study showed that this phytoplasma reduced the total protein content and the activity of detoxifying enzymes in A. curtulus, which could also affect its vector fitness. This study evaluated the effect of ‘Ca. Phytoplasma ulmi’ on the longevity, fecundity, and body mass of A. curtulus. Both females and males were exposed to ‘Ca. Phytoplasma ulmi’‐infected plants for 96 h, whereas a control group remained unexposed. Quartiles from adult emergence to 75% (t75), 50% (t50), and 25% (t25) survival rates were determined for each leafhopper survival distribution. The dry weight was also established at the end of the experiment. The adult lifespan of phytoplasma‐infected males and females was significantly lower than that of the uninfected leafhoppers in quartile survival distributions t50 and t25. The phytoplasma‐infected males and females lived 3 and 4 weeks less than uninfected ones in the last quartile, respectively. Fecundity was established by number of nymphs per female (in four periods) in phytoplasma‐infected and uninfected assays. In general, the weekly pattern of the number of nymphs per phytoplasma‐infected female was lower than that of uninfected leafhoppers; it was 37% lower at the end of the experiment. Phytoplasma‐infected females weighed significantly less (11%) than uninfected individuals. Phytoplasma‐infected males weighed 8% less than uninfected ones, but this difference was not significant. Our data indicated that ‘Ca. Phytoplasma ulmi’ negatively affected the fitness of A. curtulus, and nymphs produced by phytoplasma‐infected females varied over time, which may influence the disease dynamics in nature or in field crops.  相似文献   

11.
In 2010, tomato plants with big bud symptoms were observed in Xinjiang, China. PCR products of approximately 1.2 and 2.8 kb were amplified from infected tomato tissues but not from asymptomatic plants. A comparison of 16S rDNA sequences showed that the casual tomato big bud (TBB) phytoplasma was closely (99%) related to the ‘Candidatus Phytoplasma trifolii’ (16SrVI group). The TBB phytoplasma clustered into one branch with the Loofah witches'‐broom phytoplasma according to the 23S rDNA analysis but with no other member of the 16SrVI group. The cause of TBB symptoms was identified as ‘Ca. Phytoplasma trifolii' (16SrVI group) by PCR, virtual RFLP and sequencing analyses. This is the first report of a phytoplasma related to ‘Ca. Phytoplasma trifolii' causing TBB disease in China.  相似文献   

12.
Aims: To test the effect of auxin‐treatment on plant pathogenic phytoplasmas and phytoplasma‐infected host. Methods and Results: In vitro grown periwinkle shoots infected with different ‘Candidatus Phytoplasma’ species were treated with indole‐3‐acetic acid (IAA) or indole‐3‐butyric acid (IBA). Both auxins induced recovery of phytoplasma‐infected periwinkle shoots, but IBA was more effective. The time period and concentration of the auxin needed to induce recovery was dependent on the ‘Candidatus Phytoplasma’ species and the type of auxin. Two ‘Candidatus Phytoplasma’ species, ‘Ca. P. pruni’ (strain KVI, clover phyllody from Italy) and ‘Ca. P. asteris’ (strain HYDB, hydrangea phyllody), were susceptible to auxin‐treatment and undetected by nested PCR or detected only in the second nested PCR in the host tissue. ‘Ca. P. solani’ (strain SA‐I, grapevine yellows) persisted in the host tissue despite the obvious recovery of the host plant and was always detected in the direct PCR. Conclusions: Both auxins induced recovery of phytoplasma‐infected plants and affected tested ‘Candidatus Phytoplasma’ species in the same manner, implying that the mechanism involved in phytoplasma elimination/survival is common to both, IAA and IBA. Significance and Impact of the Study: The results imply that in the case of some ‘Candidatus Phytoplasma’ species, IBA‐treatment could be used to eliminate phytoplasmas from in vitro grown Catharanthus roseus shoots.  相似文献   

13.
Aim: To elucidate the possible mechanism of phytoplasma elimination from periwinkle shoots caused by indole‐3‐butyric acid (IBA) treatment. Methods and Results: It has been shown that a transfer of in vitro‐grown phytoplasma‐infected Catharanthus roseus (periwinkle) plantlets from medium supplemented with 6‐benzylaminopurine (BA) to one supplemented with IBA can induce remission of symptoms and even permanent elimination of ‘Candidatus Phytoplasma asteris’ reference strain HYDB. Endogenous auxin levels and general methylation levels in noninfected periwinkles, periwinkles infected with two ‘Candidatus Phytoplasma’ species and phytoplasma‐recovered periwinkles were measured and compared. After the transfer from cytokinin‐ to auxin‐containing media, healthy shoots maintained their phenotype, methylation levels and hormone concentrations. Phytoplasma infection caused a change in the endogenous indole‐3‐acetic acid to IBA ratio in periwinkle shoots infected with two ‘Candidatus Phytoplasma’ species, but general methylation was significantly changed only in shoots infected with ‘Ca. P. asteris’, which resulted in the only phytoplasma species eliminated from shoots after transfer to IBA‐containing medium. Both phytoplasma infection and treatment with plant growth regulators influenced callose deposition in phloem tissue, concentrations of photosynthetic pigments and soluble proteins, H2O2 levels and activities of catalase (CAT) and ascorbate peroxidase (APX). Conclusion: Lower level of host genome methylation in ‘Ca. P. asteris’‐infected periwinkles on medium supplemented with BA was significantly elevated after IBA treatment, while IBA treatment had no effect on cytosine methylation in periwinkles infected with ‘Candidatus Phytoplasma ulmi’ strain EY‐C. Significance and Impact of the Study: Hormone‐dependent recovery is a distinct phenomenon from natural recovery. As opposed to spontaneously recovered plants in which elevated peroxide levels and differential expression of peroxide‐related enzymes were observed, in hormone‐dependent recovery changes in global host genome, methylation coincide with the presence/absence of phytoplasma.  相似文献   

14.
It has been reported that insecticide‐detoxifying enzymes such as glutathione S‐transferases (GST) and esterases are affected by microbial infections in hemipteran insect vectors. The total protein content, and GST and α‐ and β‐esterase activities were quantified in ‘Candidatus Phytoplasma ulmi’‐infected and uninfected adults of Amplicephalus curtulus Linnavuori & DeLong (Hemiptera: Cicadellidae) at 25, 35, and 45 days after the acquisition access period (AAP) in the head‐thorax and abdomen sections. The total protein content was lower in phytoplasma‐infected leafhoppers 25, 35, and 45 days after the AAP. Thirty‐five days after the AAP, the GST and β‐esterase activities had increased (26 and 69%, respectively) compared to the control. However, 45 days after the AAP, the phytoplasma‐infected leafhoppers displayed lower GST (87%) and β‐esterase (253%) activities than the uninfected individuals. On the other hand, the α‐esterase activity proved to be unaffected by the phytoplasma infection. Forty‐five days after the AAP, females had a higher phytoplasma titer (46%) in their head‐thorax than in their abdomen sections, whereas males showed a higher titer in their abdomens (75%). In addition, the GST and β‐esterase activities in the abdomen were affected negatively by 96–98% as a result of the increasing ‘Ca. Phytoplasma ulmi’ titer. These results indicate that an infection of ‘Ca. Phytoplasma ulmi’ alters the metabolic activities of A. curtulus.  相似文献   

15.
During several surveys in extensive areas in central Iran, apple trees showing phytoplasma diseases symptoms were observed. PCR tests using phytoplasma universal primer pairs P1A/P7A followed by R16F2n/R16R2 confirmed the association of phytoplasmas with symptomatic apple trees. Nested PCR using 16SrX group‐specific primer pair R16(X)F1/R1 and aster yellows group‐specific primer pairs rp(I)F1A/rp(I)R1A and fTufAy/rTufAy indicated that apple phytoplasmas in these regions did not belong to the apple proliferation group, whereas aster yellows group‐related phytoplasmas caused disease on some trees. Restriction fragment length polymorphism (RFLP) analyses using four restriction enzymes (HhaI, HpaII, HaeIII and RsaI) and sequence analyses of partial 16S rRNA and rp genes demonstrated that apple phytoplasma isolates in the centre of Iran are related to ‘Ca. Phytoplasma asteris’ and ‘Ca. Phytoplasma aurantifolia’. This is the first report of apples infected with ‘Ca. Phytoplasma asteris’ in Iran and the first record from association of ‘Ca. Phytoplasma aurantifolia’ with apples worldwide.  相似文献   

16.
The grapevine disease ‘bois noir’ is widespread in European viticulture, but in many regions there is a lack of correspondence between disease spread and abundance of the main insect vector, the planthopper Hyalesthes obsoletus. This was the situation in Austria until 2012, when a mass occurrence of the vector was observed on Urtica dioica, a new host plant for the vector and reservoir plant for the pathogen, stolbur phytoplasma, in this area. Here we analyse the origin of the Austrian vector populations using genetic markers. The origin was unambiguously assigned to two regional populations, and two causes for the population expansion: immigration of East Central European populations and local demographic expansion. The observed population increase was thus independent of phylogenetic ancestry, but linked to the host plant and the exchange of a specific stolbur phytoplasma strain between the two vector populations. These circumstances are identical to but independent of the emergence of bois noir west of the European Alps, where an exchange between other vector populations associated with U. dioica of another stolbur phytoplasma genotype has led to disease outbreaks. Combined, the independent outbreaks in Austria and Europe west of the Alps are suggestive of an active role for stolbur phytoplasma in the vector–plant interaction and thus the host distribution of the vector.  相似文献   

17.
Samples of three plant species displaying phytoplasma symptoms were collected from Kafrelsheikh and Al-Gharbia governorates during 2014. Witches’ broom and virescence symptoms were observed in periwinkle (Catharanthus roseus). Onion (Allium cepa) plants showed yellowing, streaks and twisting and Opuntia abjecta with proliferation and cylindrical of cladodes. Total DNA was extracted from symptomatic and asymptomatic plants, and phytoplasma were detected in all 12 symptomatic plants collected through direct and nested PCR assays with primers P1/P7 and R16F2n/R16R2. The results of phylogenetic analysis revealed that the phytoplasma isolates belong to 16SrII group. With a nucleotide identity greater than 98.7% with three members of 16SrII group, Papaya yellow crinkle, Y10097; “Ca. P. aurantifolia”, U15442; and peanut witches’ broom, Al33765, the strains identified in this study are “Ca. P. aurantifolia”-related strains. Virtual RFLP analysis of the 16S rRNA gene sequences with 17 restriction enzymes confirmed that the phytoplasma isolates belong to the “Candidatus Phytoplasma australasia” 16SrII-D subgroup. To the best of our knowledge, periwinkle, onion and Opuntia abjecta are considered new hosts for 16SrII group in Egypt.  相似文献   

18.
During field surveys conducted in northern Jordan from June to November 2020, phytoplasma-like symptoms, including leaf yellowing/reddening and rolling, little leaf and witches' broom were observed in pomegranate. Disease incidence in 22 surveyed orchards ranged from 30% to 65%. Nested PCR-based amplification of 16S rRNA gene detected phytoplasmas in 17% of collected symptomatic pomegranate trees. Amplicon nucleotide sequence analyses allowed attributing the detected phytoplasmas to ‘Candidatus Phytoplasma solani’, ‘Ca. P. aurantifolia’, ‘Ca. P. asteris’ and ‘Ca. P. ulmi’. These phytoplasmas were found in plants showing specific symptoms and differentially distributed in the considered locations. Additionally, three cicadellids (Macrosteles sexnotatus, Cicadulina bipunctata and Psammotettix striatus) and two non-crop plants (Plantago major and Capsicum annuum) resulted hosting ‘Ca. P. asteris’ strains, and one cicadellid (Balclutha incisa) was carrying a ‘Ca. P. solani’ strain. A new pomegranate disease complex associated with multiple phytoplasmas, including ‘Ca. P. aurantifolia’ and ‘Ca. P. ulmi’, never reported before in this host plant, is described here. Moreover, preliminary indications are provided on its possible epidemiology in Jordan, involving two putative insect vectors (M. sexnotatus, B. incisa) first reported in the Country.  相似文献   

19.
This study focused on evaluating the genetic diversity among ‘Candidatus Phytoplasma mali’ (‘Ca. P. mali’) populations in orchards of north‐western Italy, where apple proliferation (AP) disease is widespread and induces severe economic losses. ‘Ca. P. mali’ was detected through restriction fragment length polymorphism (RFLP) analysis of PCR‐amplified 16S rDNA in 101 of 114 samples examined. Collective RFLP patterns, obtained by restriction analyses of four amplified genomic segments (16S/23S rDNA, PR‐1, PR‐2 and PR‐3 non‐ribosomal region, ribosomal protein genes rplVrpsC and secY gene), revealed the presence of 12 distinct genetic lineages among 60 selected representative ‘Ca. P. mali’ isolates, underscoring an unexpected high degree of genetic heterogeneity among AP phytoplasma populations in north‐western Italy. Prevalence of distinct genetic lineages in diverse geographic regions opens new interesting avenues for studying the epidemiology of AP disease. Furthermore, lineage‐specific molecular markers identified in this work could be useful for investigating the biological life cycle of ‘Ca. P. mali’.  相似文献   

20.
Typical symptoms of phytoplasma such as whitening of the leaves, shortening of the stolons on Bermuda grass, variegated leaves, yellows, stunting, little leaves and yellows on Giant reed, Cooba and sand olive shrub were observed in Qassim province, Saudi Arabia, during the autumn season of 2015. When tested for phytoplasma by universal primers P1/P7 followed by R16mF2/R16mR2, products of approximately 1400?bp (as expected) were amplified from 16 plants with symptoms but not from symptomless plants. Based on sequencing, phylogenetic analysis and virtual restriction fragment length polymorphism patterns of the 16S rDNA F2nR2 fragments of seven Qassim phytoplasma isolates, bermuda grass isolates 170, 175 and 177, giant reed isolate 180, sand olive isolates 181 and 182 and cooba isolate 185, the associated phytoplasma was identified as a member of ‘Candidatus Phytoplasma cynodontis’ which belong to the 16SrXIV-A subgroup. The 16S rDNA gene sequences of seven Qassim phytoplasma isolates exhibited over 99.2% identity with members of ‘Ca. Phytoplasma cynodontis’ group of phytoplasmas. This is the first report of characterization of ‘Ca. phytoplasma cynodonties’ (16SrXIV) associated with Cynodon dactylon in Saudi Arabia and its new hosts, Dodonaea angustifolia, Arundo donax and Acacia salicia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号