首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Target spot, caused by the fungus Corynespora cassiicola, has become a serious foliar disease in soybean production in the Brazilian Cerrado. Information in the literature regarding the biochemical defence responses of soybean to C. cassiicola infection is rare. Therefore, the objective of this study was to determine the biochemical features associated with soybean resistance to target spot. The activities of chitinases (CHI), β‐1‐3‐glucanases (GLU), phenylalanine ammonia‐lyases (PAL), peroxidases (POX), polyphenol oxidases (PPO) and lipoxygenases (LOX), as well as the concentrations of total soluble phenolics (TSP) and lignin‐thioglycolic acid (LTGA) derivatives, were determined in soybean leaves from both a resistant (FUNDACEP 59) and a susceptible (TMG 132) cultivar. The target spot severity, number of lesions per cm2 of leaflet and area under the disease progress curve were significantly lower for plants from cv. FUNDACEP 59 compared to plants from cv. TMG 132. The GLU, CHI, PAL, POX and PPO activities and the concentration of LTGA derivatives increased significantly, whereas LOX activity decreased significantly on the leaves infected by C. cassiicola. Inoculated plants from cv. FUNDACEP 59 showed a higher PPO activity and concentrations of TSP and LTGA derivatives at 4 and 6 days after inoculation compared to plants from cv. TMG 132. In conclusion, the results of this study demonstrated that the defence‐related enzyme activities increased upon C. cassiicola infection, regardless of the basal level of resistance of the cultivar studied. The increases in PPO activity and concentrations of TSP and LTGA derivatives, but lower LOX activity, at early stages of C. cassiicola infection were highly associated with soybean resistance to target spot.  相似文献   

2.
Asian soybean rust (ASR), caused by Phakopsora pachyrhizi, is one of the most important diseases on soybean. At the moment, ASR is managed mainly with fungicides due to the absence of commercial cultivars with resistance to this disease. This study evaluated the effects of acibenzolar‐Smethyl (ASM), jasmonic acid (JA), potassium silicate (PS) and calcium silicate (CS) on soybean resistance to ASR. The ASM, JA and PS were sprayed to leaves 24 h prior to inoculation with P. pachyrhizi. The CS was amended to the soil. The incubation period (time from the inoculation until symptoms development) was longer for plants growing in soil amended with CS or sprayed with ASM in comparison with plants sprayed with water (control). Plants sprayed with ASM had longer latent period (time from the inoculation until signs appearance) in comparison with the control plants. Plants sprayed with PS showed fewer uredia per cm² of leaf in relation to the control plants. The ASM and PS were the most effective treatments in reducing the ASR symptoms in contrast to the JA and CS treatments. The JA served as an inducer of susceptibility to ASR.  相似文献   

3.
This study investigated, at the microscopic level, whether the differential defence responses of soybean cultivars that are resistant (Fundacep 59) and susceptible (TMG 132) to target spot, caused by Corynespora cassiicola, could be associated with an increase in the production of phenolics, flavonoids and lignin at the infection sites. Many larger necrotic lesions with yellow halos were noticed on the leaves of plants from cultivar TMG 132, in contrast to the leaves of plants from cultivar Fundacep 59. Necrotic lesions also developed on the petioles of leaves of plants from cultivar TMG 132, while on the petioles and veins of leaves of plants from cultivar Fundacep 59, the lesions were of purple colour. The growth of fungal hyphae was reduced on the leaves of plants from cultivar Fundacep 59, and an apparently high density of trichomes was found in comparison with the leaves of plants from cultivar TMG 132. An appressorium‐like structure was produced at one or both extremities of the conidium of C. cassiicola, preferentially at the major and minor veins on the adaxial leaf surface of plants from both cultivars. Most cells on the leaves of plants from cultivar Fundacep 59 reacted against Ccassiicola infection by accumulating phenolic‐like compounds, which contributed to the death of many fungal hyphae and a greater maintenance of cell integrity. In contrast, fungal hyphae grew without any impedance in the leaf cells of plants from cultivar TMG 132, which was associated with signs of intense leaf tissue disorganization. Stronger autofluorescence and deposition of lignin and flavonoids were found in the cells of leaves of plants from cultivar Fundacep 59, in contrast to cultivar TMG 132. It can be concluded that soybean resistance to target spot is probably dependent on the activation of the phenylpropanoid pathway.  相似文献   

4.
Soybean (Glycine max (L.) Merr) is valued for both its protein and oil, whose seed is composed of 40% and 20% of each component, respectively. Given its high percentage of polyunsaturated fatty acids, linoleic acid and linolenic acid, soybean oil oxidative stability is relatively poor. Historically food processors have employed a partial hydrogenation process to soybean oil as a means to improve both the oxidative stability and functionality in end‐use applications. However, the hydrogenation process leads to the formation of trans‐fats, which are associated with negative cardiovascular health. As a means to circumvent the need for the hydrogenation process, genetic approaches are being pursued to improve oil quality in oilseeds. In this regard, we report here on the introduction of the mangosteen (Garcinia mangostana) stearoyl‐ACP thioesterase into soybean and the subsequent stacking with an event that is dual‐silenced in palmitoyl‐ACP thioesterase and ?12 fatty acid desaturase expression in a seed‐specific fashion. Phenotypic analyses on transgenic soybean expressing the mangosteen stearoyl‐ACP thioesterase revealed increases in seed stearic acid levels up to 17%. The subsequent stacked with a soybean event silenced in both palmitoyl‐ACP thioesterase and ?12 fatty acid desaturase activity, resulted in a seed lipid phenotype of approximately 11%–19% stearate and approximately 70% oleate. The oil profile created by the stack was maintained for four generations under greenhouse conditions and a fifth generation under a field environment. However, in generation six and seven under field conditions, the oleate levels decreased to 30%–40%, while the stearic level remained elevated.  相似文献   

5.
We report reference‐quality genome assemblies and annotations for two accessions of soybean (Glycine max) and for one accession of Glycine soja, the closest wild relative of G. max. The G. max assemblies provided are for widely used US cultivars: the northern line Williams 82 (Wm82) and the southern line Lee. The Wm82 assembly improves the prior published assembly, and the Lee and G. soja assemblies are new for these accessions. Comparisons among the three accessions show generally high structural conservation, but nucleotide difference of 1.7 single‐nucleotide polymorphisms (snps) per kb between Wm82 and Lee, and 4.7 snps per kb between these lines and G. soja. snp distributions and comparisons with genotypes of the Lee and Wm82 parents highlight patterns of introgression and haplotype structure. Comparisons against the US germplasm collection show placement of the sequenced accessions relative to global soybean diversity. Analysis of a pan‐gene collection shows generally high conservation, with variation occurring primarily in genomically clustered gene families. We found approximately 40–42 inversions per chromosome between either Lee or Wm82v4 and G. soja, and approximately 32 inversions per chromosome between Wm82 and Lee. We also investigated five domestication loci. For each locus, we found two different alleles with functional differences between G. soja and the two domesticated accessions. The genome assemblies for multiple cultivated accessions and for the closest wild ancestor of soybean provides a valuable set of resources for identifying causal variants that underlie traits for the domestication and improvement of soybean, serving as a basis for future research and crop improvement efforts for this important crop species.  相似文献   

6.
In this study, the protective effect of red light against the brown spot disease caused by the fungus Bipolaris oryzae in rice was investigated. Lesion formation was significantly inhibited on detached leaves that were inoculated with B. oryzae and kept under red for 48 h, but it was not inhibited when the leaves were kept under natural light or in the dark. The protective effect was also observed in intact rice plants inoculated with B. oryzae; the plants survived under red light, but most of them were killed by infection under natural light or dark condition. Red light did not affect fungal infection in onion epidermis cells or heat‐shocked leaves of rice, and it did not affect cellulose digestion ability; this suggested that the protective effect is due to red‐light‐induced resistance. In addition, the degree of protection increased as the red light dosage increased, regardless of the order of the red light and natural light period, indicating that red‐light‐induced resistance is time dependent. Feeding of detached leaves with a tryptophan decarboxylase inhibitor, s‐α‐fluoromethyltryptophan (0.1 mm ), for 24 h inhibited the development of resistance in response to red light irradiation. Suppression of resistance was also observed in leaves treated with a phenylalanine ammonia‐lyase inhibitor, α‐aminooxy acetic acid (0.5 mm ). These results suggest that the tryptophan and phenylpropanoid pathways are involved in the red‐light‐induced resistance of rice to B. oryzae.  相似文献   

7.
Spot blotch (causative pathogen Bipolaris sorokiniana (Sacc.) Shoem) is a common disease of wheat in the Eastern Gangetic Plains region of India. The association of leaf malondialdehyde and lignin contents with the severity of spot blotch disease was studied using a correlation analysis based on a population of recombinant inbred lines bred from the cross cvs. Yangmai 6 (resistant) × Sonalika (susceptible). The material was field‐tested over two consecutive years and inoculated artificially with a highly virulent strain of the pathogen. Disease severity was assessed at three growth stages around and after anthesis. Leaf lignin content tended to be higher in the more resistant RILs, while the opposite was the case for leaf malondialdehyde content. Lesion size showed a positive correlation with disease severity and leaf malondialdehyde content, while disease severity and leaf lignin content were negatively correlated with one another, as were leaf malondialdehyde and leaf lignin content. Leaf malondialdehyde and/or leaf lignin content could be informative as markers for selection for higher levels of resistance against spot blotch in wheat.  相似文献   

8.
Four putative heat-tolerant tomato (Lycopersicum esculentum) cultivars (Tamasabro, Heat Wave, LHT-24, and Solar Set) and one putative heat-sensitive tomato culti-var (Floradade) were grown in the field under non-stress (average daily temperature of 26°C) and heat-stress (average daily temperature of 34°C) conditions. At anthesis, approximately five weeks after being transplanted to the field, leaf samples were collected for antioxidant analyses. Yield was determined by harvesting ripe fruit seven weeks after the collection of leaf samples. Heat stress resulted in a 79.1% decrease in yield for the heat-sensitive Floradade, while the fruit yield in the heat-tolerant cultivars Heat Wave, LHT-24, Solar Set, and Tamasabro was reduced 51.5%, 22.1%, 43.8%, and 34.8% respectively. When grown under heat stress, antioxidant activities were also greater in the heat-tolerant cultivars. Superoxide dismutase (SOD) activity increased up to 9-fold in the heat-tolerant cultivars but decreased 83.1% in the heat-sensitive Floradade. Catalase, peroxidase, and ascorbate peroxidase activity increased significantly in all cultivars. Only Heat Wave showed a significant increase in glutathione reductase in response to heat stress but all heat-tolerant cultivars exhibited significantly lower oxidized ascorbate/reduced ascorbate ratios, greater reduced glutathione/oxidized glutathione ratios, and greater a-tocopherol concentrations compared to the heat-sensitive cultivar Floridade. These data indicate that the more heat-tolerant cultivars had an enhanced capacity for scavenging active oxygen species and a more active ascorbate-glutathione cycle and suggest a strong correlation between the ability to up-regulate the antioxidant defense system and the ability of tomatoes to produce greater yields when grown under heat stress.  相似文献   

9.
The objectives of this study were to identify which method and period of evaluation of angular leaf spot (ALS) of common bean, caused by the fungal pathogen Pseudocercospora griseola, allow better discrimination among common bean lines derived from seven cycles of recurrent selection for resistance to this pathogen. For that reason, 35 lines of the first seven cycles of the programme were assessed for disease severity on leaves and pods using a rating scale. For leaves, the methods used were severity in field plots (SF), severity in sampled leaflets (SS) and percentage of the sampled leaf area with symptoms (%LAS). Leaf assessments were performed at 7, 14, 21, 28, 33 and 41 days after flowering (DAF), and area under the disease progress curve (AUDPC) was calculated. On pods, severity was evaluated at 41 DAF. It was observed that the SF using a rating scale is the most efficient method for selection of resistant lines, and the best time period for evaluating the disease is around 33 DAF.  相似文献   

10.
Although the selection of coding genes during plant domestication has been well studied, the evolution of MIRNA genes (MIRs) and the interaction between microRNAs (miRNAs) and their targets in this process are poorly understood. Here, we present a genome‐wide survey of the selection of MIRs and miRNA targets during soybean domestication and improvement. Our results suggest that, overall, MIRs have higher evolutionary rates than miRNA targets. Nonetheless, they do demonstrate certain similar evolutionary patterns during soybean domestication: MIRs and miRNA targets with high expression and duplication status, and with greater numbers of partners, exhibit lower nucleotide divergence than their counterparts without these characteristics, suggesting that expression level, duplication status, and miRNA–target interaction are essential for evolution of MIRs and miRNA targets. Further investigation revealed that miRNA–target pairs that are subjected to strong purifying selection have greater similarities than those that exhibited genetic diversity. Moreover, mediated by domestication and improvement, the similarities of a large number of miRNA–target pairs in cultivated soybean populations were increased compared to those in wild soybeans, whereas a small number of miRNA–target pairs exhibited decreased similarity, which may be associated with the adoption of particular domestication traits. Taken together, our results shed light on the co‐evolution of MIRs and miRNA targets during soybean domestication.  相似文献   

11.
Seed‐borne pathogenic fungi can cause serious damage to soybean crops by reducing the germination, vigour and emergence of the seeds. Special attention should be paid to pathogen detection in seeds to prevent its introduction in disease‐free areas. Considering the importance of rapid and successful diagnosis of seed‐borne pathogenic fungi in soybeans, this study evaluated a method to detect Sclerotinia sclerotiorum and Phomopsis spp. in seeds using quantitative polymerase chain reaction (qPCR). Naturally infested samples were subjected to detection using qPCR and blotter test, and the findings were compared. Using soybean seeds soaked in water, both pathogens were detected at an infestation level up a 0.0625% (one infected seed out of 1,599 healthy seeds) by qPCR. This technique allowed the detection of 300 fg of S. sclerotiorum and 30 fg of Phomopsis spp. DNA in the seed samples. Phomopsis spp. was detected in 40.7% of the evaluated seed batches (81 batches) and S. sclerotiorum was detected in 32.1% of the evaluated batches, although most of the seeds had low infestation levels. It was up to 28.5 times more efficient to use qPCR rather than blotter test to detect pathogens with a low incidence of occurrence in soybean seeds. If routinely used to test healthy seeds, qPCR would contribute to reducing soybean losses due to diseases as well as decreasing the costs required to control those diseases.  相似文献   

12.
Protein tyrosine (Tyr) nitration is a post‐translational modification yielding 3‐nitrotyrosine (NO2–Tyr). Formation of NO2–Tyr is generally considered as a marker of nitro‐oxidative stress and is involved in some human pathophysiological disorders, but has been poorly studied in plants. Leghemoglobin (Lb) is an abundant hemeprotein of legume nodules that plays an essential role as an O2 transporter. Liquid chromatography coupled to tandem mass spectrometry was used for a targeted search and quantification of NO2–Tyr in Lb. For all Lbs examined, Tyr30, located in the distal heme pocket, is the major target of nitration. Lower amounts were found for NO2–Tyr25 and NO2–Tyr133. Nitrated Lb and other as yet unidentified nitrated proteins were also detected in nodules of plants not receiving and were found to decrease during senescence. This demonstrates formation of nitric oxide (˙NO) and by alternative means to nitrate reductase, probably via a ˙NO synthase‐like enzyme, and strongly suggests that nitrated proteins perform biological functions and are not merely metabolic byproducts. In vitro assays with purified Lb revealed that Tyr nitration requires  + H2O2 and that peroxynitrite is not an efficient inducer of nitration, probably because Lb isomerizes it to . Nitrated Lb is formed via oxoferryl Lb, which generates nitrogen dioxide and tyrosyl radicals. This mechanism is distinctly different from that involved in heme nitration. Formation of NO2–Tyr in Lb is a consequence of active metabolism in functional nodules, where Lb may act as a sink of toxic peroxynitrite and may play a protective role in the symbiosis.  相似文献   

13.
14.
15.
  • High temperature induces several proteins in plants that enhance tolerance to high temperature shock. The fate of proteins synthesised in microbial cells or secreted into culture media by interacting microbes has not been fully elucidated. The present investigation aimed to characterise plant growth‐promoting rhizobacteria (PGPR) isolated from the rhizosphere of wheat genotypes (differing in tolerance to high temperature stress) and evaluate their performance as bioinoculant for use in wheat.
  • Four bacterial strains, viz. Pseudomonas brassicacearum, Bacillus thuringiensis, Bacillus cereus strain W6 and Bacillus subtilis, were isolated from the rhizosphere of heat‐stressed and unstressed wheat genotypes. The wheat genotypes were exposed to high temperature stress at 45 °C for 10 days (3 h daily) at pre‐anthesis phase. Isolates were identified on the basis of morphology and biochemical characteristics, 16S rRNA gene sequencing and whole cell protein profiles. Results were further complemented by size exclusion chromatography (SEC) with fast protein liquid chromatography (FPLC) and SDS PAGE of 80% ammonium sulphate precipitates of the cell‐free supernatants.
  • Isolates were positive for catalase, oxidases and antimicrobial activity . P. brassicacearum from the rhizosphere of the heat‐tolerant genotype was more efficient in phosphate solubilisation, bacteriocin production, antifungal and antibacterial activity against Helminthosporium sativum, Fusarium moniliforme and Klebsiella pneumonia, respectively. The inoculated seedlings had significantly higher root and shoot fresh weight, enhanced activity of antioxidant enzymes, proline and protein content. Total profiling of the culture with SDS‐PAGE indicated expression of new protein bands in 95 kDa in P. brassicacearum.
  • Temperature‐induced changes in PGPR isolates are similar to those in the host plant. P. brassicacearum may be a good candidate for use in biofertiliser production for plants exposed to high temperature stress.
  相似文献   

16.
Plant galls are widely distributed, and their extracts are used in traditional medicine worldwide. Traditional remedies containing extracts of plant galls in China, India and some African countries have effective in the treatment of various pathologies. To open a new promising procedure for screening bioactive compounds from plant galls, standardized plant materials were generated in vitro and used for phytochemical and biological investigations. Methanol aqueous chloroform and hexane extracts of Nicotiana tabacum leafy galls induced by Rhodococcus fascians were used to evaluate phenolic and flavonoid contents, and to investigate antioxidant activity by 2,2‐diphenyl‐1‐picrylhydrazyl radical scavenging and ferric reducing antioxidant/power assays and anti‐inflammatory activity by the lipoxygenase inhibition assay. Infection by R. fascians modifies significantly the phytochemical profile of N. tabacum as well as its biological properties. The total polyphenolic content was increased (120–307%), and that of flavonoids was reduced (20–42.5%). Consequently, antioxidant and anti‐inflammatory activities of non‐infected tobacco extracts are significantly modified compared to plants treated with leafy gall extracts. This shows that infection by R. fascians favoured the production of anti‐inflammatory and antioxidant compounds in N. tabacum. The study indicates the benefit of plant galls used in traditional medicines against various pathologies.  相似文献   

17.
The sustainability of global crop production is critically dependent on improving tolerance of crop plants to various types of environmental stress. Thus, identification of genes that confer stress tolerance in crops has become a top priority especially in view of expected changes in global climatic patterns. Drought stress is one of the abiotic stresses that can result in dramatic loss of crop productivity. In this work, we show that transgenic expression of a highly conserved cell death suppressor, Bax Inhibitor‐1 from Arabidopsis thaliana (AtBI‐1), can confer increased tolerance of sugarcane plants to long‐term (>20 days) water stress conditions. This robust trait is correlated with an increased tolerance of the transgenic sugarcane plants, especially in the roots, to induction of endoplasmic reticulum (ER) stress by the protein glycosylation inhibitor tunicamycin. Our findings suggest that suppression of ER stress in C4 grasses, which include important crops such as sorghum and maize, can be an effective means of conferring improved tolerance to long‐term water deficit. This result could potentially lead to improved resilience and yield of major crops in the world.  相似文献   

18.
19.
Reproduction is costly and life‐history theory predicts that current parental investment will result in lower survival or decreased future reproduction. The physiological mechanisms mediating the link between reproduction and survival are still under debate and elevated oxidative damage during reproduction has been proposed as a plausible candidate. Previous studies of oxidative stress during reproduction in animals under natural conditions have been restricted to analyses of blood. Herein, we measured the level of oxidative damage to lipids (tiobarbituric‐acid‐reactive substances) and proteins (carbonyls) in the liver, kidneys, heart and skeletal muscles in free‐living bank vole females from spring and autumn generations, before and after reproduction. Antioxidant defense in the liver and kidneys was also determined. We expected oxidative damage to tissues and hypothesized that the damage would be more uniform between tissues in wild animals compared to those breeding under laboratory conditions. Considering all combinations of markers/tissues/generations, oxidative damage in females did not differ before and after reproduction in 12 comparisons, was lower after reproduction in three comparisons, and was higher after breeding in one comparison. The total glutathione was significantly increased after reproduction only in the liver of the autumn generation and there was no change in catalase activity. Our results confirm—for the first time in the field—previous observations from laboratory studies that there is no simple link between oxidative stress and reproduction and that patterns depend on the tissue and marker being studied. Overall, however, our study does not support the hypothesis that the cost of reproduction in bank voles is mediated by oxidative stress in these tissues.  相似文献   

20.
In mammals, recombination activating gene 1 (RAG1) plays a crucial role in adaptive immunity, generating a vast range of immunoglobulins. Rag1?/? zebrafish (Danio rerio) are viable and reach adulthood without obvious signs of infectious disease in standard nonsterile conditions, suggesting that innate immunity could be enhanced to compensate for the lack of adaptive immunity. By using microarray analysis, we confirmed that the expression of immunity‐ and apoptosis‐related genes was increased in the rag1?/? fish. This tool also allows us to notice alterations of the DNA repair and cell cycle mechanisms in rag1?/? zebrafish. Several senescence and aging markers were analyzed. In addition to the lower lifespan of rag1?/? zebrafish compared to their wild‐type (wt) siblings, rag1?/? showed a higher incidence of cell cycle arrest and apoptosis, a greater amount of phosphorylated histone H2AX, oxidative stress and decline of the antioxidant mechanisms, an upregulated expression and activity of senescence‐related genes and senescence‐associated β‐galactosidase, respectively, diminished telomere length, and abnormal self‐renewal and repair capacities in the retina and liver. Metabolomic analysis also demonstrated clear differences between wt and rag1?/? fish, as was the deficiency of the antioxidant metabolite l ‐acetylcarnitine (ALCAR) in rag1?/? fish. Therefore, Rag1 activity does not seem to be limited to V(D)J recombination but is also involved in senescence and aging. Furthermore, we confirmed the senolytic effect of ABT‐263, a known senolytic compound and, for the first time, the potential in vivo senolytic activity of the antioxidant agent ALCAR, suggesting that this metabolite is essential to avoid premature aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号