首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
小偃6号抗条锈基因遗传分析及分子标记   总被引:6,自引:0,他引:6  
用小麦条锈菌CY 29-m u t3、CY 28、CY 27和CY 25分别接种小偃6号、铭贤169及其F2代各株系,在常温下(15~17℃)和高温下(20~22℃)进行了小偃6号抗条锈基因的遗传分析.结果发现,在常温下,小偃6号对4个条锈菌生理小种的抗病性均由1对显性核基因控制;在高温下,其抗病性由2对或3对基因控制,但其正反交的作用方式不同,抗锈性也可能与细胞质遗传有关;筛选到与抗条锈基因连锁的RAPD标记,分别命名为OPT 17650、OPC 111000.同时,具有长穗偃麦草血缘的小麦品种小偃22对OPC 11进行了验证,明确了其在分子辅助育种中的价值.  相似文献   

2.
3个小麦条锈菌鉴别寄主的抗性遗传分析   总被引:2,自引:1,他引:1  
根据对鉴别寄主的毒性谱,选用小麦条锈病菌生理小种2E16单孢菌系为接种病菌,鉴定了小麦务锈病菌鉴别寄主Chinese166、HeinesⅦ和Vilmorin23的抗性基因构成及其遗传特征。通过对3个鉴别寄主与感病品种铭贤169杂交,分别在苗期鉴定了亲代、F1、F2、BC1及正反交后代对小种2E16的抗性反应。结果表明:供试品种Chinese166对生理小种2E16的抗性由二对显性基因,即显性基因Yr1和另一对显性基因独立或重叠控制;HeinesⅦ对生理小种2E16的抗性由一对显性基因Yr2和一对隐性基因控制;Vilmorin23对生理小种2E16的抗性则由显性基因Yr3和一对隐性基因控制。  相似文献   

3.
The Roegneria kamoji accession ZY 1007 was resistant to the mixed predominant races of Puccinia striiformis f.sp. tritici (Pst) in China based on field tests at adult‐plant stage. The seedling resistance evaluation of ZY 1007 showed that it was resistant to stripe rust physiological strains CYR29, CYR33 and PST‐V26, which were the predominant races of Pst in China. The female parent R. kamoji cv. Gansi No.1 (susceptible to Pst) was crossed with ZY 1007 (resistant to Pst). Parents, F1 and F2 populations were tested in a field inoculated with the mixed urediniospores. ZY 1007 and all the observed 11 F1 hybrid plants were resistant, while plants of Gansi No.1 were susceptible. Among the 221 F2 plants, 168 plants were resistant and 53 were susceptible, and the segregation of resistant and susceptible plants fits 3R:1S ratio (χ2 = 0.074, P > 0.75). It confirmed that the resistance of stripe rust in ZY 1007 was controlled by a single dominant gene and temporarily designated as YrK1007.  相似文献   

4.
刘方慧  牛永春  邓晖  檀根甲 《遗传学报》2007,34(12):1123-1130
小麦农家品种赤壳(苏1900)对当前我国小麦条锈菌(Puccinia striiformis Westend.f.sp.tritici)多个流行小种均有较好抗性。遗传分析表明,该品种对条中32号小种的抗性是由一对显性基因控制。本文采用分离群体分析法(bulked segregant analysis,BSA)和微卫星多态性分析方法,对该基因进行了分子标记和定位研究。用Taichung29×赤壳的F2代分离群体建立抗、感DNA池,共筛选了400多对SSR引物,发现5个标记Xwmc44、Xgwm259、Xwmc367、Xcfa2292、Xbarc80在抗、感DNA池间与在抗、感亲本间同样具有多态性,它们均位于1BL染色体臂上。经用具有140株抗病株、60株感病株共200株植株的F2代分离群体进行的遗传连锁性检测,上述5个标记均与目的基因相连锁,遗传距离分别为8.3cM、9.1cM、17.2cM、20.6cM和31.6cM。用全套21个中国春缺-四体材料进行的检测进一步证实了这5个SSR标记均位于小麦1B染色体上。综合上述结果,将赤壳中的主效抗条锈病基因YrChk定位在1BL染色体臂上。与以前已定位于1B染色体上的抗条锈病基因的比较研究表明,YrChk基因可能是一个新的抗条锈病基因。小麦农家品种中抗病基因资源的发掘和利用将有助于提高我国小麦生产品种中的抗病基因丰富度,有助于改善长期以来小麦生产品种中抗病基因单一化的局面。  相似文献   

5.
Stripe rust, caused by Puccinia striiformis f.sp. tritici (Pst), is one of the most widespread and destructive diseases of wheat worldwide. Resistance breeding is constantly pursued for decades to tackle the variations of prevalent Pst races. Zhongliang 12 has strong resistance to abiotic stresses, wide adaptability, higher resistance to stripe rust and excellent biological characteristics. To identify the resistance gene(s) against stripe rust, Zhongliang 12 was crossed with stripe rust susceptible genotype Mingxian 169, and F1, F2, F2 : 3 and BC1 progenies were tested with Chinese Pst race CYR30 and CYR31 in seedling stage in greenhouse. Zhongliang 12 possessed different dominant genes for resistance to each race. Linkage maps were constructed with four simple sequence repeats (SSRs) markers, Xwmc695, Xcfd20, Xbarc121 and Xbarc49, for the gene on wheat chromosome 7AL conferring resistance to CYR30 (temporarily designated as Yrzhong12‐1) with genetic distance ranging from 3.1 to 10.8 cM and four SSR markers, Xpsp3003, Xcfd2129, Xwmc673 and Xwmc51, for the gene on wheat chromosome 1AL conferring resistance to CYR31 (temporarily designated as Yrzhong12‐2) with genetic distance ranging from 3.9 cM to 9.3 cM. The molecular markers closely linked to each gene should be useful in marker‐assisted selection in breeding programmes for against stripe rust.  相似文献   

6.
Stripe rust (yellow rust), caused by Puccinia striiformis f.sp. tritici (Pst), is a serious disease of wheat worldwide, including China. Growing resistant cultivars is the most cost‐effective and environmentally friendly approach to control the disease. To assess the stripe rust resistance in commercial wheat cultivars and advanced lines in the Yellow and Huai River Valley Wheat Region, 115 wheat cultivars (lines) collected from 13 provinces in this region were evaluated with the most prevalent Chinese Pst races CYR32, CYR33 and the new race V26 at seedling stage. In addition, these wheat entries were inoculated with the mixed races of CYR32 and CYR33 at the adult‐plant stage in the field. The results indicated that 53 (46.1%) cultivars (lines) had all‐stage resistance to all the three races, and 16 (13.9%) cultivars (lines) showed adult‐plant resistance. The possible stripe rust resistance genes in these entries were postulated by the closely linked markers of all‐stage resistance genes Yr5, Yr9, Yr10, Yr15 and Yr26 and adult‐plant resistance gene Yr18. Molecular analysis indicated that resistance genes Yr5, Yr9, Yr10, Yr18 and Yr26 were found in 5 (4.3%), 38 (33.0%), 1 (0.9%), 2 (1.7%) and 8 (7.0%) entries, respectively. No entry was found to carry the Yr15 gene. In future breeding programs, Yr5, Yr15 and Yr18 should be used to pyramid with other effective genes to develop wheat cultivars with high‐level and durable resistance to stripe rust, whereas Yr9, Yr10 and Yr26 should not be used or used in a limited way due to the virulent races present in China.  相似文献   

7.
Stripe rust caused by Puccinia striiformis f.sp. tritici is the most serious disease of wheat globally including south‐eastern Anatolia of Turkey, where wheat originated. In this study, 12 spring wheat genotypes were artificially inoculated and preserved in two locations, Diyarbak?r and Ad?yaman, during the 2011–2012 season to investigate loss in yield and yield components. Genotypes were evaluated at the adult plant stage using two partial resistance parameters: final disease severity and area under the disease progress curve (AUDPC). AUDPC ranged from 14.8 to 860 in Diyarbak?r, and 74 to 760 in Ad?yaman. Yield loss ranged from 0.6 to 68.5% in Diyarbak?r and 9.8 to 56.8% in Ad?yaman. Genotypes G1, G5, G7 and G8 were found to lose less yield, while higher yield loss was observed in G3, G4 (Nurkent), G5 and G9 (Karacada?‐98). The highest loss in thousand kernel weight was observed in a susceptible cultivar Karacada?‐98 in Diyarbak?r followed by 43.4 and 24.4% in Ad?yaman. Test weight loss reached 8.89% in Diyarbak?r and 20.8% in Ad?yaman. Yield loss and AUDPC had a positive significant relationship. Based on the values of AUDPC, final disease severity and yield loss, three major clusters were formed for 12 wheat genotypes. Partially resistant genotypes were found to lose less grain yield and seemed to be stronger against severe stripe rust pressure.  相似文献   

8.
以硬粒小麦-粗山羊草人工合成小麦CI184、感病品种‘铭贤169’及其杂交组合的正反交F1以及CI184/‘铭贤169’F2、F2:3家系为材料,鉴定其条锈病抗性,对CI184条锈病抗性进行遗传分析;采用SSR分子标记技术和集群分离分析法进行多态性筛选,以F3抗病鉴定数据为依据,对CI184中条锈病抗性基因进行分子标记定位。结果显示:(1)CI184在苗期抗性鉴定中,对30种小麦条锈菌生理小种表现抗性,但对中国四川新出现的条锈菌生理小种V26表现苗期感病;在田间成株抗性接种鉴定中,CI184对中国流行的小麦条锈菌生理小种条中32、条中33、水源4、水源5、水源7和V26等表现出成株抗性。(2)CI184中条锈病抗性由隐性基因位点控制。(3)仅检测到一个控制条锈病抗性的QTL位点,位于1B染色体上Xgwm18和Xwmc626之间,暂时命名为Qyr.zz_1B,在四川和北京2个环境中可分别解释CI184中13.36%和18.07%的成株抗性贡献率。(4)Qyr.zz_1B位点的3个SSR标记和Yr15的1个SSR标记可以区分该位点与1B染色体上的其他抗条锈病基因,如Yr15、Yr24和Yr26/YrCH42。表明Qyr.zz_1B位点在小麦条锈病的抗病育种中具有潜在的应用价值。  相似文献   

9.
H9020—17—5是一个通过杂交和回交选育的普通小麦—华山新麦草易位系,接种鉴定表明其对条锈病具有优良抗性。遗传学分析证明易位系H9020—17—5的抗条锈性是由单基因控制的显性性状,抗性基因来自于华山新麦草,暂定名为YrHua。为了标记这个来自华山新麦草的抗条锈病基因,利用H9020—17—5与感病小麦品种铭贤169杂交,建立了F2分离群体。应用81对AFLP引物对119个经条锈菌生理小种CY30接种鉴定的F2单株进行了分析,结果得到两个与YrHua基因连锁的AFLP标记PM14(301)和PM42(249),遗传距离分别为5.4cM和2.7cM,并分别位于目标基因的两侧。将标记片段克隆、测序后,根据序列信息和酶切位点多态性设计特异性引物,将AFLP标记PM14(301)转换成了简单的PCR标记。研究结果为标记辅助育种提供了分子选择工具,同时也为进一步精细定位和图位克隆YrHua基因奠定了基础。  相似文献   

10.
Evidence exists that certain genes for resistance to leaf rust in wheat, e.g. Lr13 and Lr34 , may interact with other genes to condition higher levels of resistance than that conferred by each gene individually. In this study, the hypothesis that Lr12 and Lr13 , both genes for adult plant resistance to Puccinia recondita Roberge ex. Desmaz f. sp. tritici Eriks. and Henn., interact to confer an improved level of resistance, was investigated using fluorescence and phase-contrast microscopy. Flag leaf segments of monogenic and digenic Thatcher lines, sampled 64 and 240 h post-inoculation, were stained with Uvitex 2B and screened, using fluorescence microscopy, for development of infection structures or host response. To study cell wall appositions, specimens were stained with trypan blue and a solution of picric acid in methyl salicylate. Aborted penetration, consisting of nonpenetrating appressoria and aborted substomatal vesicles, showed that inhibition of fungal growth in wheat lines containing Lr12 and/or Lr13 was activated, to a certain degree, before haustoria were formed. At 240 h after inoculation colony size indicated that fungal colonies in the Lr gene combination lines were generally smaller than in the parents, but not necessarily smaller than those in a line with Lr13 only. Host cell necrosis was more frequently associated with infection sites, specifically of pathotype UVPrt2, in the combination lines than in the parents. The morphology of cell wall appositions varied considerably from a narrow, luminous zone slightly wider in the centre, to a thick central part opposite the haustorium mother cell, sharply decreasing towards both ends. Histological assessments could, however, not conclusively prove pronounced resistance enhancement or unconventional resistance mechanisms due to combining the genes Lr12 and Lr13 .  相似文献   

11.
Stripe rust of winter bread wheat (Triticum aestivum L.) causes substantial grain yield loss in Central Asia. This study involved two replicated field experiments undertaken in 2009–2010 and 2010–2011 winter wheat crop seasons. The first experiment was conducted to determine grain yield reductions on susceptible winter wheat cultivars using single and two sprays of fungicide at Zadoks growth stages Z61–Z69 in two farmers’ fields in Tajikistan and one farmer's field in Uzbekistan. In the second experiment, four different fungicides at two concentrations were evaluated at Zadoks growth stage Z69. These included three products from BASF – Opus (0.5 l/ha and 1.0 l/ha), Platoon (0.5 l/ha and 1.0 l/ha) and Opera (0.75 l/ha and 1.5 l/ha) – and locally used fungicide Titul 390 (0.5 l/ha and 1.0 l/ha). One and two sprays of fungicides did not differ significantly (P > 0.05) in increasing grain yield. Stripe rust reduced grain yield and 1000‐kernel weight (TKW) from 24 to 39% and from 16 to 24%, respectively. The benefits from the two concentrations of the same fungicide did not consistently resulted in significantly higher grain yield, suggesting that the lower concentrations could be more cost effective. Our study provides important information about the selection of fungicides, spray concentrations and number of spray to control stripe rust and increase grain yield. The findings could play an important role in developing stripe rust management approaches such as fungicide rotation and strategic fungicide applications in Central Asian countries.  相似文献   

12.
为了获得温室条件下条形柄锈菌发生体细胞重组而导致毒性变异的直接证据,本研究选取7个美国条形柄锈菌小麦专化型菌系和2个美国条形柄锈菌大麦专化型菌系按照夏孢子颜色和专化型与毒性差异组成9对菌系组合,对于室内混合接种产生的子代菌系用具有不同抗性的小麦或大麦品种进行筛选,采用毒性分析及SSR分子标记技术对条形柄锈菌体细胞重组现象进行了研究。对获取的413个单孢子代菌系进行的毒性分析结果显示,有84个单孢子代菌系的毒性谱表现与亲本菌系不同,初步证明体细胞重组过程的存在。SSR标记分析结果显示,11对SSR引物中有6对引物在5对菌系组合的28个毒性谱不同的单孢子代菌系中,检测发现3个单孢菌系的扩增条带与其亲本菌系不同,且表现为亲本菌系扩增条带的重组,为体细胞重组菌系。这一结果从分子水平上证明了条形柄锈菌在室内接种条件下可以通过体细胞重组产生新小种而导致毒性变异。  相似文献   

13.
The majority of germ tubes of the pathotype CYR32 of Puccinia striiformis f.sp. tritici formed on the surface of spike organs of the susceptible wheat cv. Suwon 11 penetrated through the stomatal pore, only a few germ tubes formed small appressoria over the stomata. In the lemma, palea and glume, the stripe rust fungus spread between the parenchyma cells close to the inner epidermal layer, but the fungus did not develop between the thick‐walled cells near the outer epidermal layer of these organs. In the awn and stem, spread of the stripe rust was confined to the intercellular spaces of the chlorophyll parenchyma, beneath the invaded stomatal pore of the epidermis and the urediniospores to be released disrupted the epidermis. In the caryopsis, the spread of hyphae was restricted to the intercellular spaces of the pericarp cells.  相似文献   

14.
Fine Mapping of RppP25, a Southern Rust Resistance Gene in Maize   总被引:1,自引:0,他引:1  
Southern rust (Puccinia polysora Underw.) is a major disease that can cause severe yield losses in maize (Zea mays L.). In our previous study, a major gene RppP25 that confers resistance to southern rust was identified in inbred line P25. Here, we report the fine mapping and candidate gene analysis of RppP25 from the near-isogenic line F939, which harbors RppP25 in the genetic background of the susceptible inbred line F349. The inheritance of resistance to southern rust was investigated in the BC1F1 and BC3F1 populations, which were derived from a cross between F939 and F349 (as the recurrent parent). The 1:1 segregation ratio of resistance to susceptible plants in these two populations indicated that the resistance is controlled by a single dominant gene. Ten markers, including three simple sequence repeat (SSR) markers and seven insertion/deletion (InDel) markers, were developed in the RppP25 region. RppP25 was delimited to an interval between P091 and M271, with an estimated length of 40 kb based on the physical map of B73. In this region, a candidate gene was identified that was predicted to encode a putative nucleotide-binding site leucine-rich repeat (NBS-LRR) protein. Two co-segregated markers will aid in pyramiding diverse southern rust resistance alleles into elite materials, and thereby improve southern rust resistance worldwide.  相似文献   

15.
普通小麦Qz180中一个抗条锈病基因的分子作图   总被引:3,自引:0,他引:3  
普通小麦(Triticum aestivum L.)材料Qz180具有良好的抗条锈病特性,经基因推导发现其含有一个优良的抗条锈病的基因,暂定名为YrQz.用Qz180与感病材料铭贤169和WL1分别杂交构建了两个F2群体,用条中30号条锈菌小种对这两个群体进行的抗性测验表明,YrQz为显性单基因遗传.通过SSR和AFLP结合BSA的方法对这个基因进行了分子作图,结果鉴定出与YrQz连锁的2个SSR标记和2个AFLP标记.根据SSR标记的染色体位置,该基因被定位在2B染色体的长臂上,位于两个SSR位点Xgwm388和Xgwm526之间;两个AFLP标记P35M48(452)和P36M61(163)分别位于该基因的两侧,遗传距离分别为3.4 cM和4.1cM.  相似文献   

16.
普通小麦Qz180中一个抗条锈病基因的分子作图(英文)   总被引:2,自引:0,他引:2  
普通小麦(Triticum aestivum L.)材料Qz180具有良好的抗条锈病特性,经基因推导发现其含有一个优良的抗条锈病的基因,暂定名为YrQz。用Qz180与感病材料铭贤169和WL1分别杂交构建了两个F_2群体,用条中30号条锈菌小种对这两个群体进行的抗性测验表明,YrQz为显性单基因遗传。通过SSR和AFLP结合BSA的方法对这个基因进行了分子作图,结果鉴定出与YrQz连锁的2个SSR标记和2个AFLP标记。根据SSR标记的染色体位置,该基因被定位在2B染色体的长臂上,位于两个SSR位点Xgwm388和Xgwm526之间;两个AFLP标记P35M48(452)和P36M61(163)分别位于该基因的两侧,遗传距离分别为3.4cM和4.1cM。  相似文献   

17.
To investigate the effects of competition on the timing of pathogen reproduction, urediniospores of two strains of Puccinia graminis f.sp. tritici (SR22 and SR41) were inoculated onto leaves of wheat seedlings singly and in 1 : 1 mixture at three inoculum densities. On randomly sampled leaves, uredinia were counted 9 days after inoculation and urediniospores were collected and quantified every other day from the seventh to the 29th day after inoculation. Increases in inoculum density resulted in progressively smaller increases in uredinial numbers. However, total urediniospore production per leaf was not significantly affected by inoculum, and hence uredinial, density over a range of approximately 10-300 uredinia on the leaf. Total urediniospore production per uredinium generally decreased with increasing inoculum or uredinial density. At high densities, sporulation per uredinium peaked earlier in the sporulation period, had a less distinct peak, and dropped off earlier than for the lower densities. Logistic model fits to cumulative sporulation curves over time revealed that strain SR41 had a greater epidemic rate parameter (r) than SR22 at low and intermediate inoculum or uredinial densities, while SR22 had a higher r-value than SR41 at high density. Both strains also exhibited greater r-values in the presence of the other strain than when alone. Results suggest that strains may have different ecological strategies in their timing of reproduction, and that both intra- and interstrain competition can have complex effects on the temporal dynamics of sporulation in pathogen strains.  相似文献   

18.
Wheat stripe rust is a devastating disease in many regions of the world. In wheat, 49 resistance genes for stripe rust have been officially documented, but only three genes are cloned, including the race-specific resistance Yr10 candidate gene (Yr10CG) and slow-rusting genes Lr34/Yr18 (hereafter designated as Yr18) and Yr36. In this study, we developed gene-specific markers for these genes and used them to screen a collection of 659 wheat accessions, including 485 Chinese cultivars. Thirteen percent and eleven percent of the tested Chinese cultivars were positive for the markers for Yr10CG and Yr18RH (the resistant haplotype of Yr18), respectively, but none were positive for the Yr36 marker. Since there is a limited use of the Yr10 gene in Chinese wheat, the relatively high frequency of wheat varieties with the Yr10CG marker suggests that the identity of the Yr10 gene is unknown. With regards to the Yr18 gene, 29% of the tested cultivars that are used in the Middle and Lower Yangtze Valleys' winter wheat zone were positive for Yr18RH markers. A non-functional allele of Yr18RH was identified in ‘Mingxian 169’, a commonly used susceptible check for studying stripe rust. The data presented here will provide useful information for marker-assisted selection for wheat stripe rust resistance.  相似文献   

19.
小麦品种潍麦8号是一个良好的抗叶锈病资源,为了解其抗叶锈基因在染色体上的位置,对潍麦8号×郑州5389杂交组合的179个F2∶3家系进行了抗叶锈病QTL分析。在染色体2AS上检测到一个主效的QTL,暂命名为QLr.hbau-2AS。QLr.hbau-2AS由抗病亲本潍麦8号提供,位于SSR标记Xcfd36和Xbarc1138之间,区间长度为2.58 c M,2010-2011年度、2011-2012年度和2012-2013年度,QLr.hbau-2AS分别解释了25.79%、71.55%和60.72%表型变异。本研究筛选出与QLr.hbau-2AS连锁的13个分子标记。  相似文献   

20.
Aims: Wheat stripe (yellow) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is the most important foliar disease on wheat in China. Early molecular diagnosis and detection of stripe rust will provide a useful aid to the accurate forecast and seasonal control of this destructive disease. Our objective was to develop PCR assays for the rapid identification and detection of P. striiformis. Methods and Results: The genomic DNA of P. striiformis and P. triticina were amplified by a pair of primers derived from conserved β‐tubulin gene sequence. A 235‐bp specific DNA fragment of P. striiformis was isolated and purified. Based on its sequence, another two primer sets were designed successfully to obtain new sequence‐characterized amplified region (SCAR) markers of P. striiformis, which could be amplified in all test isolates of P. striiformis, whereas no DNA fragment was obtained in other nontarget wheat pathogens. The detection limit of the primer set YR (f)/YR (r1) was 2·20 pg μl?1. The new SCAR markers of P. striiformis can also be detected in Pst‐infected wheat leaves postinoculated for 2 days. Conclusions: Our assays are significantly faster than the conventional methods used in the identification of P. striiformis. Significance and Impact of the Study: Development of a simple, high‐throughput assay kit for the rapid diagnosis and detection of wheat stripe rust would be anticipated in a further study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号