首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phytoplasma‐like symptoms were detected in date palm trees (Phoenix dactylifera L.) in Al‐Giza Governorate in Egypt. Symptoms varied from leaf chlorotic streaks, stunting and marked reduction in fruit and stalk sizes. Direct and nested PCR of symptomatic samples using P1/P7 and R16F2n/R16R2n primers, respectively, of the 16S rRNA gene, resulted in a DNA amplification product of c. 1.3 kbp. Symptomless samples collected from the same location and the healthy control produced no product upon amplification. Products were cloned into TOPO TA vector for sequencing. Data generated were deposited in the GenBank (Accession KF826615 ). A BLAST search showed that the sequence of the 16SrRNA gene shared ‘Candidatus Phytoplasma asteris’ (16SrI group) with other isolates. Phylogenetic analysis revealed that the isolate clustered with the date palm phytoplasma causing Al‐Wijam disease in Saudi Arabia.  相似文献   

2.
Pear trees showing pear decline disease symptoms were observed in pear orchards in the centre and north of Iran. Detection of phytoplasmas using universal primer pair P1A/P7A followed by primer pair R16F2n/R16R2 in nested PCR confirmed association of phytoplasmas with diseased pear trees. However, PCR using group‐specific primer pairs R16(X)F1/R16(X)R1 and rp(I)F1A/rp(I)R1A showed that Iranian pear phytoplasmas are related to apple proliferation and aster yellows groups. Moreover, PCR results using primer pair ESFYf/ESFYr specific to 16SrX‐B subgroup indicated that ‘Ca. Phytoplasma prunorum’ is associated with pear decline disease in the north of Iran. RFLP analyses using HaeIII, HhaI, HinfI, HpaII and RsaI restriction enzymes confirmed the PCR results. Partial 16S rRNA, imp, rp and secY genes sequence analyses approved that ‘Ca. Phytoplasma pyri’ and ‘Ca. Phytoplasma asteris’ cause pear decline disease in the centre of Iran, whereas ‘Ca. Phytoplasma prunorum’ causes disease in the north of Iran. This is the first report of the association of ‘Ca. Phytoplasma asteris’ and ‘Ca. Phytoplasma prunorum’ with pear decline disease worldwide.  相似文献   

3.
Potato plants showing symptoms suggestive of potato witches’‐broom disease including witches’‐broom, little leaf, stunting, yellowing and swollen shoots formation in tubers were observed in the central Iran. For phytoplasma detection, Polymerase Chain Reaction (PCR) and nested PCR assays were performed using phytoplasma universal primer pair P1/P7, followed by primer pair R16F2n/R16R2. Random fragment length polymorphism analysis of potato phytoplasma isolates collected from different production areas using the CfoI restriction enzyme indicated that potato witches’‐broom phytoplasma isolate (PoWB) is genetically different from phytoplasmas associated with potato purple top disease in Iran. Sequence analysis of the partial 16S rRNA gene amplified by nested PCR indicated that ‘Candidatus Phytoplasma trifolii’ is associated with potato witches’‐broom disease in Iran. This is the first report of potato witches’‐broom disease in Iran.  相似文献   

4.
Grindelia robusta, a perennial herb, contains an essential oil that is used as an antitussive, sedative, and analgesic agent. During the spring of 2007, ‘Candidatus Phytoplasma asteris’‐related phytoplasmas were identified in plants showing virescence and phyllody symptoms. The qualitative and quantitative composition of the oil of healthy and infected plants was compared by gas chromatography/mass spectrometry. Samples from six symptomatic and five asymptomatic plants tested by nested PCR followed by RFLP analyses confirmed the presence of ‘Ca. P. asteris’ in all symptomatic samples. The oils from healthy and infected plants, obtained by steam distillation, contained 42 components; that of healthy plants contained a higher concentration of monoterpenes, especially limonene and bornyl acetate, which were nearly 50% higher.  相似文献   

5.
Yellowing symptoms similar to coconut yellow decline phytoplasma disease were observed on lipstick palms (Cyrtostachys renda) in Selangor state, Malaysia. Typical symptoms were yellowing, light green fronds, gradual collapse of older fronds and decline in growth. Polymerase chain reaction assay was employed to detect phytoplasma in symptomatic lipstick palms. Extracted DNA was amplified from symptomatic lipstick palms by PCR using phytoplasma‐universal primer pair P1/P7 followed by R16F2n/R16R2. Phytoplasma presence was confirmed, and the 1250 bp products were cloned and sequenced. Sequence analysis indicated that the phytoplasmas associated with lipstick yellow frond disease were isolates of ‘Candidatus Phytoplasma asteris’ belonging to the 16SrI group. Virtual RFLP analysis of the resulting profiles revealed that these palm‐infecting phytoplasmas belong to subgroup 16SrI‐B and a possibly new 16SrI‐subgroup. This is the first report of lipstick palm as a new host of aster yellows phytoplasma (16SrI) in Malaysia and worldwide.  相似文献   

6.
Potato plants with symptoms suggestive of potato purple top disease (PPTD) occurred in the central, western and north‐western regions of Iran. Polymerase chain reaction (PCR) and nested PCR assays were performed using phytoplasma universal primer pair P1/P7 followed by primer pairs R16F2n/R16R2 and fU5/rU3 for phytoplasma detection. Using primer pairs R16F2n/R16R2 and fU5/rU3 in nested PCR, the expected fragments were amplified from 53% of symptomatic potatoes. Restriction fragment length polymorphism (RFLP) analysis using AluI, CfoI, EcoRI, KpnI, HindIII, MseI, RsaI and TaqI restriction enzymes confirmed that different phytoplasma isolates caused PPTD in several Iranian potato‐growing areas. Sequences analysis of partial 16S rRNA gene amplified by nested PCR indicated that ‘Candidatus Phytoplasma solani’, ‘Ca. Phytoplasma astris’ and ‘Ca. Phytoplasma trifolii’ are prevalent in potato plants showing PPTD symptoms in the production areas of central, western and north‐western regions of Iran, although ‘Ca. Phytoplasma solani’ is more prevalent than other phytoplasmas. This is the first report of phytoplasmas related to ‘Ca. Phytoplasma astris’, ‘Ca. Phytoplasma solani’ and ‘Ca. Phytoplasma trifolii’ causing PPTD in Iran.  相似文献   

7.
Shrubs of niger seed with phyllody and internode elongation symptoms suggestive of phytoplasma infections occurred in the central regions of Iran. Phytoplasma was detected by polymerase chain reaction (PCR) and nested PCR amplifications using phytoplasma universal primer pairs P1/P7 and R16F2n/R16R2. Using aster yellows group–specific primer pair rp(I)F1A/rp(I)R1A, a fragment of 1212 bp of the rp genes was amplified from DNA samples of infected plants. Random fragment length polymorphism (RFLP) analyses of R16F2n/R16R2‐amplified products using the CfoI restriction enzyme confirmed that Iranian niger seed phyllody phytoplasma is associated with aster yellows group phytoplasmas. Sequence analyses of the partial rp genes fragment indicated that the Iranian niger seed phyllody phytoplasma, which was collected from central regions of Iran, is related to ‘Candidatus Phytoplasma asteris’. This is the first report of a phytoplasma infecting the niger seed plant.  相似文献   

8.
During 2010–2013 surveys for the presence of phytoplasma diseases in Yazd province (Iran), a parsley witches’ broom (PrWB) disease was observed. Characteristic symptoms were excessive development of short spindly shoots from crown buds, little leaf, yellowing, witches’ broom, stunting, flower virescence and phyllody. The disease causative agent was dodder transmitted from symptomatic parsley to periwinkle and from periwinkle to periwinkle by grafting inducing phytoplasma‐type symptoms. Expected length DNA fragments of nearly 1800 and 1250 bp were, respectively, amplified from naturally infected parsley and experimentally inoculated periwinkle plants in direct polymerase chain reaction (PCR) using phytoplasma primer pair P1/P7 or nested PCR using the same primer pair followed by R16F2n/R16R2 primers. Restriction fragment length polymorphism and phylogenetic analyses of 16S rRNA gene sequences showed that the phytoplasma associated with PrWB disease in Yazd province belong to 16SrII‐D phytoplasma subgroup. This is the first report of association of a 16SrII‐related phytoplasma with PrWB disease in Iran.  相似文献   

9.
Tree peony (Paeonia suffruticosais) plants with yellowing symptoms suggestive of a phytoplasma disease were observed in Shandong Peninsula, China. Typical phytoplasma bodies were detected in the phloem tissue using transmission electron microscopy. The association of a phytoplasma with the disease was confirmed by polymerase chain reaction (PCR) using phytoplasma universal primer pair R16mF2/R16mR1 followed by R16F2n/R16R2 as nested PCR primer pair. The sequence analysis indicated that the phytoplasma associated with tree peony yellows (TPY) was an isolate of ‘Ca. Phytoplasma solani’ belonging to the stolbur (16SrXII) group. This is the first report of a phytoplasma associated with tree peony.  相似文献   

10.
The efficacy and the instant effect of 13 insecticides and antifeedants towards Cacopsylla pruni, the vector of ‘Candidatus Phytoplasma prunorum’ were examined in cage studies (no choice experiments with 10 field‐collected overwintered adults per experiment) on potted apricot trees (budding trees under outdoor conditions in early spring and foliated seedlings kept at 21°C). Cypermethrin caused 100% insect mortality within 2–4 h, thiacloprid 90–100% mortality within 24 h both on foliated and on budding trees. On budding trees spinosad led to 70–90% mortality within 24 h, thixotropic white trunk paint to 90% mortality within 48 h. On foliated seedlings flonicamid gave 70–100% mortality within 1 day, abamectin, spinosad, acetamiprid and spirotetramat 70–100% within 72 h. Field studies monitoring the effects of thiacloprid on remigrants of C. pruni by yellow sticky traps were carried out in two apricot orchards. Additionally the influence of the insecticide on insect dispersal was examined by mark, release and recapture trials. As compared to the control thiacloprid significantly reduced the catches of naturally occurring and released insects, decreased the number of trees on which released insects were recaptured (by 25–100%) and shortened the migration distances of the released insects by more than half. Our results suggest that appropriate insecticide treatments both reduce C. pruni populations and have a direct effect on pathogen transmission. Application of Cypermethrin before bloom and thiacloprid after bloom seem best suited to achieve these objectives. Thixotropic white trunk paint could, a formulation for spray application provided, eventually be a sustainable alternative or complement for treatments before bloom.  相似文献   

11.
In previous work, Coorg black pepper yellows phytoplasma (CBPYp), a ‘Candidatus Phytoplasma asteris'‐related strain, was identified in association with black pepper plants exhibiting yellows symptoms in southern India. In the present study, multiple gene (16S rRNA, tuf, rplV‐rpsC, secY and secA) sequence analyses were carried out for finer characterisation of CBPYp isolates identified in seven plants. Nucleotide sequences of each gene studied were identical among all the CBPYp isolates here analysed. Comparison of virtual restriction fragment length polymorphism (RFLP) patterns, validated by actual digestion of polymerase chain reaction (PCR) products, revealed that CBPYp is a member of subgroups 16SrI‐B, rpI‐L, tufI‐B, secYI‐L and secA1‐A. Interestingly, alignments of nucleotide sequences with other ‘Candidatus Phytoplasma asteris'‐related strains revealed the presence of CBPYp‐specific single nucleotide polymorphisms (SNPs), located in restriction sites for endonucleases not used for conventional classification. CBPYp‐specific SNPs in genes 16S rRNA, tuf and secA were detectable by virtual and actual RFLP assays, while SNPs present in rplV‐rpsC and secY genes were not located in any restriction recognition site. CBPYp‐specific SNPs can be used as molecular markers for the specific identification of CBPYp and for future research focused on investigating epidemiology and ecology of CBPYp in India.  相似文献   

12.
Recently, peach trees showing leaf rolling, little leaf, rosetting, yellowing, bronzing of foliage and tattered and shot‐holed leaves symptoms were observed in peach growing areas in the central and north‐western regions of Iran. Polymerase chain reaction (PCR) and nested PCR using phytoplasma universal primer pairs P1/Tint, R16F2/R2, PA2F/R and NPA2F/R were employed to detect phytoplasmas. The nested PCR assays detected phytoplasma infections in 51% of symptomatic peach trees in the major peach production areas in East Azerbaijan, Isfahan, ChaharMahal‐O‐Bakhtiari and Tehran provinces. Restriction fragment length polymorphism (RFLP) analyses of 485 bp fragments amplified using primer pair NPA2F/R in nested PCR revealed that the phytoplasmas associated with infected peaches were genetically different and they were distinct from phytoplasmas that have been associated with peach and almond witches’‐broom diseases in the south of Iran. Sequence analyses of partial 16S rDNA and 16S–23S rDNA intergenic spacer regions demonstrated that ‘Candidatus Phytoplasma aurantifolia’, ‘Ca. Phytoplasma solani’ and ‘Ca. Phytoplasma trifolii’ are prevalent in peach growing areas in the central and north‐western regions of Iran.  相似文献   

13.
Apple proliferation (AP) is an important disease and is prevalent in several European countries. The causal agent of AP is ‘Candidatus Phytoplasma mali’ (‘Ca. Phytoplasma mali’). In this work, isolates of ‘Ca. Phytoplasma mali’ were detected and characterized through polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) analyses of 16S rRNA gene and non‐ribosomal DNA fragment. The presence of three AP subtypes (AT‐1, AT‐2 and AP‐15) was identified in 31 symptomatic apple trees and two samples each constituted by a pool of five insects, collected in north‐western Italy, where AT‐1 is a dominant subtype. Subsequent nucleotide sequence analysis of the PCR‐amplified 1.8 kb (P1/P7) fragment, containing the 16S rDNA, the 16S–23S intergenic ribosomal region and the 5′‐end of the 23S rDNA, revealed the presence of at least two phytoplasmal genetic lineages within the AT‐1 subtype, designed AT‐1a and AT‐1b. Moreover, in silico single nucleotide polymorphism (SNP) analysis based on 16S rDNA sequence can differentiate AT‐1 subtype from AT‐2 and AP‐15 subtypes. Our data showed a high degree of genetic diversity among ‘Ca. Phytoplasma mali’ population in north‐western Italy and underlined the possible use of the 16S rDNA analysis for the identification and the geographical origin assignation of isolates of AP phytoplasma. Molecular markers on 16S rDNA, here identified, could be useful for studying the epidemiology of AP disease.  相似文献   

14.
In 2012, yellowing of camellias was observed in Tai'an in Shandong province, China. Transmission electron microscopy (TEM) revealed phytoplasma in the phloem sieve tube elements of symptomatic plants. A specific fragment of phytoplasma 16S rRNA gene was amplified by polymerase chain reaction (PCR) using the universal phytoplasma primers P1/P7 followed by R16F2n/R16R2. Sequence and restriction fragment length polymorphism (RFLP) analyses allowed us to classify the detected phytoplasma into the elm yellows (EY) group (16SrV), subgroup 16SrV‐B. Sequence analyses of the ribosomal protein (rp) gene confirmed a close relationship with phytoplasmas belonging to the rpV‐C subgroup. Thus, the phytoplasma associated with yellows disease in camellia, designated as ‘CY’, is a member of the 16SrV‐B subgroup. This is the first report of phytoplasma associated with camellia.  相似文献   

15.
Melia azedarach var. japonica trees with leaf yellowing, small leaves and witches' broom were observed for the first time in Korea. A phytoplasma from the symptomatic leaves was identified based on the 16Sr DNA sequence as a member of aster yellows group, ribosomal subgroup 16SrI‐B. Sequence analyses of more variable regions such as 16S–23S intergenic spacer region, secY gene, ribosomal protein (rp) operon and tuf gene showed 99.5?100% nucleotide identity to several GenBank sequences of group 16SrI phytoplasmas. Phylogenetic analysis confirmed that the Melia azedarach witches' broom phytoplasma belongs to aster yellows group.  相似文献   

16.
Royal Palms (Roystonea regia) with symptoms such as severe chlorosis, stunting, collapse of older fronds and general decline were observed in the state of Selangor, Malaysia. Using polymerase chain reaction (PCR) amplification with phytoplasma universal primer pair P1/P7 followed by R16F2N/R16R2 and fU5/rU3 as nested PCR primer pairs, all symptomatic plants tested positively for phytoplasma. Results of phylogenetic and virtual RFLP analysis of the 16S rRNA gene sequences revealed that the phytoplasma associated with Royal Palm yellow decline (RYD) was an isolate of ‘Candidatus Phytoplasma asteris’ belonging to a new 16SrI‐subgroup. These results show that Roystonea regia is a new host for the aster yellows phytoplasma (16SrI). This is the first report on the presence of 16SrI phytoplasma on Royal Palm trees in Malaysia.  相似文献   

17.
18.
Symptoms resembling phytoplasma disease were observed on Verbena × hybrida in Alanya, Turkey, during October 2013. Infected plants were growing as perennials in a flower border and showed symptoms of discoloured flowers, poor flower clusters, inflorescences with a small number of developed flowers and thickened fruit stalks. Electron microscopy examination of the ultra‐thin sections revealed polymorphic bodies in the phloem tissue of leaf midribs. The phytoplasma aetiology of this disease was confirmed by polymerase chain reaction of the 16S rRNA gene, the 16–23S rRNA intergenic spacer region and the start of the 23S rRNA gene using universal phytoplasma‐specific primer pair P1A/P7A, two ribosomal protein (rp) genes (rpl22 and rps3) (the group‐specific primer pair rp(I)F1A/rp(I)R1A) and the Tuf gene (group‐specific fTufAy/rTufAy primers) generating amplicons of 1.8 kbp, 1.2 kbp and 940 bp, respectively. Comparison of the amplified sequences with those available in GenBank allowed classification of the phytoplasma into aster yellows subgroups 16SrI‐B, rpI‐B and tufI‐B. This is the first report about molecular detection and identification of natural infection of the genus Verbena by phytoplasma and occurrence of the aster yellows group phytoplasma on an ornamental plant in Turkey.  相似文献   

19.
In July, 2011, alfalfa plants were observed in Yangling, Shaanxi Province, China with typical witches’ broom symptoms. The presence of phytoplasma was confirmed by transmission electron microscopy and a nested PCR, which amplified a 1.2‐kb fragment using universal primer pairs P1/P6 followed by R16F2n/R2. Sequence, phylogeny and RFLP analyses showed that the alfalfa witches’ broom disease was associated with a phytoplasma of group 16SrV, subgroup V‐B. This is the first record of the 16SrV phytoplasma group infecting alfalfa plants.  相似文献   

20.
The prophage/phage region in the genome of ‘Candidatus Liberibacter asiaticus’, an alpha‐proteobacterium associated with citrus Huanglongbing, included many valuable loci for genetic diversity studies. Previously, a mosaic genomic region (CLIBASIA_05640 to CLIBASIA_05650) was characterized, and this revealed inter‐ and intracontinental variations of ‘Ca. L. asiaticus’. In this study, 267 ‘Ca. L. asiaticus’ isolates collected from eight provinces in China were analysed with a primer set flanking the same mosaic region plus downstream sequence. While most amplicon sizes ranged from 1400 to 2000 bp, an amplicon of 550 bp (S550) was found in 14 samples collected from south‐western China. Sequence analyses showed that S550 was the result of a 1033 bp deletion which included the previously known mosaic region. The genetic nature of the deletion event remains unknown. The regional restriction of S550 suggests that the ‘Ca. L. asiaticus’ population from south‐western China is different from those in eastern China. The small and easy‐to‐detect S550 amplicon could serve as a molecular marker for ‘Ca. L. asiaticus’ epidemiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号